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To specify different types of cosmic fluids one uses a relation
between the pressure p and the energy density ϱ

p = wϱ, p = Ek − V, ϱ = Ek + V

where w is the state parameter.
In the spatially flat FLRW metric:

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
,

where a(t) is the scale factor, the Hubble parameter H ≡ ȧ/a,

w(t) = − 1 +
2Ek

ϱ
= − 1− 2

3

Ḣ

H2
. (1)

In this case wDE < −1 the NEC is violated and there are
problems of instability at classical and quantum levels.
A possible way to evade the instability problem for models

with wDE < −1 is to yield a phantom model as an effective one,
arising from a fundamental theory. Such a possibility does
appear in the string field theory framework
(I.Ya. Aref’eva, 2004).
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A particular form of nonlocal gravity has been considered in
the context of a phenomenological approach to the cosmological
constant problem. The proposal is based on modified Einstein
equations at enormous distances

M 2
P

(
1 + F(L2� )

)(
Rµν −

1

2
gµνR

)
=

1

2
Tµν (2)

The function F satisfies the following conditions

F(L2�) → 0, at L2� ≫ 1 F(z) → F(0) ≫ 1, at z → 0. (3)

Arkani-Hamed N., Dimopoulos S., Dvali G., Gabadadze G.,
2002.
The combination M 2

� = M 2
P

(
1 + F(L2� )

)
is treated as ”nonlo-

cal” Planck mass.
The left hand side of (2), with nontrivial form factor F(L2� ),

does not satisfy the Bianchi identity and cannot be represented
as a metric variational derivative of the action. However, ad-
mitting addition terms of order R3 to the action it is possible to
get (2) [Barvinsky A.O., Phys. Lett. B 572 (2003) 109–116].
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The Ostragradski representation

.
Modified gravity cosmological models have been proposed

with the hope to find resolutions to the important open prob-
lems of the standard cosmological model. One possible modi-
fication which allows to improve the ultraviolet behavior and
even to get a renormalizable theory of quantum gravity is the
addition of higher-derivative terms to the Einstein–Hilbert ac-
tion (K.S. Stelle, Phys. Rev. D 16 (1977) 953).
Unfortunately, models with the higher-derivative terms have

ghosts.

• M. Ostrogradski, Mémoire sur les équations differentielles
relatives aux problèmes des isoperimétres, Mem. St. Pe-
tersbourg VI Series, V. 4 (1850) 385–517

• A. Pais and G.E. Uhlenbeck, On Field Theories with Nonlo-
calized Action, Phys. Rev. 79 (1950) 145–165
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Models with nonlocal scalar fields

The SFT inspired nonlocal gravitation models are introduced
as a sum of the SFT action of the tachyon field ϕ plus the
gravity part of the action. One cannot deduce this form of the
action from the SFT.
Let us consider the f (R) gravity, which is a straightforward

modification of the general relativity, and the following action:

Sf =

∫
d4x

√
−g
(

R

16πGN
+

1

α′g2o

(
1

2
ϕF (α′�)ϕ− V (ϕ)

)
− Λ

)
, (4)

where go is the open string coupling constant, α′ is the string
length squared.
From the SFT after some approximations we obtained:

FSFT (α
′�) = (ξ2α′� + 1)e−2α′� − c,

where c and ξ2 are constants.
FSFT has only simple and (for some values of c and ξ2) double

roots.
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The function F is assumed to be analytic at all finite points
of the complex plane, in other words, to be an entire function.
The function F can be represented by the convergent series
expansion:

F(�) =

∞∑
n=0

fn� n. (5)

The Weierstrass factorization theorem asserts that the func-
tion F can be represented by a product involving its zeroes
Jk:

F(J) = JmeY (J)
∞∏
k=1

(
1− J

Jk

)
e
J
Jk

+ J2

2J2
k

+···+ 1
pk

(
J
Jk

)pk
, (6)

where m is an order of the root J = 0 (m can be equal to
zero), Y (J) is an entire function, natural numbers pn are chosen

such that the series
∞∑
n=1

(
J
Jn

)pn+1

is an absolutely and uniformly

convergent one.
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Scalar fields ϕ (associated with the open string tachyon) is
dimensionless, while [α′] = length2 and [go] = length.
Let us introduce dimensionless coordinates x̄µ = xµ/

√
α′,

the dimensionless Newtonian constant ḠN = GN/α
′,

the dimensionless ḡo = go/
√
α′.

The dimensionless cosmological constant Λ̄ = Λα′2, R̄ is the
curvature scalar in the coordinates x̄µ:

Sf =

∫
d4x̄

√
−g
(

R̄

16πḠN
+

1

ḡ2o

(
1

2
ϕF

(
�̄g

)
ϕ− V (ϕ)

)
− Λ̄

)
, (7)

In the following formulae we omit bars, but use only dimen-
sionless coordinates and parameters.
Recall the covariant d’Alembertian acting to a scalar:

� ≡ gµν∇µ∇ν = gµν∇µ∂ν =
1√
−g

∂µ
(√

−g gµν∂ν
)
,

where ∇µ is the covariant derivative.
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The action is

Sf =

∫
d4x

√
−g
(

R

16πGN
+

1

g2o

(
1

2
ϕF (�)ϕ− V (ϕ)

)
− Λ

)
, (8)

The Einstein equations are as follows:

Rµν −
R

2
gµν = 8πGN (Tµν − Λgµν) , (9)

F(�)ϕ =
dV

dϕ
, (10)

where the energy–momentum (stress) tensor Tµν is

Tµν = − 2√
−g

δS

δgµν
=

1

g2o

(
Eµν + Eνµ − gµν (g

ϱσEϱσ +W )
)
, (11)

Eµν ≡
1

2

∞∑
n=1

fn

n−1∑
l=0

∂µ�lϕ∂ν�n−1−lϕ, W ≡ 1

2

∞∑
n=2

fn

n−1∑
l=1

�lϕ�n−lϕ−f0
2
ϕ2+V.

The system of the Einstein equations is a system of non-
local nonlinear equations !!!
HOW CAN WE FIND A SOLUTION?

8



There are two different cases:

• The potential V (ϕ) = C2ϕ
2 + C1ϕ + C0, where C2, C1 and C0

are arbitrary constants. In this case one can construct the
equivalent action with local fields and quadratic potentials.
Number of local fields is equal to number of roots of F(�),
with a glance of order of them. It has been proved for an
arbitrary analytic function F with simple and double roots.

I.Ya. Aref’eva, L.V. Joukovskaya, S.Yu.V., J. Phys. A:
Math. Theor. 41 (2008) 304003, arXiv:0711.1364;

D.J. Mulryne, N.J. Nunes, Phys. Rev. D 78 (2008) 063519,
arXiv:0805.0449

S.Yu.V., Class. Quant. Grav. 27 (2010) 035006,
arXiv:0907.0468

S.Yu.V., Phys. Part. Nucl. Lett. 8 (2011) 310–320,
arXiv:1005.0372

A.S. Koshelev, S.Yu.V., Class. Quant. Grav. 28 (2011) 085019,
arXiv:1009.0746
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• The potential V (ϕ) ̸= C2ϕ
2 + C1ϕ + C0. In this case situation

is more difficult and exact solutions is possible to find only
adding some scalar field, for example, a k-essence field.

Numerical Solution:

L. Joukovskaya, JHEP 0902 (2009) 045, arXiv:0807.2065

Approximate solutions for field equation:

G. Calcagni and G. Nardelli, Int. J. Mod. Phys. D 19
(2010) 329–338, arXiv:0904.4245

Exact solutions for field equation:

S.Yu.V., Theor. Math. Phys. 166 (2011) 392–402,
arXiv:1005.5007
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An algorithm of localization in the case of an arbi-
trary quadratic potential V (ϕ) = C2ϕ

2 + C1ϕ + C0.

Veff =

(
C2 −

f0
2

)
ϕ2 + C1ϕ + C0 + Λ. (12)

We can change values of f0 and Λ such that the potential
takes the form V (ϕ) = C1ϕ.
In other words, we put C2 = 0 and C0 = 0.
There exist 3 cases:

• C1 = 0

• C1 ̸= 0 and f0 ̸= 0

• C1 ̸= 0 and f0 = 0

I will speak about the case C1 = 0 and assume that all roots
of F(J) are simple.
The general case has been considered in

S.Yu.V., Phys. Part. Nucl. Lett. 8 (2011) 310–320, arXiv:1005.0372.
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Let us consider the case C1 = 0 and the equation

F(�)ϕ = 0. (13)

We seek a particular solution of (13) in the following form

ϕB =

N1∑
i=1

ϕi. (14)

(�− Ji)ϕi = 0, (15)

Ji are simple roots of the characteristic equation F(J) = 0.
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Energy–momentum tensor for special solutions

If we have one simple root ϕ1 such that �ϕ1 = J1ϕ1, then

Eµν(ϕ1) =
1

2

∞∑
n=1

fn

n−1∑
l=0

Jn−1
1 ∂µϕ1∂νϕ1 =

F ′(J1)

2
∂µϕ1∂νϕ1.

W (ϕ1) =
1

2

∞∑
n=1

fn

n−1∑
l=0

Jn1 ϕ
2
1 =

J1
2

∞∑
n=1

fnnJ
n−1
1 ϕ21 =

J1F ′(J1)

2
ϕ21.

In the case of two simple roots ϕ1 and ϕ2 we have

Eµν(ϕ1 + ϕ2) = Eµν(ϕ1) + Eµν(ϕ2), W (ϕ1 + ϕ2) = W (ϕ1) +W (ϕ2).
(16)

In the case of N simple roots,

Tµν =

N∑
k=1

F ′(Jk)

(
∂µϕk∂νϕk −

1

2
gµν
(
gϱσ∂ϱϕk∂σϕk + Jkϕ

2
k

))
. (17)

If F(J) has simple real roots, then positive and negative values
of F ′(Ji) alternate, so we obtain phantom fields.
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Considering the following local action

Sloc =

∫
d4x

√
−g
(

R

16πGN
− Λ

)
+

N1∑
i=1

Si, (18)

where

Si = − 1

g2o

∫
d4x

√
−gF

′(Ji)

2

(
gµν∂µϕi∂νϕi + Jiϕ

2
i

)
,

we can see that solutions of the Einstein equations and equa-
tions in ϕi, obtained from this action, solves the initial nonlocal
equations (9).
Special solutions to nonlocal equations can be found as solu-

tions to system of local (differential) equations.
If F(J) has an infinity number of roots then one nonlocal

model corresponds to infinity number of different local models
and the initial nonlocal action (7) generates infinity number of
local actions (18).
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Scalar Perturbations

Scalar metric perturbations are given by four arbitrary scalar
functions ϕ(η, xa), β(η, xa), ψ(η, xa), γ(η, xa) in the following way

ds2 = a(η)2
(
−(1 + 2ϕ)dη2 − 2∂iβdηdx

i + ((1 + 2ψ)δij + 2∂i∂jγ)dx
idxj

)
,

where η is the conformal time related to the cosmic one as
a(η)dη = dt.
Changing the coordinate system one can both produce ficti-

tious perturbations and remove real ones.
There exist two independent gauge-invariant variables (the

Bardeen potentials), which fully determine the scalar pertur-
bations of the metric tensor:

Φ = ϕ− χ̇, Ψ = ψ −Hχ, where χ = aβ + a2γ̇.

The gauge invariant variables Φ and Ψ have a very simple
physical interpretation: they are amplitudes of the metric per-
turbations in the longitudinal (conformal-Newtonian) gauge:

ds2 = a(η)2
(
−(1 + 2Φ)dη2 + δij(1 + 2Ψ)dxidxj

)
.
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The energy–momentum tensor of nonlocal scalar field

The energy–momentum tensor of the nonlocal scalar field is a
perfect fluid

T µν = diag(−ϱ, p, p, p),
where

ϱ =
1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂t�lT∂t�n−1−lT +�lT�n−lT

)
−

− 1

2
TF0(�)T + Vint(T ) + g2oΛ0,

p =
1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂t�lT∂t�n−1−lT −�lT�n−lT

)
+

+
1

2
TF0(�)T − Vint(T )− g2oΛ0.

(19)
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To the perturbed order one has

δϱ =
1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂tδ(�lT )∂t�n−1−lT + ∂t�lT∂tδ(�n−1−lT )−

− 2Φ∂t�lT∂t�n−1−lT +

+ δ(�lT )�n−lT +�lTδ(�n−lT )
)
− 1

2g2o
(TV ′′

int − V ′
int)δT,

δp =
1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂tδ(�lT )∂t�n−1−lT + ∂t�lT∂tδ(�n−1−lT )−

− 2Φ∂t�lT∂t�n−1−lT −
− δ(�lT )�n−lT −�lTδ(�n−lT )

)
+

1

2g2o
(TV ′′

int − V ′
int)δT,

vs =
k

a(ϱ + p)

∞∑
n=1

fn

n−1∑
l=0

∂t�lTδ
(
�n−1−lT

)
,

πs = 0.
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Using the Einstein equations one gets that πs = 0 is equivalent
to Φ = Ψ.
The Bardeen potential Ψ is proportional to the gauge invari-

ant total energy perturbation

ε ≡ δϱ

ϱ
+ 3(1 + ω)Hvs

a

k
= − k2

4πGϱa2
Ψ. (20)

The function ε is a solution of

ε̈ +H
(
2 + 3c2s − 6w

)
ε̇ +

+

(
Ḣ(1− 3w)− 15H2w + 9H2c2s +

k2

a2

)
ε +

k2

a2ϱ
∆ = 0.

(21)

Here w = p/ϱ, c2s = ṗ/ϱ̇ is the speed of sound, k =
√
kaka.

∆ = δp− δϱ + (1− c2s)
a

k
ϱ̇vs =

(1− c2s)ϱ̇

ϱ + p

∞∑
n=1

fn

n−1∑
l=0

∂t�lTδ(�n−1−lT )−

−
∞∑
n=1

fn

n−1∑
l=0

(
δ(�lT )�n−lT +�lTδ(�n−lT )

)
+

1

g2o
(TV ′′

int − V ′
int)δT.
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The latter quantity is identically zero for a local scalar field,
i.e. in the case F(�) = f1�+f0. Therefore, ∆ ̸= 0 is the attribute
of the nonlocality here.
For the linearized model (7) we can consider the background

solution as given by (14) to obtain ∆ in the more convenient
form.
To do this the following relation is useful

δ(�nϕ) = �nδϕ +

n−1∑
m=0

�m(δ�)�n−1−mϕ. (22)

Using
n−1∑
m=0

xm =
xn − 1

x− 1
,

one has

δ(�nϕ) = �nδϕ +
∑
i

�n − Jni
�− Ji

(δ�)ϕi. (23)
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Perturbing the equation of motion for ϕ, one has

δ(F(�)ϕ) = F
∑
i

(
1

�− Ji
(δ�)ϕi + δϕi

)
= 0

where we have put δϕ =
∑
i

δϕi.

It follows from (17) that if for some Jk we have ϕk = 0 as a
background solution, then δϕk, contributes only to the second
order in the energy–momentum tensor perturbations. We con-
sider perturbations only to the first order, and, therefore, for
all ϕk = 0 we can put δϕk = 0 without loss of generality.

∆ = − 2

ϱ + p

∑
m,l

F ′(Jm)F ′(Jl)Jmϕmϕ̇mϕ̇
2
l ζml.

where

ζij =
δϕi

ϕ̇i
− δϕj

ϕ̇j
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The functions ζij satisfy the following set of equations

ζ̈ij +

(
3H +

ϕ̈i

ϕ̇i
+
ϕ̈j

ϕ̇j

)
ζ̇ij +

(
−3Ḣ +

k2

a2

)
ζij =

=

(
Jiϕi

ϕ̇i
− Jjϕj

ϕ̇j

)(∑
m

F ′(Jm)ϕ̇
2
m

ϱ + p

(
ζ̇im + ζ̇jm

)
+

2

1 + w
ε

)
.

(24)

Equation (21) with the above derived ∆ and equations (24)
describe the perturbations in the case of linearized model.
Note that only N − 1 functions ζ1j are independent.

So, in the case of quadratic potential analysis of the first
order perturbation is equivalent to analysis of perturbations in
the model with local scalar fields with quadratic potentials.
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NONLOCAL GRAVITY

A nonlocal modification that assumes the existence of a new
dimensional parameter M∗ can be of the form

S =

∫
d4x

√
−g
(
M 2

P

2
R +

1

2
RF

(
�
M 2

∗

)
R− Λ

)
(25)

where M∗ is the mass scale at which the higher derivative terms
in the action become important, 8πGN = 1/M 2

P .
An analytic function F(�/M 2

∗ ) =
∑
n>0

fn�n .

Biswas T., Mazumdar A., and Siegel W., 2006, JCAP 0603
009 (hep-th/0508194)
Biswas T., Koivisto T., and Mazumdar T., 2010, JCAP 1011

008 (arXiv:1005.0590)
Koshelev A.S., Vernov S.Yu., arXiv:1202.1289,
Biswas T., Koshelev A.S., Mazumdar T., and S.Yu.V., 2012,

in progress.
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By virtue of the field redefinition one can transform the non-
local gravity action (25) as follows:

S =

∫
d4x

√
−g
(
M 2

P

2
(1 + Φ)R +

1

2
ϕF
(

�
M 2

∗

)
ϕ−M 2

P

2
Φϕ− Λ

)
(26)

with two new scalar fields Φ and ϕ.
Variation w.r.t. Φ gives ϕ = R and, therefore, the connection

(26) with action (25) is obvious.
From action (26) one gets the following equations of motion:

M 2
P (1 + Φ)

(
Rµν −

1

2
Rgµν

)
=

1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂µ�lϕ∂ν�n−1−lϕ +

+ ∂ν�lϕ∂µ�n−1−lϕ− gµν
(
gϱσ∂ϱ�lϕ∂σ�n−1−lϕ +�lϕ�n−lϕ

))
+

+
1

2
gµν
(
ϕF(�)ϕ−M 2

PΦϕ
)
+M 2

P (Dµ∂νΦ− gµν�Φ)− Λgµν ,

F(�)ϕ =
M 2

P

2
Φ ,

ϕ = R .
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Equations in Non-local Gravity Models

Variation of action (25) yields the following equations

[M 2
P + 2F(�)R]Gµ

ν =

=
1

2

∞∑
n=1

fn

n−1∑
l=0

[
gµϱ∂ϱ�lR∂ν�n−l−1R + gµϱ∂ν�lR∂ϱ�n−l−1R−

− δµν
(
gϱσ∂ϱ�lR∂σ�n−l−1R +�lR�n−lR

)]
− 1

2
RF(�)Rδµν +

+ 2(gµϱ∇ϱ∂ν − δµν�)F(�)R− Λδµν + TM
µ
ν ,

(27)

where TM
µ
ν is the energy–momentum tensor of matter and

Gµ
ν = Rµ

ν −
1

2
δµνR , (28)

is the Einstein tensor.
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The equations can be written in a compact form:

[M 2
P + 2F(�)R]Gµ

ν = TM
µ
ν − Λδµν +

+Kµ
ν − 2

δµν (Kσ
σ +K1)−

2
RF(�)Rδµν + 2(gµϱ∇ϱ∂ν − δµν�)F(�)R ,

(29)

where we have introduced two additional quantities:

Kµ
ν = gµϱ

∞∑
n=1

fn

n−1∑
l=0

∂ϱ�lR∂ν�n−l−1R , K1 =

∞∑
n=1

fn

n−1∑
l=0

�lR�n−lR .

(30)
The trace equation is

M 2
PR−Kµ

µ − 2K1 − 6�F(�)R = 4Λ− TM
µ
µ , (31)
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General Ansatz for finding Exact Solutions

The following ansatz

�R = r1R + r2, r1 ̸= 0 , (32)

is useful in finding exact solutions. From (32) one gets

F(�)R = F1R +
r2
r1
(F1 − f0) where F1 ≡ F(r1).

If the scalar curvature R satisfies (32), then the trace equation
is

A1R−F ′(r1)
(
2r1R

2 + ∂µR∂
µR
)
+ A2 = TM

µ
µ , (33)

where

A1 =M 2
P −

(
4F ′(r1)r2 − 2

r2
r1
(F1 − f0) + 6F1r1

)
,

A2 = − 4Λ− r2
r1

(
2F ′(r1)r2 − 2

r2
r1
(F1 − f0) + 6F1r1

)
.

We consider only a traceless perfect fluid (radiation):TM
µ
µ = 0.
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The simplest way to get a solution to (33) with TM
µ
µ = 0 is to

put A1 = A2 = 0 and impose F (1)(r1) = 0. This implies

r2 = − r1[M
2
P − 6F1r1]

2[F1 − f0]
, Λ = − r2M

2
P

4r1
.

The Einstein equations are simplified to

2F1(R + 3r1)G
µ
ν = TM

µ
ν + 2F1

[
gµϱ∇ϱ∂νR− 1

4
δµν
(
R2 + 4r1R + r2

)]
(34)

Using the ansatz, one can find exact non-singular bouncing
solutions in the FLRW metric:

a(t) = a0 cosh(λt), (35)

where a0 is an arbitrary constant and λ =
√
Λ/3MP . To satisfy

all Einstein equations one should add a radiation to the model.
Another bouncing solution is

a(t) = a0e
λ
2 t

2
, (36)

H(t) = λt, R = 12λ2t2 + 6λ, Λ = λM 2
P/2, r1 = −6λ, r2 = 12λ2,

Note that function (36) is a solution to all Einstein equations.
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Perturbations

To compute perturbation equations we use the fact that the
background configuration obeys the ansatz and the correspond-
ing conditions on parameters.
Let us introduce the following notations to separate the back-

ground and perturbations:

gµϱ = gBµϱ + hµϱ , R = RB + δR, � = �B + δ�,
Also, let us denote the variation of the ansatz (32) as follows:

ζ ≡ δ�RB + (�B − r1)δR. (37)
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While computing the variation of the Einstein equations,
what we encounter most often is the variation

δ(�nR) =

n−1∑
l=0

�l
Bδ��n−l−1

B RB +�n
BδR ,

which thanks to ansatz (32) sums up to

δ(�nR) =
�n
B − rn1

�B − r1
δ�RB +�n

BδR =
�n
B − rn1

�B − r1
ζ + rn1δR , (38)

and this is a key simplification.
We obtain

δ(F(�)R) =
F(�B)−F1

�B − r1
ζ + F1δR ≡ (�B − r1)Ξ + F1δR . (39)

To get the Einstein equations for perturbations we also use

δKµ
ν = gB

µϱ (∂ϱΞ∂νRB + ∂ϱRB∂νΞ) ,

δK1 = 2Ξ (r1RB + r2) +RB(�B − r1)Ξ− r2
r1
δR(F1 − f0).

(40)
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The Trace Equation for Perturbations

Assuming δTM
µ
µ = 0,

we get trace equation for perturbations as follows:

M 2
PδR− δKµ

µ − 2δK1 − 6δ(�F(�)R) = 0. (41)

Using condition A1 = 0 to eliminate M 2
P :

M 2
P + 2F(�B)RB = 2F1(RB + 3r1),

we obtain that equation (41) is a linear equation in ζ:

gµνB ∂νRB∂µΞ+r1RBΞ+2r2Ξ+RB�BΞ+3[�B(�B−r1)Ξ+F1ζ ] = 0, (42)

where

Ξ =
F(�)−F1

(�− r1)2
ζ.

The explicit calculations show that ζ is gauge-invariant func-
tion, therefore, it is not possible to choose such gauge that
ζ = 0.
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The Bardeen potentials and the matter perturba-
tions

For scalar perturbations, in terms of the Bardeen potentials,
the function ζ can be written as:

ζ =
R′
B

a2
(Φ′ − 3Ψ′)− 2(r1RB + r2)Φ + (�B − r1) δRGI. (43)

where δRGI is the gauge invariant part of the curvature varia-
tion:

δRGI =
2

a2

[
k2(Φ + 2Ψ)− 3

a′

a
Φ′ − 6

a′′

a
Φ + 3Ψ′′ + 9

a′

a
Ψ′
]
.

From the (i, j) component of system of the perturbed Einstein
equations, with i ̸= j, we get the following equation

(�B − r1)Ξ + F1[δRGI + (RB + 3r1)(Φ + Ψ)] = 0. (44)

So, there are two nonlocal equations for the two Bardeen po-
tentials, Φ and Ψ.
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The most general form of the firth-order scalar perturbations
of the energy–momentum tensor in the fluid notations can be
parameterized by four scalar function:

T 0
0 = −(ϱ+δϱ), T 0

i = −1

k
(ϱ+p)∂iv

s, T ij = (p+δp)δij+

(
∂i∂j
k2

+
δij
3

)
πs,

where ϱ is the energy density, p the pressure, vs the velocity or
the flux related variable and πs the anisotropic stress.
We consider only radiation for which

πs = 0, δp =
1

3
δϱ .
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The function vs and δϱ can be obtained from the (0, 0) and
(0, j) Einstein equations as follows:

δϱ =

[
R′
B

a2
Ξ′ + (r1RB + r2)Ξ +RB(�− r1)Ξ +RBF1δRGI +

+2F1(ζ + r1δRGI)− 4F1(RB + 3r1)

(
3
a′(Ψ′ −HΦ)

a3
+
k2

a2
Ψ

)
−

− 6
a′2

a4
Υ +

2

a2
(Υ′′ −HΥ′) + 2�B(�B − r1)Ξ

]
and

vs =
3k

2ϱa2

[
2F1(RB + 3r1) (Ψ

′ −HΦ) + +
R′

2
Ξ + Υ′ −HΥ

]
,

where
Υ = (�B − r1)Ξ + F1δRGI.
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A particular solution of the perturbation equations:
ζ = 0

The perturbation equations are nonlocal equations, it is diffi-
cult to get the general solution.
However, they has a particular solution, corresponding to

ζ = 0.
In this case, we obtain a system of two second order differ-

ential equations for the Bardeen potentials:

Φ + Ψ = − δRGI

RB + 3r1
(45)

R′
B

a2
(Φ′ − 3Ψ′)− 2(r1RB + r2)Φ = (�− r1) (RB + 3r1)(Φ + Ψ). (46)
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Remarkably, that the same system can be obtained in f (R)
gravity model.
Indeed, in the case of ζ = 0, ansatz (32) is valid not only the

background solution �RB, but also for perturbations.
It means that one can use equations (34):

2F1(R + 3r1)G
µ
ν = TM

µ
ν + 2F1

[
gµϱ∇ϱ∂νR− 1

4
δµν
(
R2 + 4r1R + r2

)]
,

to get the perturbation equations. These equations coincide
the equations of f (R) gravity model with the action

Sf =

∫
d4x

√
−g
(
F1

2

[
R2 + 6r1R + 3r2

]
+ LM

)
, (47)

where LM is the Lagrangian of the radiation.
Note that, in distinguish to the f(R) gravity, in the consider-

ing model equations (45) and (46) does not describe all possible
scalar perturbations.
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Conclusion

• There are a lot of possibilities to include nonlocality in cos-
mological models. We hope that nonlocal cosmological mod-
els can be constructed as an effective action inspired by the
string field theory.

• In the case of the general relativity model minimally cou-
pling with nonlocal scalar field we construct the equation
for the energy density perturbations of the nonlocal scalar
field in the presence of the arbitrary potential and formu-
late the local system of equations for perturbations for the
linearized model.

• For nonlocally modified model with radiation we construct
the perturbation equations and show that the four pertur-
bation equations can be separate on two nonlocal equations
for the Bardeen potentials and to trivial equations for the
perturbations of the matter energy-stress tensor.
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THANK YOU!
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