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AdS5 × S5 superstring in the light-cone gauge

String sigma model is on a cylinder of circumference
P+ = J, where J is an angular momentum of string around
the equator of S5

When J →∞ the cylinder decompactifies into a plane.
Integrability implies factorized scattering

In the limit J →∞ the symmetry algebra of the light-cone
model is

psu(2|2)⊕ psu(2|2) ∈ psu(2, 2|4)

extended by two central charges depending on the
world-sheet momentum P

The world-sheet S-matrix factorises

S(p1, p2) = S0 · S(p1, p2)⊗ S(p1, p2)

each 16× 16-matrix S is psu(2|2)c.e.-invariant Beisert ’05

Frolov, Zamaklar and G.A. ’06
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Dispersion relation and rapidity torus

The dispersion relation implied by the symmetry algebra

H2 = 1 + 4g2 sin2 p
2

can be uniformized on a torus as

p = 2 am z , sin
p
2

= sn (z, k) , H = dn (z, k)

where the elliptic modulus is k = −4g2 and the torus the
real and imaginary periods equal to 2ω1(k) and 2ω2(k).

Janik ’06

Constrained parameters x±

x+ +
1

x+
− x− − 1

x−
=

2i
g

,
x+

x−
= eip

On the z-torus x± are meromorphic
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S-matrix for fundamental particles

S(p1, p2) =
x−2 −x+

1
x+
2 −x−1

η1η2eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x−2 +x+
1 )

(x−1 −x+
2 )(x−1 x−2 −x+

1 x+
2 )

η1η2eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
−

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x−1 +x+
2 )

(x−1 −x+
2 )(x−1 x−2 −x+

1 x+
2 )

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x−2 −x−1
x+
2 −x−1

η1eη1

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
1 −x+

2
x−1 −x+

2

η2eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x+
1 −x+

2 )

(x−1 −x+
2 )(1−x−1 x−2 )eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x−1 x−2 (x+
1 −x+

2 )η1η2
x+
1 x+

2 (x−1 −x+
2 )(1−x−1 x−2 )

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
1 −x−1

x−1 −x+
2

η2eη1

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
2 −x−2

x−1 −x+
2

η1eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
≡ S(z1, z2)

η1 = η(p1) exp( i
2 p2) , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2) exp( i

2 p1) , η(p) = exp( i
4 p)

p
ix− − ix+
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Spectrum on a large circle

Bethe-Yang equations Beisert,Staudacher ’04

“eipk J
∏
k 6=i

S(pi , pk ) = 1”

(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

Given {pi}M
i=1, the energy (dimension) is given by

E =
M∑

i=1

√
1 + 4g2 sin2 pi

2
= E(g, J)

This is NOT the correct answer for finite J!

Wrapping interactions (distinguished Feynman graphs), finite-size corrections to

classical string energies, BFKL analysis, all points to this...
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TBA and mirror theory
Follow the TBA approach for relativistic models (Zamolodchikov ’90)

Frolov and G.A. ’07

 "mirror string"
   of length

string of
length =JL

R

One Euclidean theory – two Minkowski theories. One is related to the other by
the double Wick rotation:

σ̃ = −iτ , τ̃ = iσ

The Hamiltonian H̃ w.r.t. τ̃ defines the mirror theory .

Ground state energy (R →∞) is related to the free energy of its mirror

E(L) = Lf (L)

Free energy f can be found from the Bethe ansatz for the mirror model because
R →∞
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Mirror dispersion relation

The mirror momentum ( H → i p̃ ) in terms of z: p̃ = −i dn z

Shift z by ω2/2 gives

p̃ = −i dn
(

z +
ω2

2

)
≡

√
1 + 4g2 sn z

cn z

for real z the corresponding values of p̃ are real

The double-Wick rotation is the shift by 2ω2/4

No periodicity in p̃ because cn z has zeroes at z = ± 1
2ω1

The mirror energy is

H̃ = 2 arcsinh 1
2g

√
1 + p̃2 . Ambjorn,Janik and Kristjansen ’05
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Mirror S-matrix and boundary conditions for fermions

The S-matrix of the mirror model:

S̃(p̃1, p̃2) = S(p1(p̃1), p2(p̃2))

or, equivalently, on the z-torus

S̃(z1, z2) = S
(

z1 +
ω2

2
, z2 +

ω2

2

)
Mirror Bethe-Yang equations are straightforward

Periodicity of fermions

Fermions of the string model: periodic or anti-periodic in the
spacial direction, anti-periodic in time

Fermions of the mirror model: anti-periodic in the special
direction, periodic or anti-periodic in time

Ground state energy for periodic fermions is related to
Witten’s index of the mirror theory: Tr((−1)Fe−βH̃)
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Bethe-Yang equations for the mirror model

1 = eiepk R
K I∏

l=1
l 6=k

S11
sl(2)(xk , xl)

2∏
α=1

K II
(α)∏

l=1

x−k − y (α)
l

x+
k − y (α)

l

√
x+

k

x−k

−1 =
K I∏

l=1

y (α)
k − x−l

y (α)
k − x+

l

√
x+

l

x−l

K III
(α)∏

l=1

v (α)
k − w (α)

l − i
g

v (α)
k − w (α)

l + i
g

1 =

K II
(α)∏

l=1

w (α)
k − v (α)

l + i
g

w (α)
k − v (α)

l − i
g

K III
(α)∏

l=1
l 6=k

w (α)
k − w (α)

l − 2i
g

w (α)
k − w (α)

l + 2i
g

where the S-matrix of the sl(2)-sector enters

S11
sl(2)(x1, x2) =

x+
1 − x−2

x−1 − x+
2

1− 1
x−1 x+

2

1− 1
x+

1 x−2

σ−2
12 , v = y +

1
y

Frolov and G.A. ’07
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Bound states of the mirror model

The sl(2) S-matrix

S11
sl(2)(x1, x2) =

x+
1 − x−2

x−1 − x+
2

1− 1
x−1 x+

2

1− 1
x+

1 x−2

σ−2
12

exhibits a pole for complex values of momenta

p̃1 =
p
2

+ iq , p̃2 =
p
2
− iq , Re q > 0

for which x−(p̃1)− x+(p̃2) = 0 =⇒ q = q(p)

This pole leads to the existence of a Q-particle bound state

x−1 = x+
2 , x−2 = x+

3 , . . . , x−Q−1 = x+
Q

The mirror asymptotic spectrum contains fundamental particles
and their bound states. Mirror bound states transform in the
atypical anti-symmetric irreps of su(2|2)c.e. Frolov and G.A. ’07
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Bethe-Yang for mirror particles and their bound states

The Bethe-Yang equations for bound states are obtained by
fusing the equations for the constituent fundamental particles:

1 = eiepk R
K I∏

l=1
l 6=k

SQk Ql
sl(2) (xk , xl)

2∏
α=1

K II
(α)∏

l=1

x−k − y (α)
l

x+
k − y (α)

l

√
x+

k

x−k

−1 =
K I∏

l=1

y (α)
k − x−l

y (α)
k − x+

l

√
x+

l

x−l

K III
(α)∏

l=1

v (α)
k − w (α)

l − i
g

v (α)
k − w (α)

l + i
g

1 =

K II
(α)∏

l=1

w (α)
k − v (α)

l + i
g

w (α)
k − v (α)

l − i
g

K III
(α)∏

l=1
l 6=k

w (α)
k − w (α)

l − 2i
g

w (α)
k − w (α)

l + 2i
g

.

SQk Ql
sl(2) is obtained by fusing the fundamental constituents S11

sl(2)
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The main issue is to understand the structure of solutions to the
BY equations in the thermodynamic limit:

R →∞, K I/R = fixed, K II
(α)/R = fixed, K III

(α)/R = fixed

This is done by formulating the corresponding

string hypothesis
Frolov and G.A. ’09

The TBA equations are derived from it in a canonical way!
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Root structure

Consider a generic term in the first BY equation

1 = eiepk R . . .
x−k − y (α)

l

x+
k − y (α)

l

√
x+

k

x−k
. . .

For the physical mirror particles x±∗ = 1/x∓ , therefore,

1 = e−iepk R . . .

1
x+

k
− y (α)∗

l

1
x−k
− y (α)∗

l

√
x+

k

x−k
. . . =⇒ 1 = eiepk R . . .

x−k − 1
y (α)∗

l

x+
k − 1

y (α)∗
l

√
x+

k

x−k
. . .

A single y -root must be on the unit circle: |y | = 1 and,
therefore, −2 ≤ v = y + 1/y ≤ 2

y -roots which are not on the circle come in pairs
(y1, y2 = 1/y∗1 ) and they lead to the vw-string
configurations
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String hypothesis

In the thermodynamic limit R, K I, K II
(α), K III

(α) →∞ with K I/R and
so on fixed solutions arrange themselves into four different
classes of Bethe strings

1 A single Q-particle with real momentum p̃k

2 A single y (α)-particle corresponding to a root y (α) with |y (α)| = 1

3 2M roots y (α) and M roots w (α) combining into a M|vw (α)-string

v (α)
j = v (α) + (M + 2− 2j)

i
g

, v (α)
−j = v (α) − (M + 2− 2j)

i
g

,

w (α)
j = v (α) + (M + 1− 2j)

i
g

, j = 1, . . . , M , v ∈ R .

4 N roots w (α) combining into a single N|w (α)-string

w (α)
j = w (α) +

i
g

(N + 1− 2j) , j = 1, . . . , N , w ∈ R
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w (α)
j = w (α) +

i
g

(N + 1− 2j) , j = 1, . . . , N , w ∈ R
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String hypothesis

Bethe strings of type 2,3, and 4 are similar to those in the Hubbard
model. Indeed, the level II and III BY equations coincide with that of
the inhomogenious Hubbard model.

Frolov and G.A. ’09

cf. Beisert ’06 for the string model

For R →∞ the relevant solutions are

1 NQ Q-particles, Q = 1, 2, . . . ,∞
2 N(α)

y y (α)-particles

3 N(α)
M|vw M|vw (α)-strings, α = 1, 2; M = 1, 2, . . . ,∞

4 N(α)
N|w N|w (α)-strings, α = 1, 2; N = 1, 2, . . . ,∞

BY equations for the real centers of the string complexes as well as for y (α) and

Q-particles are obtained by multiplying the constituent BY equations. Taking

thermodynamic limit leads to the TBA system for the particle/hole densities
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Introduce a function

x(u) =
1
2

(
u − i

√
4− u2

)
, Im(x(u)) < 0 for any u ∈ C ,

the cuts in the u-plane run from ±∞ to ±2 along the real lines.
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Thermodynamic limit

Densities ρ(u) of particles, and ρ̄(u) of holes; u ∈ R, α = 1, 2.

1 ρQ(u) of Q-particles, −∞ ≤ u ≤ ∞ , Q = 1, . . . ,∞

2 ρ
(α)

y− (u) of y -particles with Im(y) < 0, −2 ≤ u ≤ 2. The y -coordinate is
expressed in terms of u as y = x(u)

3 ρ
(α)

y+ (u) of y -particles with Im(y) > 0, −2 ≤ u ≤ 2. The y -coordinate is
expressed in terms of u as y = 1

x(u)

4 ρ
(α)
M|vw (u) of M|vw-strings, −∞ ≤ u ≤ ∞ , M = 1, . . . ,∞

5 ρ
(α)
N|w (u) of N|w-strings, −∞ ≤ u ≤ ∞, N = 1, . . . ,∞ ,

and the corresponding densities of holes.
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Thermodynamic limit

Integral eqs in the thermodynamic limit

ρi(u) + ρ̄i(u) =
R
2π

depi

du
+ Kij ? ρj(u)

where epi does not vanish only for Q-particles.

Star operation is defined as

Kij ? ρj(u) =

Z
du′ Kij(u, u′)ρj(u′)

Kernels K ′s are expressed via the corresponding S-matrices as

Kij(u, v) =
1

2πi
d
du

log Sij(u, v)

The right action which is defined as

ρj ? Kji(u) =

Z
du′ ρj(u′)Kji(u′, u)
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Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy

Fγ(L) = E − 1
L

S +
iγ
L

(N(1)
F − N(2)

F ) ,

E is the energy per unit length carried by Q-particles

E =

Z
du

∞X
Q=1

eEQ(u)ρQ(u) , eEQ(u) is Q-particle energy

S is the total entropy

iγ/L plays the role of a chemical potential

N(α)
F is the fermion number which counts the number of y (α)-particles

N(1)
F − N(2)

F =

Z
du (ρ

(1)

y−(u) + ρ
(1)

y+(u)− ρ
(2)

y−(u)− ρ
(2)

y+(u))

Minus sign between N(1)
F and N(2)

F is needed for the reality of Fγ(L)

γ = π =⇒ Witten’s index. γ = 0 =⇒ the usual free energy.
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Free energy and equations for pseudo-energies

Free energy: Fγ(L) =
R

du
P

k

h eEk ρk − iγk
L ρk − 1

L s(ρk )
i

Variations of the densities of particles and holes are subject to

δρk (u) + δρ̄k (u) = Kkj ? δρj .

Using the extremum condition δFγ(L) = 0, one derives the TBA eqs

εk = L eEk − log
“

1 + eiγj−εj
”

? Kjk ,

where the pseudo-energies εk are eiγk−εk = ρk
ρ̄k

,

At the extremum Fγ(L) = −R
L

R
du

P
k

1
2π

depk
du log

`
1 + eiγk−εk

´
The energy of the ground state of the l.c. string theory

Eγ(L) = lim
R→∞

L
R
Fγ(L) = −

Z
du

∞X
Q=1

1
2π

depQ

du
log

`
1 + e−εQ

´



Infinite volume spectrum Spectrum in a large but finite volume Towards the exact spectrum

TBA equations for pseudo-energies of mirror particles

Q-particles εQ = L eEQ − log
“

1 + e−εQ′
”

? K Q′Q
sl(2)

− log

0@1 + e
−ε

(α)

M′|vw

1A ? K M′Q
vwx

− log

0@1 − e
ihα−ε

(α)

y−

1A ? K yQ
− − log

0@1 − e
ihα−ε

(α)

y+

1A ? K yQ
+

y-particles ε
(α)

y±
= − log

“
1 + e−εQ

”
? K Qy

± + log 1+e
−ε

(α)
M|vw

1+e
−ε

(α)
M|w

? KM

M|vw-strings ε
(α)
M|vw = − log

“
1 + e−εQ′

”
? K Q′M

xv

+ log

0@1 + e
−ε

(α)

M′|vw

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

M|w-strings ε
(α)
M|w = log

0@1 + e
−ε

(α)

M′|w

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

The ground state energy E(L) = −
R

du
P∞

Q=1
1

2π
depQ
du log

“
1 + e−εQ

”
Frolov and G.A. ’09(b)

See also, Bombardelli, Fioravanti, Tateo ’09; Gromov, Kazakov,Kozak, Vieira ’09
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