Aspects of string phenomenology

I. Antoniadis

CERN

4th International Sakharov Conference on Physics Lebedev Institute, Moscow, 18-23 May 2009

- main questions and list of possibilities
- phenomenology of low string scale
- general issues of high string scale
- framework of magnetized branes moduli stabilization, model building, SUSY breaking and D-term gauge mediation

18-23 August 2008

• What can we hope to learn from LHC on string phenomenology ?

Very different answers depending mainly on the value of the string scale M_s

- arbitrary parameter : Planck mass $M_P \longrightarrow \text{TeV}$
- physical motivations \Rightarrow favored energy regions:

• High : $\left\{ \begin{array}{ll} M_P^* \simeq 10^{18} \,\, {\rm GeV} & {\rm Heterotic \ scale} \\ \\ M_{\rm GUT} \simeq 10^{16} \,\, {\rm GeV} & {\rm Unification \ scale} \end{array} \right.$

• Intermediate : around 10^{11} GeV $(M_s^2/M_P \sim \text{TeV})$

SUSY breaking, strong CP axion, see-saw scale

• Low : TeV (hierarchy problem)

Low string scale \Rightarrow experimentally testable framework

- spectacular model independent predictions

perturbative type I string setup

- radical change of high energy physics at the TeV scale

explicit model building is not necessary at this moment

but unification has to be probably dropped

particle accelerators
 Table acternations
 KK record

TeV extra dimensions \Rightarrow KK resonances of SM gauge bosons I.A. '90 Extra large submm dimensions \Rightarrow missing energy: gravity radiation string physics and possible strong gravity effects :

- string Regge excitations [5]
- \cdot production of micro-black holes ? $_{[8]}$
- microgravity experiments

change of Newton's law, new forces at short distances [10] [11]

Universal deviation from Standard Model in jet distribution

 $M_s = 2 \text{ TeV}$ Width = 15-150 GeV

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08 [4]

Tree *N*-point superstring amplitudes in 4 dims involving at most 2 fermions and gluons: completely model independent for any string compactification any number of supersymmetries, even none No intermediate exchange of KK, windings or graviton emmission Universal sum over infinite exchange of string Regge (SR) excitations:

Energy threshold for black hole production :

$$E_{
m BH} \simeq M_s/g_s^2 ~\leftarrow~{
m string~coupling}$$

Horowitz-Polchinski '96, Meade-Randall '07

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , $M_P^* \simeq M_s/g_s^{2/(2+d_\perp)}$ higher-dim Planck scale bulk dimensionality $g_s \simeq \alpha_{\rm YM} \sim 0.1$; Regge excitations: $M_n^2 = M_s^2 n \Rightarrow$ gauge coupling Energy threshold of *n*-th string excitation: $E_n \simeq M_s \sqrt{n} \Rightarrow$

production of $n\sim 1/g_s^4\sim 10^4$ string states before reach $E_{
m BH}$ [4]

- Newton constant: $G_N \sim g_s^2$ in string units $I_s = M_s = 1$
- string size black hole: $r_H \sim 1$

 \Rightarrow black hole mass: $M_{\rm BH} \sim 1/G_N \simeq 1/g_s^2$ \uparrow valid in any dimension d: $r_H^{d/2-1}$

 \bullet black hole entropy ${\cal S}_{\rm BH} \sim 1/{\cal G}_{\it N} \, \sim 1/g_s^2 \sim \sqrt{n}$: string entropy

Adelberger et al. '06

 ${\it R}_{\perp} \lesssim$ 45 $\mu{\rm m}$ at 95% CL

• dark-energy length scale pprox 85 μ m [4]

Intermediate string scale :

not directly testable but interesting possibility with several implications

 \rightarrow 'large volume' compactifications

High string scale :

perturbative heterotic string : the most natural for SUSY and unification prediction for GUT scale but off by almost 2 orders of magnitude

 $M_s = g_H M_P \simeq 50 M_{
m GUT}$ $g_H^2 \simeq \alpha_{
m GUT} \simeq 1/25$

introduce large threshold corrections or strong coupling $\rightarrow~M_{s}\simeq M_{\rm GUT}$

but loose predictivity

Appropriate framework for SUSY + unification:

- intersecting branes in extra dimensions: IIA, IIB, F-theory
- Heterotic M-theory
- internal magnetic fields in type I

2 approaches: - Standard Model directly from strings

- 'orbifold' GUTs: matter in incomplete representations

Main problems: - gauge coupling unification is not automatic different coupling for every brane stack

- extra states: vector like 'exotics' or worse

they also destroy unification in orbifold GUTs

Maximal predictive power if there is common framework for :

- moduli stabilization
- model building (spectrum and couplings)
- SUSY breaking (calculable soft terms)
- computable radiative corrections (crucial for comparing models)

Possible candidate of such a framework: magnetized branes

Type I string theory with magnetic fluxes on 2-cycles of the compactification manifold

- Dirac quantization: $H = \frac{m}{nA} \equiv \frac{p}{A}$ ^[17] \Rightarrow moduli stabilization *H*: constant magnetic field *m*: units of magnetic flux *n*: brane wrapping *A*: area of the 2-cycle
- Spin-dependent mass shifts for charged states \Rightarrow SUSY breaking
- Exact open string description: \Rightarrow calculability

 $qH \rightarrow \theta = \arctan qH\alpha'$ weak field \Rightarrow field theory

T-dual representation: branes at angles ⇒ model building
 (m, n): wrapping numbers around the 2-cycle directions

Magnetic fluxes can be used to stabilize moduli LA.-Maillard '04, LA.-Kumar-Maillard '05, '06, Bianchi-Trevigne '05

e.g. T^6 : 36 moduli (geometric deformations) internal metric: $6 \times 7/2 = 21 = 9+2 \times 6$ type IIB RR 2-form: $6 \times 5/2 = 15 = 9 + 2 \times 3$ $\operatorname{complexification:} \begin{cases} \operatorname{K\ddot{a}hler \ class} & J \\ & 9 \ \operatorname{complex \ moduli \ for \ each} \\ \operatorname{complex \ structure} & \tau \end{cases}$ magnetic flux: 6×6 antisymmetric matrix F complexification \Rightarrow $F_{(2,0)}$ on holomorphic 2-cycles: potential for au $F_{(1,1)}$ on mixed (1,1)-cycles: potential for J

N = 1 SUSY conditions \Rightarrow moduli stabilization

F_(2,0) = 0 ⇒ τ matrix equation for every magnetized U(1) need 'oblique' (non-commuting) magnetic fields to fix off-diagonal components of the metric ← but can be made diagonal

Tadpole cancellation conditions : introduce an extra brane(s)

 \Rightarrow dilaton potential from the FI D-term \rightarrow two possibilities:

- keep SUSY by turning on charged scalar VEVs
- break SUSY in a dS or AdS vacuum $d = \xi/\sqrt{1+\xi^2}$ [20]

I.A.-Derendinger-Maillard '08

$$F_{(2,0)} = 0 \Rightarrow \tau^{\mathrm{T}} p_{xx} \tau - (\tau^{\mathrm{T}} p_{xy} + p_{yx} \tau) + p_{yy} = 0$$

$$T^{6} \text{ parametrization: } (x^{i}, y^{i}) \quad i = 1, 2, 3 \qquad z^{i} = x^{i} + \tau^{ij} y^{i}$$

Non-trivial VEVs ν for charged brane scalars \Rightarrow

D-term condition is modified to:

$$q v^{2} (J \land J \land J - J \land F \land F) = -(F \land F \land F - F \land J \land J)$$
charge

break SUSY in a dS or AdS vacuum

General form of the localized dilaton potential:

$$V(\phi, d) = \frac{e^{-\phi}}{g^2} \left\{ \left(\sqrt{1 - d^2} - 1 \right) + \xi d + \delta T \right\}$$

DBI action FI-term

- *d*: D-auxiliary in $2\pi \alpha'$ -units
- δT : tension leftover RR tadpole cancellation

$$\delta T = 1 - \sqrt{1 - \xi^2}$$

 \Rightarrow

d elimination $\Rightarrow d = \frac{\xi}{\sqrt{1+\xi^2}}$

$$V_{
m min}=\delta\,ar{T}\,e^{-\phi}$$
 ; $\delta\,ar{T}=\sqrt{1+\xi^2}-\sqrt{1-\xi^2}$

Dilaton fixing:

- 1) by 3-form fluxes in a SUSY way \Rightarrow dS vacuum with positive energy D-term uplifting possible from flat space
- 2) add a 'non-critical' (bulk) dilaton potential

 \Rightarrow AdS vacuum with tunable string coupling

 $V_{\rm non-crit} = \delta c \, e^{-2\phi} \qquad \delta c$: central charge deficit

minimization of $V = V_{\rm non-crit} + V_{\rm min} \Rightarrow \delta c < 0$

$$e^{\phi_0} = -\frac{2\delta c}{3\delta \overline{T}}$$
 $V_0 = \frac{\delta c^3}{3\delta \overline{T}^2}$ $R_0 = -\delta \overline{T} e^{3\phi_0}$
curvature in Einstein frame

e.g. replace a free coordinate by a CFT minimal model

with central chage $1 + \delta c$

New gauge mediation mechanism

I.A.-Benakli-Delgado-Quiros '07

D-term SUSY breaking:

- problem with Majorana gaugino masses lowest order R-symmetry broken at higher orders but suppressed by the string scale
 I.A.-Taylor '04, I.A.-Narain-Taylor '05
- tachyonic squark masses

However in toroidal models gauge multiplets have extended SUSY \Rightarrow Dirac gauginos without $\mathbb{R} \Rightarrow m_{1/2} \sim d/M$; $m_0^2 \sim d^2/M^2$ from gauginos Also non-chiral intersections have N = 2 SUSY $\Rightarrow N = 2$ Higgs potential

Model building

Full string embedding with all geometric moduli stabilized:

- all extra U(1)'s broken \Rightarrow gauge group just susy SU(5)
- gauge non-singlet chiral spectrum: 3 generations of quarks + leptons
- SUSY can be broken in an extra U(1) factor by D-term [1]