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Outline:

Introduction: Creation of hot QCD matter and jet quenching in AA-collisions at
RHIC-LHC.

Quasiclassical approach to the synchrotron-like gluon emission in a finite-size
classical color fields.

Numerical results for RHIC and LHC conditions.
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Creation of hot QCD matter in AA-collisions
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In the Bjorken 1 + 1 expansion T 3τ = T 3
0
τ0 in the QGP phase. n(τ) ≈ n0(τ0/τ) in the

whole range of t. For the QGP creation time τ0 = 0.5 fm from dS/dy
/

dNch/dη ≈ 7.67

[B. Mueller and K. Rajagopal (2005)]
⇒ 〈T0〉 ≈ 300 MeV (central Au+Au,

√
s = 200 GeV), 〈T0〉 ≈ 400 MeV (central Pb+Pb,√

s = 2.76 TeV).

Glasma is the preequilibrium phase with strong coherent color fields predicted in the CGC

model [T. Lappi and L.D. McLerran, Nucl. Phys. A772, 200 (2006)].

GC 2012 – p.4



Jet quenching in AA-collisions

The parton energy loss suppresses high-pT hadrons. It is described by the nuclear
modification factor

RAA(b) =
dN(A+A→ h+X,~b)/d~pT dy

TAA(b)dσ(N +N → h+X)/d~pT dy
,

TAA(b) =
∫

d~ρTA(~ρ)TA(~ρ−~b), TA(~ρ) =
∫

dzρA(~ρ, z) is the nucleus profile function.
The suppression is strong RAA ∼ 0.1− 0.3 for RHIC-LHC.
It is widely believed that the JQ is due to radiative (Bethe-Heitler) and collisional
(Bjorken) energy losses in the QGP

The radiative mechanism dominates since ∆Ecoll/∆Erad ∼ 0.2− 0.3 [BGZ (2007)].
The theoretical uncertainties in RAA are large (about a factor of 1.5− 2) but variation of
RAA from RHIC to LHC is more robust [BGZ (2011)].
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The space-time pattern of jet distortion

The formation length for gluon emission

lf ∼ 2x(1− x)Eq

q2T + ǫ2
, ǫ2 = m2

qx
2 +m2

g(1− x)

For the DGLAP l̄F ∼ 0.3− 1 fm for E ∼< 100 GeV (if mq ∼ 0.3 GeV and mg ∼ 0.75

GeV). ⇒We can neglect the overlapping of the DGLAP and induced emission stages
[BGZ (2008)].
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The glasma can modifies the DGLAP stage. How strong is this modification?
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Glasma structure

The classical Yang-Mills fields in AA-collisions can be evaluated within the CGC model
[McLerran and Venugopalan (1994)]. Just after the collision of the Lorentz contracted
nuclei a system of the color flux tubes with the longitudinal boost invariant color electric
and color magnetic fields (with |Ez | ≈ |Bz |) should be produced.

The transverse coherence length in this phase is ∼ 1/Qs, where Qs (∼ 1− 1.5 GeV for
RHIC and LHC conditions) is the saturation scale of the nuclear parton distributions. At
τ ∼ 1/Qs gEz ∼ gBz ∼ Q2

s . The transverse fields (absent at τ = 0) are also
generated, at τ ∼> 1/Qs they are close to the longitudinal ones. At τ ∼> 1/Qs the energy

density ε = (E2 +B2)/2 ∝ 1/τ [Lappi (2006)].
The thermalization goes probably via instabilities rising quickly at τ ∼> 1/Qs

[Romatschke and Venugopalan (2006), Fujii and Itakura (2008), Iwazaki (2009)]. They
should lead to a fast randomization of the color fields at τ ∼ (2− 3)/Qs. GC 2012 – p.7



Synchrotron-like gluon emission in glasma

For RHIC-LHC the typical Lorentz force acting on a fast parton in the glasma
∼ Q2

s ∼ 5− 10 GeV/fm. It is about 10–20 times that for the Debye screened color center
in the QGP ∼ αsm2

D (we take αs ∼ 0.3 and mD ∼ 0.5 GeV).
The transverse momentum which a fast parton gets in the glasma should come mostly
from interaction with the color field of the first crossed color flux tube. The random
transverse momentum kicks at later times should should give a small effect due to
weakness of the fields and the destructive interference of the chaotic contributions from
different color tubes.
⇒ As a first step in understanding the glasma effect it seems reasonable to consider a
model with a uniform time-dependent color field which acts only for a limited range of τ
(τ = z) about 2–3 units of 1/Qs.
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Gluon synchrotron radiation in uniform field

q ω ≫ mg

Rq

Lf ≪ min(Rq, Rq′, Rg)

E,E′
≫ mq

q′

Rq′

Rg

g

The small angle approximation is applicable at the scale L ∼ Lf (Lf ∼ min(L1, L2),

where L1 = 2x(1− x)E/ǫ2 and L2 = (24x(1− x)E/~f 2)1/3).
⇒ dNs/dωdL can be calculated for a slab with thickness Rg,q ≫ L≫ Lf [BGZ JETP
Lett. 88, 475 (2008)].
The results agree with recent calculations in the Schwinger method [A. Dbeyssi, D.A.
Dirani and H. Zaraket, Phys.Rev. D84, 105033 (2011).], and disagree with previous
calculations by Shuryak and Zahed [Phys. Rev. D67, 054025 (2003)].

Unfortunately, the Schwinger method is inapplicable for a finite-size slab. We use a
quasiclassical approach in the small angle approximation.
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Synchrotron emission in small angle approximation

For SU(3) it is enough to consider chromomagnetic field with color components
a = 3 and a = 8. For radiated gluons we use the color states Q = (QA, QB) with
definite color isospin, QA, and color hypercharge, QB .
There are 2 neutral gluons A = G3 and B = G8, and 6 charged gluons
X, Y, Z, X̄, Ȳ , Z̄ given by

X = (G1 + iG2)/
√
2, Q = (−1, 0),

Y = (G4 + iG5)/
√
2, Q = (−1/2,−

√
3/2),

Z = (G6 + iG7)/
√
2, Q = (1/2,−

√
3/2).

The S-matrix element of the q → gq′ synchrotron transition can be written as

〈gq′|Ŝ|q〉 = −ig
∫

dyψ̄q′ (y)γ
µG∗

µ(y)ψq(y) .

We write each quark wave function in the form

ψi(y) = exp[−iEi(t− z)]ûλφi(z, ~ρ)/
√

2Ei ,

where λ is quark helicity, ûλ is the Dirac spinor operator.
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The z-dependence of the transverse wave functions φi for a parton with color vector
Q = (QA, QB) is governed by the two-dimensional Schrödinger equation

i
∂φi(z, ~ρ)

∂z
=
{ (~p− gQn

~Gn)2 +m2
q

2Ei
+ Ui(z, ~ρ)

}

φi(z, ~ρ)

with the potential Ui(z, ~ρ) = gQi
n[G

0
n(z, ~ρ)−G3

n(z, ~ρ)] . (the superscripts are the
Lorentz indexes and n = A,B). The gluon wave function can be represented in a similar
way.

We take the external vector potential in the form G0
n = −~ρ · ~En, ~Gn = 0, and

G3
n = [ ~Hn × ~ρ]3, where ~En and ~Hn are the electric and magnetic fields. Then

Ui = −~Fi · ~ρ, where ~Fi is the Lorentz force. The φi(z, ~ρ) can be taken in the form

φi(z, ~ρ) = exp

{

i~pi(z)~ρ−
i

2Ei

∫ z

0

dz′[~p2i (z
′) +m2

q ]

}

,
d~pi

dz
= ~Fi(z) .
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〈gq′|Ŝ|q〉 = −ig(2π)3δ(Eg + Eq′ − Eq)

∫ ∞

−∞
dzV (z, {λ})δ(~pg(z) + ~pq′(z)− ~pq(z))

× exp

{

i

∫ z

0

dz′

[

~p 2
q′
(z′) +m2

q

2Eq′
+
~p 2
g (z′) +m2

g

2Eg
−
~p 2
q (z′) +m2

q

2Eq

]}

,

where V is the spin vertex factor. Here ~pg(z) + ~pq′ (z)− ~pq(z) = 0 (since
~Fq = ~Fg + ~Fq′ ) ⇒

〈gq′|Ŝ|q〉 = −i(2π)3δ(ω + Eq′ − Eq)δ(~p
+
g + ~p+

q′
− ~p+q )T ,

T = g

∫ ∞

0

dzV (~q(z), {λ}) exp
{

i

∫ z

0

dz′
[

~q2(z′) + ǫ2

2M

]}

.

~p+i = ~pi(z = ∞), ~q(z) = ~pg(z)(1− x)− ~pq′(z)x, x = ω/Eq , ǫ2 = m2
qx

2 + (1− x)m2
g

and M = Eqx(1− x).

dN

dωd~q
=

|T |2
8(2π)3E3

qx(1− x)
.
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Without an external field ~q(z) = const. Then for q → gq in vacuum

Tv = gV (~q, {λ}) 2iM

~q2 + ǫ2
,

dNv

dωd~q
=

2CFαs

π2xEq

(

1− x+
x2

2

) ~q2

(~q2 + ǫ2)2
.

For a nonzero external field
T = Tv + Ts ,

Ts = g

∫ L

0

dzV (~q(z), {λ}) exp
{

i

∫ z

0

dz′
[

~q2(z′) + ǫ2

2M

]}

− (~q(z) → ~q) .

The synchrotron correction to the LO gluon spectrum reads

dNs

dωd~q
=

2Re(TvT ∗
s ) + |Ts|2

8(2π)3E3
qx(1− x)

.
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~q-integrated spectrum

dNs/dω can be easily obtained within the LCPI approach [BGZ (1996)] formulated in the
impact parameter space

dNs

dω
= 2Re

∫ ∞

0

dz1

∫ ∞

z1

dz2ĝ [K(~ρ2, z2|~ρ1, z1) − K0(~ρ2, z2|~ρ1, z1)]
∣

∣

∣

~ρ1=~ρ2=0
,

ĝ =
αs

8E3
qx(1− x)

∑

{λ}

V (−i∂/∂~ρ1, {λ})V ∗(−i∂/∂~ρ2, {λ})

=
|C|2αs

E3
qx

3(1− x)2

(

1− x+
x2

2

)

∂

∂~ρ1
· ∂

∂~ρ2
,

K is the Green’s function of the Schrödinger equation with the Hamiltonian

Ĥ = − 1

2M

(

∂

∂~ρ

)2

− ~f · ~ρ+ ǫ2

2M
,

and K0 is the Green’s function for the Hamiltonian with ~f = 0.
The subtraction of the K0 term in the LCPI formula corresponds to subtraction of the
vacuum spectrum.
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The Green’s function is known explicitly

K(~ρ2, z2|~ρ1, z1) =
M

2πi∆z
exp [iScl] , (1)

where ∆z = z2 − z1 and

Scl = −∆zǫ2

2M
+

M

2∆z

[

(~ρ2 − ~ρ1)
2 +

2

M

∫ z2

z1

dt ~ρ2 · ~f(t)(t− z1)

+
2

M

∫ z2

z1

dt ~ρ1 · ~f(t)(z2 − t)− 2

M2

∫ z2

z1

dt

∫ t

z1

ds ~f(t) · ~f(s)(z2 − t)(s− z1)

]

. (2)

For RHIC-LHC conditions the energy loss spectrum can not be calculated accurately at
gluon energy ω ∼< 5 GeV. Numerical calculations show that in this region the large angle

emission becomes important. ⇒ The ~q-integration can not be performed accurately
using the formulas based on the small angle approximation. For this reason our results
on the energy loss can only be treated as qualitative estimates, rather than quantitative
predictions.
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Gluon emission in a uniform field

⇒ dNs

dLdx
=
iM

2π

∫ ∞

−∞

dτ

τ

[

g1

M2

(

ǫ2 +
~f 2τ2

2

)]

exp

{

−i
[

ǫ2τ

2M
+
~f 2τ3

24M

]}

.

g1 = αs|λafiχ∗
a/2|2(1− x+ x2/2)/x, Here τ has a small negative imaginary part. The

integral around the lower semicircle near the pole at τ = 0 plays the role of the ~f = 0
subtraction term.

dNs

dLdx
=
a

κ
Ai

′

(κ) + b

∫ ∞

κ
dyAi(y) ,

where a = −2ǫ2g1/M , b = −ǫ2g1/M , κ = ǫ2/(M2 ~f 2)1/3.

The effect of the field is only accumulated in ~f 2 = ~F 2
q′
x2g − 2~Fq′

~Fgxq′xg + ~F 2
g x

2
q .

Our spectrum disagrees with that obtained by Shuryak and Zahed [Phys. Rev. D67,
054025 (2003)] in the soft gluon limit within the Schwinger’s proper time method.

In the SZ formula the argument of the exponential contains ~F 2
q′
x2g + ~F 2

g .

In the pre-exponential factor instead of ~f2 SZ have ~F 2
q′
x2g .

The SZ predictions are physically absurd: For g → gg the SZ spectrum has incorrect
permutation properties. SZ results disagree with A. Dbeyssi, D.A. Dirani and H. Zaraket,
Phys.Rev. D84, 105033 (2011).
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For numerical calculations we take g = 2 (αs ≈ 0.318), mq = 0.3 GeV, mg = 0.75 GeV,
and

Qs = 1 GeV for RHIC and Qs = 1.4 GeV for LHC .

We take L = 2/Qs. This gives L(RHIC) ≈ 0.4 fm and L(LHC) ≈ 0.28 fm.
To fix the z-dependence of the Lorentz force we use the τ -dependence of the glasma
energy density ε = (E2 +H2)/2 obtained in the lattice simulations by Lappi [T. Lappi,
Phys. Lett. B643, 11 (2006)].
We need only the field components transverse to the initial parton momentum. At
τ ≪ 1/Qs, when the electric and magnetic fields are almost parallel to the AA-collision
axis the Lorentz force acting on a fast parton is purely transverse to the parton
momentum. At such times for a unit color charge F 2 = 2g2ε.
However, this relation is invalid at τ ∼> 1/Qs when the contribution of the transverse (to

the AA-collision axis) components of the color fields to the energy density becomes
approximately equal to that from the components along the beam axis.
Since only half of these transverse fields squared contribute to the Lorentz force squared
which we need (transverse to the jet direction) we can write in this regime F 2 = g23ε/2.
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Energy loss due to synchrotron radiation

Even without the kinematical constraint the synchrotron corrections turn out to be smaller
by a factor ∼ 10− 20 than the contribution of the induced gluon emission in the QGP.
It is also seen from calculation of the total energy loss

∆Es =

∫ ωmax

ωmin

dωωdNs/dω .

Taking ωmin = mg and ωmax = Eq/2 without kinematical constraint we obtained

RHIC: ∆Es ≈ 184 MeV (E=10 GeV) , ∆Es ≈ 276 MeV (E=50 GeV) ,

LHC: ∆Es ≈ 320 MeV (E=10 GeV) , ∆Es ≈ 495 MeV (E=50 GeV) ,

and with the kinematical constraint q < min(ω,E − ω)

RHIC: ∆Es ≈ 48 MeV (E=10 GeV) , ∆Es ≈ 45 MeV (E=50 GeV) ,

LHC: ∆Es ≈ 63 MeV (E=10 GeV) , ∆Es ≈ 39 MeV (E=50 GeV)

∆Es ≪ ∆Eind. In QGP at Eq ∼ 10− 50 GeV ∆Eind ∼ 5− 15 GeV for RHIC, and
∆Eind ∼ 10− 30 GeV for LHC. The synchrotron radiation is weak mostly due to the
finite-size effects since Lf ∼> 1/Qs.

acting on fast partons in the glasma, the effect of the glasma color tubes on parton
energy loss turns out to be rather small. This smallness is due partly to strong finite-size
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Conclusions:

We have developed a quasiclassical theory of the synchrotron-like gluon radiation
in a finite-size external color field.

We have found that the large angle gluon emission in glasma may be important for
soft gluons with ω ∼< 5 GeV.

Despite a huge Lorentz force acting on fast partons in the glasma, the effect of the
glasma color tubes on parton energy loss turns out to be rather small. This
smallness is due partly to strong finite-size effects.
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BACK UP SLIDES
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Comparison with RHIC PHENIX data, π0
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Comparison with CMS LHC data, (h+ + h−)/2
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Comparison with ALICE LHC data, (h+ + h−)/2
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