THREE-DIMENSIONAL SUPERFIELD

SUPERGRAVITIES

B.M. Zupnik

We review the superfield formalisms of the three-dimensional supergravities. The $\mathcal{N} = 1, d = 3$ gravitational superfields are generated by the covariant spinor derivative for the tangent GL(2, R) group. The basic gauge group of the $\mathcal{N} = 2, d = 3$ supergravity is defined in the chiral superspace.

The real gravitational $\mathcal{N} = 2$ superfield $h^m(x, \theta, \overline{\theta})$ describes the embedding of the real gravitational superspace into the complex chiral superspace by the analogy with the Ogievetsky-Sokatchev formalism of the $\mathcal{N} = 1, d = 4$ supergravity. The simplest superconformal compensator is the chiral superfield.

The basic gauge group of the $\mathcal{N} = 3, d = 3$ supergravity is defined in the corresponding analytic harmonic superspace. We use the SU(2)/U(1) harmonics by the analogy with the harmonic-superspace formalism of the $\mathcal{N} = 2, d = 4$ supergravity. The harmonic gauge superfields are defined in the decomposition of the covariant harmonic derivative. The superconformal compensator is the $\mathcal{N} = 3$ analytic hypermultiplet superfield.

4-DIMENSIONAL SUPERFIELD SUPERGRAVITIES

 $\mathcal{N} = 1, d = 4$ superfield supergravity Wess, Zumino; Ogievetsky, Sokatchev; Gates, Grisaru, Roček, Siegel

Chirality preserving constraints for the supervielbein matrix E_M^A were solved in terms of the $\mathcal{N} = 1$ axial-vector gauge superfield $H^m(x, \theta, \bar{\theta})$. The nonlinear supergravity superdeterminant action $\kappa^{-2} \int d^4x d^2\theta d^2\bar{\theta} E(H^m)$ was constructed and quantized.

 $\mathcal{N} = 2, d = 4$ superfield supergravity in the harmonic SU(2)/U(1) superspace was constructed by Galperin, Ivanov, Kalitzin, Ogievetsky, Sokatchev

The gauge supegravity superfields and the $\mathcal{N} = 2, d = 4$ matter superfields live in the Grassmann-analytic superspace. The supergravity-matter classical superfield actions were constructed in this approach, but the quantum superfield calculations were not developed in this formalism.

We review the superfield formalisms of the simplest threedimensional supergravities.

FLAT 3-DIMENSIONAL SUPERSPACES

 $\mathcal{N} = 1$ superspace: $z = (x^m, \theta^\mu), \quad m = 0, 1, 2, \ \mu = 1, 2$

Spinor derivatives $D_{\mu} = \partial_{\mu} + i\theta^{\nu}(\gamma^{m})_{\mu\nu}\partial_{m}, \quad \partial_{\mu}\theta^{\nu} = \delta^{\nu}_{\mu}, \quad \partial_{m}x^{n} = \delta^{n}_{m}$ $\gamma^{m}\gamma^{n} = -\eta^{mn}I + \varepsilon^{mnp}\gamma_{p}, \quad \eta^{mn} = \operatorname{diag}(1, -1, -1)$ $\delta_{\epsilon}x^{m} = -i(\epsilon\gamma^{m}\theta), \quad \delta_{\epsilon}\theta^{\beta} = \epsilon^{\beta}$

 $\mathcal{N} = 1$ scalar superfield : $\phi(z)$

 $\mathcal{N} = 1$ Maxwell superfield : $A_{\mu}(z), \quad \delta_{\lambda}A_{\mu} = D_{\mu}\lambda(z)$

 $\mathcal{N} = 2, d = 3$ superspace is analogous to the $\mathcal{N} = 1, d = 4$ superspace:

 $z = (x^m, \theta^\mu, \bar{\theta}^\mu), \quad m = 0, 1, 2, \ \mu = 1, 2$

 $\begin{array}{ll} \mathbf{Spinor \ derivatives} \\ D_{\mu} = \partial_{\mu} + i \bar{\theta}^{\nu} (\gamma^m)_{\mu\nu} \partial_m, \quad \bar{D}_{\mu} = - \bar{\partial}_{\mu} - i \theta^{\nu} (\gamma^m)_{\mu\nu} \partial_m \end{array}$

Chiral $\mathcal{N} = 2$ superspace: $\zeta = (x_L^m, \theta^\mu), \quad x_L^m = x^m + i(\theta\gamma^m\bar{\theta})$ $\mathcal{N} = 2$ scalar chiral superfield : $\phi(x_L^m, \theta^\mu)$

Anti-chiral superspace: $\bar{\zeta} = (x_R^m, \bar{\theta}^\mu), \quad x_R^m = x^m - i(\theta \gamma^m \bar{\theta})$

 $\mathcal{N} = 2, d = 3$ abelian gauge superfield: $\delta_{\lambda}V(x, \theta, \bar{\theta}) = i\lambda(\zeta) - i\bar{\lambda}(\bar{\zeta}), \quad W = D^{\alpha}\bar{D}_{\alpha}V$

$$\mathcal{N} = 3, d = 3$$
 superspace: $z = (x^m, \theta^{\mu}_{(kl)}), \quad k, l = 1, 2$

Automorphism group is SU(2) and we can use the SU(2)/U(1)harmonics u_k^{\pm} and the harmonic derivatives $\partial^{++}u_k^- = u_k^+, \quad \partial^{--}u_k^+ = u_k^-, \quad \partial^0 u_k^{\pm} = \pm u_k^{\pm}$

 $\begin{array}{l} \mbox{Harmonic projections of spinor coordinates} \\ \theta^{\mu\pm\pm} = \theta^{\mu}_{(kl)} u^{k\pm} u^{l\pm}, \quad \theta^{\mu 0} = \theta^{\mu}_{(kl)} u^{k+} u^{l-} \end{array}$

Analytic $\mathcal{N} = 3$ superspace: $\zeta = (x_A^m, \theta^{\mu++}, \theta^{\mu 0}, u)$ Analytic hypermultiplet: $q^+(\zeta)$

Maxwell $\mathcal{N} = 3$ superfield: $\delta_{\lambda} V^{++}(\zeta) = D^{++}\lambda(\zeta)$

 $\mathcal{N} = 1, d = 3$ SUPERGRAVITY Gates, Grisaru, Roček, Siegel; Zupnik, Pak

Superdiffeomorphism group $\delta_{\xi} x^m = \xi^m(z), \quad \delta_{\xi} \theta^\mu = \xi^\mu(z)$

Holonomic basis $\partial_M = (\partial_m, \partial_\mu), \quad \delta_{\xi} \partial_M = -\partial_M \xi^N \partial_N$

Flat-superspace basis $D_M = (\partial_m, D_\mu)$

The $\mathcal{N} = 1$ supergravity spinor differential operator contains the superconformal gauge superfields

 $\Delta_{\alpha} = D_{\alpha} + i h_{\alpha}^{m}(z) \partial_{m} + h_{\alpha}^{\mu}(z) D_{\mu}, \quad \delta \Delta_{\alpha} = -\frac{1}{2} \sigma(z) \Delta_{\alpha} - \lambda_{\alpha}^{\beta}(z) \Delta_{\beta}$ where $\sigma(z)$ is the superconformal parameter and $\lambda_{\alpha}^{\beta}(z)$ describe the SL(2, R) gauge transformations.

Superconformal gauge condition:

 $h^{\mu}_{\alpha}(z) = 0, \quad \Delta_{\alpha} = D_{\alpha} + i h^{m}_{\alpha} \partial_{m}$

The composed SL(2, R) and Weyl parameters are induced by the superdiffeomorphism parameters

$$\begin{split} \tilde{\sigma} &= \Delta_{\alpha} \xi_{0}^{\alpha}, \quad \tilde{\lambda}_{\alpha}^{\mu} = \Delta_{\alpha} \xi_{0}^{\mu} - \frac{1}{2} \delta_{\alpha}^{\mu} \Delta_{\beta} \xi_{0}^{\beta}, \\ \delta \Delta_{\alpha} &= -\Delta_{\alpha} \xi_{0}^{\rho} \Delta_{\rho} = -(D_{\alpha} + i h_{\alpha}^{n} \partial_{n}) \xi_{0}^{\rho} \Delta_{\rho} \end{split}$$

The gauge transformations in this gauge are nonlinear in the basic superfields

$$\delta h^m_{\alpha} = -iD_{\alpha}\xi^m_0 - 2(\gamma^m)_{\alpha\beta}\xi^\beta_0 + h^n_{\alpha}\partial_n\xi^m_0 - [(D_{\alpha} + ih^n_{\alpha}\partial_n)\xi^\beta_0]h^m_{\beta}$$

where $\xi^m_0 = \xi^m - i\xi^\mu\theta^\nu(\gamma^m)_{\mu\nu}, \quad \xi^\mu_0 = \xi^\mu$

Scalar compensator of the $\mathcal{N} = 1$ Poincaré supergravity $\Sigma(z) = 1 + \kappa \Phi(z), \ \kappa$ is the gravitational constant $\delta \Phi(z) = \frac{1}{2} \Delta_{\alpha} \xi_0^{\alpha} \left[\kappa^{-1} + \Phi(z) \right],$

$$\mathcal{D}_{\alpha} = \Sigma \Delta_{\alpha} = G^{M}_{\alpha} D_{M}, \quad \delta \mathcal{D}_{\alpha} = -\tilde{\lambda}^{\beta}_{\alpha} \mathcal{D}_{\beta}$$

We introduce the SL(2, R) spinor connection $\Omega^{\rho}_{\alpha,\beta}$ $\delta\Omega^{\rho}_{\alpha,\beta} = -\mathcal{D}_{\alpha}\tilde{\lambda}^{\rho}_{\alpha} + (\lambda\Omega^{\rho}_{\alpha,\beta})$

The covariant vector covariant operator is $\mathcal{D}_a = -\frac{i}{4}[\{\mathcal{D}_{\alpha}, \mathcal{D}_{\beta}\} - (\Omega^{\rho}_{\alpha,\beta} + \Omega^{\rho}_{\beta,\alpha})\mathcal{D}_{\rho}] = G^M_a D_M$ where G^M_a, G^M_{α} are the composed supervielbein matrix.

The inverse supervielbein matrix satisfies the relations $E_M^A G_B^M = \delta_B^A$, $E = \mathbf{Ber} E_M^A$ $\delta E = -(\partial_m \xi^m - \partial_\mu \xi^\mu) E$, $\delta(d^5 z E) = 0$

The composed vector superfield connection has the form

$$\Gamma^{\rho}_{a,\pi} = -\frac{i}{2} (\gamma_a)^{\alpha\beta} \{ \Delta_{\alpha} \Omega^{\rho}_{\beta,\pi} - \Omega^{\varphi}_{\alpha,\beta} \Omega^{\rho}_{\varphi,\pi} - \Omega^{\varphi}_{\alpha,\pi} \Omega^{\rho}_{\beta,\varphi} \}$$

The corresponding covariant derivative is $\nabla_a \mathcal{D}_{\pi} = \mathcal{D}_a \mathcal{D}_{\pi} - \Gamma^{\rho}_{a,\pi} \mathcal{D}_{\rho}, \quad \nabla_{\pi} \mathcal{D}_a = \mathcal{D}_{\pi} \mathcal{D}_a - (\gamma_a)_{\rho\xi} (\gamma^b)^{\varphi\rho} \Omega^{\rho}_{\pi,\varphi} \mathcal{D}_b$

The covariant supergravity constraints have the form $\nabla_{\alpha} \mathcal{D}_{\beta} + \nabla_{\beta} \mathcal{D}_{\alpha} = 2i(\gamma^{a})_{\alpha\beta} \mathcal{D}_{a}$ $\nabla_{a} \mathcal{D}_{\pi} - \nabla_{\pi} \mathcal{D}_{a} = R(\gamma_{a})^{\rho}_{\pi} \mathcal{D}_{\rho},$ where R(z) is the basic scalar superfield.

The simplest $\mathcal{N} = 1$ supergravity action is $\frac{1}{\kappa} \int dz^5 E(z) R(z)$

$\mathcal{N} = 2, d = 3$ SUPERGRAVITY

 $\mathcal{N}=2$ supergravity formalism is based on the three-dimensional version of the Ogievetsky-Sokatchev approach. We consider the superdiffeomorphism group in the $\mathcal{N}=2, d=3$ chiral superspace

 $\delta x^m_L = \lambda^m(\zeta), \quad \delta \theta^\mu = \lambda^\mu(\zeta), \quad \delta \bar{\partial}_\mu = -(\bar{\partial}_\mu \bar{\lambda}^\nu) \bar{\partial}_\nu$

This conformal $\mathcal{N} = 2$ supergravity transformations preserve chirality.

In the anti-chiral basis we have analogous conjugated relations

$$\delta x_R^m = \bar{\lambda}^m(\bar{\zeta}), \quad \delta \bar{\theta}^\mu = \bar{\lambda}^\mu(\bar{\zeta}), \quad \delta \partial_\mu = -(\partial_\mu \lambda^\nu) \partial_\nu$$

The real supergravity superspace $Z^M = (x^m, \theta^\mu, \bar{\theta}^\mu)$ is embedded into the chiral superspace

 $\begin{array}{l} x_{L}^{m}=x^{m}+iH^{m}(x,\theta,\bar{\theta}), \quad x_{R}^{m}=x^{m}-iH^{m}(x,\theta,\bar{\theta})\\ \text{where } H^{m}(x,\theta,\bar{\theta})=(\theta\gamma^{m}\bar{\theta})+h^{m}(x,\theta,\bar{\theta}) \text{ is the gravitational axial-vector superfield.} \end{array}$

The passive gauge transformations of the $\mathcal{N} = 2$ conformal supergravity have the form

$$\begin{split} &\delta x^m = \frac{1}{2} \lambda^m (x+iH,\theta) + \frac{1}{2} \bar{\lambda}^m (x-iH,\bar{\theta}) \\ &\delta \theta^\mu = \lambda^\mu (x+iH,\theta), \quad \delta \bar{\theta}^\mu = \bar{\lambda}^\mu (x-iH,\bar{\theta}) \\ &\delta H^m = \frac{i}{2} \bar{\lambda}^m (x-iH,\bar{\theta}) - \frac{i}{2} \lambda^m (x+iH,\theta) \end{split}$$

We consider the flat chiral basis

$$\begin{split} x_{0L}^m &= x^m + i(\theta\gamma^m\bar{\theta}), \quad \zeta_0 = (x_{0L}^m, \theta^\mu) \\ \lambda^m(x+iH, \theta) &= T(ih)\lambda^m(\zeta_0), \quad \lambda^\mu(x+iH, \theta) = T(ih)\lambda^\mu(\zeta_0), \\ T(ih) &= 1 + ih^m\partial_m - \frac{1}{2}h^mh^n\partial_m\partial_n - \frac{i}{6}h^mh^nh^r\partial_m\partial_n\partial_r + \dots \end{split}$$

The covariant spinor derivatives in the central coordinates $x^m, \theta^\mu, \bar{\theta}^\mu$ have the form

 $\Delta_{\alpha} = D_{\alpha} + i\Delta_{\alpha}h^{m}\partial_{m} = D_{\alpha} + iD_{\alpha}h^{n}[(I - i\partial h)^{-1}]_{n}^{m}\partial_{m},$ $\bar{\Delta}_{\alpha} = \bar{D}_{\alpha} - i\bar{\Delta}_{\alpha}h^{m}\partial_{m} = \bar{D}_{\alpha} - i\bar{D}_{\alpha}h^{n}[(I + i\partial h)^{-1}]_{n}^{m}\partial_{m}$

The tangent GL(2, C) transformations of these derivatives are induced by the chiral diffeomorphism transformations $\delta\Delta_{\alpha} = -(\Delta_{\alpha}\lambda^{\beta})\Delta_{\beta}, \quad \delta\bar{\Delta}_{\alpha} = (\bar{\Delta}_{\alpha}\bar{\lambda}^{\beta})\bar{\Delta}_{\beta}$

The basic superfield blocks $c_{\mu\nu}^m \partial_m$ can be constructed via the anticommutator of spinor covariant derivatives $\frac{1}{2} \{\Delta_{\mu}, \bar{\Delta}_{\nu}\} = -i\{(\gamma^m)_{\mu\nu} + \frac{1}{2}[\Delta_{\mu}, \bar{\Delta}_{\nu}]h^m\}\partial_m = c_{\mu\nu}^m \partial_m$

We consider the superconformal chiral parameter $j = \partial_m^L \lambda^m - \partial_\mu \lambda^\mu$, $\delta d^3 x_L d^2 \theta = j d^3 x_L d^2 \theta = j d^5 \zeta$ and introduce the chiral superfield compensator $\delta \Phi = -\frac{1}{2} j \Phi$, $\delta (d^5 \zeta \Phi^2) = 0$ This chiral compensator allow us to construct the $\mathcal{N} = 2$

Poincaré supergravity action. This chiral compensator allow us to construct the $\mathcal{N} = 2$

$\mathcal{N} = 3, d = 3$ SUPERGRAVITY

We use the analogy with the Galperin-Ivanov-Ogievetsky-Sokatchev formalism in $\mathcal{N} = 2, d = 4$ supergravity. Let us consider the arbitrary transformations of the $\mathcal{N} = 3, d = 3$ harmonic analytic superspace

$$\begin{split} \delta x_A^m &= \lambda^m(\zeta), \quad \delta \theta^{++\mu} = \lambda^{++\mu}(\zeta), \quad \delta \theta^{0\mu} = \lambda^{0\mu}(\zeta), \\ \delta u_k^+ &= \lambda^{++}(\zeta) u_k^-, \quad \zeta = (x_A^m, \theta^{++\mu}, \theta^{0\mu}, u_k^{\pm}), \end{split}$$

where $\lambda^m(\zeta), \lambda^{++\mu}(\zeta), \lambda^{0\mu}(\zeta), \lambda^{++}(\zeta)$ are the analytic parameters of the conformal supergravity.

The harmonic and spinor derivatives in the flat analytic superspace are

$$\mathcal{D}^{++} = \partial^{++} + 2i\theta^{++\alpha}\theta^{0\beta}\partial^A_{\alpha\beta} + \theta^{++\alpha}\partial^0_{\alpha} + 2\theta^{0\alpha}\partial^{++}_{\alpha}, \quad \partial^A_{\alpha\beta} = (\gamma^m)_{\alpha\beta}\partial^A_m,$$

$$\mathcal{D}^{--} = \partial^{--} - 2i\theta^{--\alpha}\theta^{0\beta}\partial^A_{\alpha\beta} + \theta^{--\alpha}\partial^0_{\alpha} + 2\theta^{0\alpha}\partial^{--}_{\alpha},$$

$$\mathcal{D}^0 = \partial^0 + 2\theta^{++\alpha}\partial^{--}_{\alpha} - 2\theta^{--\alpha}\partial^{++}_{\alpha}, \quad [\mathcal{D}^{++}, \mathcal{D}^{--}] = \mathcal{D}^0,$$

$$D^{++}_{\alpha} = \partial^{++}_{\alpha}, \quad D^{--}_{\alpha} = \partial^{--}_{\alpha} + 2i\theta^{--\beta}\partial^A_{\alpha\beta}, \quad D^0_{\alpha} = -\frac{1}{2}\partial^0_{\alpha} + i\theta^{0\beta}\partial^A_{\alpha\beta},$$

$$\partial^A_m x^n_A = \delta^n_m, \quad \partial^0_{\alpha}\theta^{0\beta} = \delta^\beta_{\alpha}, \quad \partial^{\mp\mp}_{\alpha}\theta^{\pm\pm\beta} = \delta^\beta_{\alpha}.$$

The analytic integral measure is

$$d\zeta^{-4} = \frac{1}{16} d^3 x_A (\partial^{--\alpha} \partial^{--}_{\alpha}) (\partial^{0\alpha} \partial^0_{\alpha}) du, \qquad (0.1)$$

$$\delta d\zeta^{-4} = (\partial^A_m \lambda^m + \partial^{--} \lambda^{++} - \partial^{--}_\mu \lambda^{++\mu} - \partial^0_\mu \lambda^{0\mu}) d\zeta^{-4} = -2\Lambda d\zeta^{-4}.$$

Nonanalytic transformations have the form

$$\delta\theta^{--\mu} = \Lambda^{--\mu}(\zeta, \theta^{--}).$$

We define the Killing operator

$$K = \lambda^m \partial_m + \lambda^{++} \partial^{--} + \lambda^{++\mu} \partial^{--}_{\mu} + \lambda^{0\mu} \partial^0_{\mu} + \Lambda^{--\mu} \partial^{++}_{\mu}$$
$$= \Lambda^m \partial_m + \lambda^{++} \mathcal{D}^{--} + \Lambda^{++\mu} D^{--}_{\mu} + \Lambda^{0\mu} D^0_{\mu} + \Lambda^{--\mu} D^{++}_{\mu}$$

Constraints for the flat parameters:

$$D^{++}_{\mu}\Lambda^{m} = -4i\lambda^{++}(\gamma^{m})_{\mu\nu}\theta^{0\nu} + 2i\lambda^{++\nu}(\gamma^{m})_{\mu\nu} = 2i(\gamma^{m})_{\mu\nu}\Lambda^{++\nu},$$

$$D^{++}_{\nu}\Lambda^{0\mu} = -2\delta^{\mu}_{\nu}\lambda^{++}.$$

The basic operator of the $\mathcal{N} = 3$ conformal supergravity contains the gauge gravitational superfields

 $\Delta^{++} = \mathcal{D}^{++} + G^{++} + h^{\mu} D_{\mu}^{++}, \quad [G^{++}, D_{\nu}^{++} = 0, \\ G^{++} = h^{++m} \partial_m + h^{(+4)} \mathcal{D}^{--} + h^{(+4)\mu} D_{\mu}^{--} + h^{++\mu} D_{\mu}^0$

The transformation of the basic analytic harmonic operator defines transformations of the gravitational superfields $\delta \Delta^{++} = -\lambda^{++} D^0$

We can also construct the nonanalytic harmonic operator Δ^{--} , $\delta\Delta^{--} = -(\Delta^{--}\lambda^{++})\Delta^{--}$ satisfying the constraints $[(\Delta^{++} - h^{(+4)}\Delta^{--}), \Delta^{--}] = D^0$

We define the covariant spinor and vector derivatives $\Delta^0_{\alpha} = \frac{1}{2} [\Delta^{--}, D^{++}_{\alpha}], \quad \Delta^{--}_{\alpha} = [\Delta^{--}, \Delta^0_{\alpha}], \quad \Delta_a = \frac{i}{2} (\gamma_a)^{\alpha\beta} \{\Delta^0_{\alpha}, \Delta^0_{\beta}\}$

 $\begin{array}{ll} \textbf{Superconformal compensator hypermultiplet}\\ \delta q^+(\zeta) = \Lambda q^+(\zeta), \quad \Lambda = -\frac{1}{2}(\partial_m^A\lambda^m + \partial^{--}\lambda^{++} - \partial_\mu^{--}\lambda^{++\mu} - \partial_\mu^0\lambda^{0\mu}) \end{array}$