String integrability and spectral problem

Gauge theories from quantum strings

Gleb Arutyunov

Institute for Theoretical Physics, Utrecht University

4th Sakharov Conference on Physics, 22 May 2009

String integrability and spectral problem

The AdS/CFT correspondence relates a gravitational theory (a theory of closed strings) to a gauge theory with no gravity at all

Maldacena '97

The correspondence offers a spectacular new insight into

- dynamics of strongly coupled gauge fields
- black holes
- many-body physics

A dream:

Find a string description of realistic confining theories

The fundamental model of AdS/CFT:

 $\mathcal{N} = 4$ super Yang – Mills \Leftrightarrow closed strings in AdS₅×S⁵ geometry

Research on the fundamental model of AdS/CFT

 Initial research was concentrated on deriving gauge theory correlators from supergravity

Gubser, Klebanov and Polyakov '98

Witten '98

Studies of unprotected operators with large R-charge

Berenstein, Maldacena and Nastase '02

Discovery of integrable structures in gauge and string theory

String integrability and spectral problem

In spite of important recent progress, the exact spectra of both $\mathcal{N} = 4$ super Yang-Mills and strings on $AdS_5 \times S^5$ remain unknown

My goal is to explain the progress towards solving the spectral problem of the fundamental model based on the ideas of exact integrability

String integrability and spectral problem

In spite of important recent progress, the exact spectra of both $\mathcal{N} = 4$ super Yang-Mills and strings on $AdS_5 \times S^5$ remain unknown

My goal is to explain the progress towards solving the spectral problem of the fundamental model based on the ideas of exact integrability

String integrability and spectral problem

Outline

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

• Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^{i} , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \text{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_\mu \Phi^i D^\mu \Phi^i - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank N of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^i , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \text{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_\mu \Phi^i D^\mu \Phi^i - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank *N* of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

• Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^{i} , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \text{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_{\mu} \Phi^i D^{\mu} \Phi^j - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank N of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

• Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^{i} , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \operatorname{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_{\mu} \Phi^i D^{\mu} \Phi^i - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank N of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^{i} , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \operatorname{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_{\mu} \Phi^i D^{\mu} \Phi^j - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank N of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

N=4 super Yang-Mills theory

• Maximally supersymmetric field theory in 4dim:

 A_{μ} , Φ^{i} , $i = 1, \dots, 6$ and 4 Weyl fermions

all fields in the adjoint of U(N).

$$\mathscr{L} = \frac{1}{g_{\rm YM}^2} \operatorname{Tr} \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_{\mu} \Phi^i D^{\mu} \Phi^j - \frac{1}{4} [\Phi^i, \Phi^j]^2 + \text{fermions} \Big]$$

- It is an exact (super) conformal theory in four dimensions
- Conformal symmetry includes Poincaré algebra, dilatation and conformal boosts
- g_{YM} is not running; it is merely a parameter. Another parameter is the rank N of the gauge group

AdS/CFT duality conjecture

String integrability and spectral problem

Conformal theories – CFT's

● CFT is characterized by a set of *primary* operators {𝒞_i}. Primary operators correspond to eigenstates of the dilatation

 $D \cdot \mathcal{O} = i \Delta \mathcal{O}$

 Δ is the scaling dimension

• A CFT is described by 2- and 3-point cor. functions of O

$$\begin{split} \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\rangle &= \frac{\delta_{ij}}{|x-y|^{2\Delta_{i}}}\\ \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\mathscr{O}_{k}(z)\rangle &= \frac{C_{ijk}}{|x-y|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}|x-z|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}} \end{split}$$

● Composite gauge invariant operators ⇔ 'observables'

$$\mathscr{O} = \mathrm{Tr} \bigg[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots \bigg]$$

AdS/CFT duality conjecture

String integrability and spectral problem

Conformal theories – CFT's

CFT is characterized by a set of *primary* operators {*O_i*}. Primary operators correspond to eigenstates of the dilatation

 $D\cdot \mathcal{O}=i\Delta \mathcal{O}$

 Δ is the scaling dimension

• A CFT is described by 2- and 3-point cor. functions of ${\mathscr O}$

$$\begin{split} \langle \mathscr{O}_{i}(\mathbf{x})\mathscr{O}_{j}(\mathbf{y})\rangle &= \frac{\delta_{ij}}{|\mathbf{x} - \mathbf{y}|^{2\Delta_{i}}}\\ \langle \mathscr{O}_{i}(\mathbf{x})\mathscr{O}_{j}(\mathbf{y})\mathscr{O}_{k}(z)\rangle &= \frac{C_{ijk}}{|\mathbf{x} - \mathbf{y}|^{\Delta_{i} + \Delta_{j} - \Delta_{k}}|\mathbf{x} - z|^{\Delta_{i} + \Delta_{k} - \Delta_{j}}|\mathbf{y} - z|^{\Delta_{j} + \Delta_{k} - \Delta_{i}}} \end{split}$$

● Composite gauge invariant operators ⇔ 'observables'

$$\mathscr{O} = \mathrm{Tr} \bigg[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots \bigg]$$

AdS/CFT duality conjecture

String integrability and spectral problem

Conformal theories – CFT's

CFT is characterized by a set of *primary* operators {*O_i*}. Primary operators correspond to eigenstates of the dilatation

 $D \cdot \mathcal{O} = i\Delta \mathcal{O}$

 Δ is the scaling dimension

A CFT is described by 2- and 3-point cor. functions of *O*

$$\begin{split} \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\rangle &= \frac{\delta_{ij}}{|x-y|^{2\Delta_{i}}}\\ \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\mathscr{O}_{k}(z)\rangle &= \frac{C_{ijk}}{|x-y|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}|x-z|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}} \end{split}$$

■ Composite gauge invariant operators ⇔ 'observables'

$$\mathscr{O} = \mathrm{Tr} \Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots \Big]$$

AdS/CFT duality conjecture

String integrability and spectral problem

Conformal theories – CFT's

CFT is characterized by a set of *primary* operators {*O_i*}. Primary operators correspond to eigenstates of the dilatation

 $D \cdot \mathcal{O} = i\Delta \mathcal{O}$

 Δ is the scaling dimension

A CFT is described by 2- and 3-point cor. functions of *O*

$$\begin{split} \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\rangle &= \frac{\delta_{ij}}{|x-y|^{2\Delta_{i}}}\\ \langle \mathscr{O}_{i}(x)\mathscr{O}_{j}(y)\mathscr{O}_{k}(z)\rangle &= \frac{C_{ijk}}{|x-y|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}|x-z|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}} \end{split}$$

● Composite gauge invariant operators ⇔ 'observables'

$$\mathscr{O} = \operatorname{Tr} \left[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots \right]$$

AdS/CFT duality conjecture

String integrability and spectral problem

Scaling dimensions

The composite operators

$$\mathscr{O} = \mathrm{Tr}\Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots\Big]$$

mix under renormalization

$$\langle \mathscr{O}_{i}(x) \mathscr{O}_{j}(y)
angle = rac{1}{|x-y|^{2\Delta_{\mathrm{class}}}} \Big[\delta_{ij} + \lambda M_{ij} \log \Lambda + \cdots \Big]$$

where $\lambda = g_{YM}^2 N$ is the 't Hooft coupling

• Diagonalization of the mixing matrix *M* leads to the appearance of the "anomalous" dimension:

$\Delta_{\text{class}} \Rightarrow \Delta(g_{\text{YM}}, 1/N) \equiv \Delta(\lambda, 1/N)$

 Mixing problem simplifies in the limit N → ∞, where a wonderful connection to integrable models and string theory emerges!

AdS/CFT duality conjecture

String integrability and spectral problem

Scaling dimensions

The composite operators

$$\mathscr{O} = \mathrm{Tr}\Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots\Big]$$

mix under renormalization

$$\langle \mathscr{O}_{i}(x) \mathscr{O}_{j}(y)
angle = rac{1}{|x-y|^{2\Delta_{\mathrm{class}}}} \Big[\delta_{ij} + \lambda \, M_{ij} \, \log \Lambda + \cdots \Big]$$

where $\lambda = g_{YM}^2 N$ is the 't Hooft coupling

• Diagonalization of the mixing matrix *M* leads to the appearance of the "anomalous" dimension:

 $\Delta_{\text{class}} \Rightarrow \Delta(g_{\text{YM}}, 1/N) \equiv \Delta(\lambda, 1/N)$

Mixing problem simplifies in the limit N → ∞, where a wonderful connection to integrable models and string theory emerges!

AdS/CFT duality conjecture

String integrability and spectral problem

Scaling dimensions

The composite operators

$$\mathscr{O} = \mathrm{Tr}\Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots\Big]$$

mix under renormalization

$$\langle \mathscr{O}_{i}(x) \mathscr{O}_{j}(y)
angle = rac{1}{|x-y|^{2\Delta_{\mathrm{class}}}} \left[\delta_{ij} + \lambda \, M_{ij} \, \log \Lambda + \cdots
ight]$$

where $\lambda = g_{YM}^2 N$ is the 't Hooft coupling

• Diagonalization of the mixing matrix *M* leads to the appearance of the "anomalous" dimension:

 $\Delta_{\text{class}} \Rightarrow \Delta(g_{\text{YM}}, 1/N) \equiv \Delta(\lambda, 1/N)$

Mixing problem simplifies in the limit *N* → ∞, where a wonderful connection to integrable models and string theory emerges!

AdS/CFT duality conjecture

String integrability and spectral problem

Scaling dimensions

The composite operators

$$\mathscr{O} = \mathrm{Tr}\Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots\Big]$$

mix under renormalization

$$\langle \mathscr{O}_i(x) \mathscr{O}_j(y)
angle = rac{1}{|x-y|^{2\Delta_{\mathrm{class}}}} \Big[\delta_{ij} + \lambda \, M_{ij} \, \log \Lambda + \cdots \Big]$$

where $\lambda = g_{YM}^2 N$ is the 't Hooft coupling

• Diagonalization of the mixing matrix *M* leads to the appearance of the "anomalous" dimension:

$$\Delta_{\text{class}} \Rightarrow \Delta(g_{\text{YM}}, 1/N) \equiv \Delta(\lambda, 1/N)$$

 Mixing problem simplifies in the limit N → ∞, where a wonderful connection to integrable models and string theory emerges!

AdS/CFT duality conjecture

String integrability and spectral problem

Scaling dimensions

The composite operators

$$\mathscr{O} = \mathrm{Tr}\Big[\dots F_{\mu\nu} D_{\rho} \Phi^{i} \dots \Psi^{k} D_{\lambda} \Phi^{j} \Phi^{m} \dots\Big]$$

mix under renormalization

$$\langle \mathscr{O}_i(x) \mathscr{O}_j(y)
angle = rac{1}{|x-y|^{2\Delta_{\mathrm{class}}}} \Big[\delta_{ij} + \lambda \, M_{ij} \, \log \Lambda + \cdots \Big]$$

where $\lambda = g_{YM}^2 N$ is the 't Hooft coupling

• Diagonalization of the mixing matrix *M* leads to the appearance of the "anomalous" dimension:

$$\Delta_{\text{class}} \Rightarrow \Delta(g_{\text{YM}}, 1/N) \equiv \Delta(\lambda, 1/N)$$

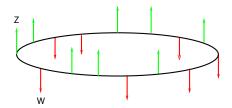
Mixing problem simplifies in the limit N → ∞, where a wonderful connection to integrable models and string theory emerges!

AdS/CFT duality conjecture

String integrability and spectral problem

Planar scaling dimensions via integrable spin chains

$$\mathscr{O} = \operatorname{tr}(Z^{L-M} \mathbf{W}^M)$$
, $Z = \Phi^1 + i\Phi^2$, $\mathbf{W} = \Phi^3 + i\Phi^4$



A closed spin chain of length L

String integrability and spectral problem

Planar scaling dimensions via integrable spin chains

The Hamiltonian H acts as $2^L \times 2^L$ matrix, where *L* is the length of the chain. *M* is a number of magnons

At one loop the Hamiltonian of the $\mathfrak{su}(2)$ spin chain is

$$\mathbf{H} = \sum_{i=1}^{L} \left(I - P_{i,i+1} \right), \qquad P(\uparrow \downarrow) = (\downarrow \uparrow)$$

The Heisenberg spin chain – paradigmatic integrable model of condensed matter physics. Solved by the Bethe ansatz.

Minahan and Zarembo, '03

Previously observed integrable structures in QCD: Lipatov, '94; Faddeev and Korchemsky '95

AdS/CFT duality conjecture

String integrability and spectral problem

Higher-loop integrability

Conformal Hamiltonian H defines an integrable long-range spin chain

 $\mathbf{H}_{1\ell} = \sum_{i=1}^{L} \left(I - P_{i,i+1} \right) \iff \text{Heisenberg Hamiltonian}$ $\mathbf{H}_{2\ell} = \sum_{i=1}^{L} \left(-\frac{3}{2}I + 2P_{i,i+1} - \frac{1}{2}P_{i,i+2} \right)$ $\mathbf{H}_{3\ell} = \sum_{i=1}^{L} \left(5I - 7P_{i,i+1} + 2P_{i,i+2} - \frac{1}{2}(P_{i,i+3}P_{i+1,i+2} - P_{i,i+2}P_{i+1,i+3}) \right)$

Beisert, Kristjansen and Staudacher '03

Integrability:

- Elementary excitations are magnons (quasi-particles with momenta p_k)
- Existence of family of commuting charges {Q_i}: [H, Q_i(λ)] = [Q_i(λ), Q_j(λ)] = 0 ⇒ elastic scattering
- In the limit $L \to \infty$ the Hamiltonian can be diagonalized by the Bethe Ansatz

AdS/CFT duality conjecture

String integrability and spectral problem

Higher-loop integrability

Conformal Hamiltonian H defines an integrable long-range spin chain

 $\mathbf{H}_{1\ell} = \sum_{i=1}^{L} \left(I - P_{i,i+1} \right) \iff \text{Heisenberg Hamiltonian}$ $\mathbf{H}_{2\ell} = \sum_{i=1}^{L} \left(-\frac{3}{2}I + 2P_{i,i+1} - \frac{1}{2}P_{i,i+2} \right)$ $\mathbf{H}_{3\ell} = \sum_{i=1}^{L} \left(5I - 7P_{i,i+1} + 2P_{i,i+2} - \frac{1}{2}(P_{i,i+3}P_{i+1,i+2} - P_{i,i+2}P_{i+1,i+3}) \right)$

Beisert, Kristjansen and Staudacher '03

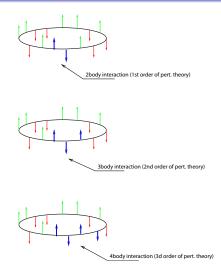
Integrability:

- Elementary excitations are magnons (quasi-particles with momenta p_k)
- Existence of family of commuting charges $\{Q_i\}$: $[\mathbf{H}, Q_i(\lambda)] = [Q_i(\lambda), Q_j(\lambda)] = 0$ \Rightarrow elastic scattering
- In the limit $L \to \infty$ the Hamiltonian can be diagonalized by the Bethe Ansatz

AdS/CFT duality conjecture

String integrability and spectral problem

Obscuring spin chains at higher loops



At higher orders of perturbation theory interactions "wrap" around the circle making the spin chain interpretation obscure

AdS/CFT duality conjecture

String integrability and spectral problem

The planar AdS/CFT duality conjecture

- Planar scaling dimensions Δ(λ) in Yang-Mills theory should be computable by string theory! Simultaneously, this should test the conjecture.
- The string theory is type IIB superstring moving in the $\mathrm{AdS}_5 \times \mathrm{S}^5$ space-time
- The action for $X^{M}(\tau, \sigma)$, M = 1, ..., 10

$$S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$$

Strings are closed ⇔ sigma-model is defined on a cylinder

AdS/CFT duality conjecture

String integrability and spectral problem

The planar AdS/CFT duality conjecture

- Planar scaling dimensions Δ(λ) in Yang-Mills theory should be computable by string theory! Simultaneously, this should test the conjecture.
- The string theory is type IIB superstring moving in the ${\rm AdS}_5 \times {\rm S}^5$ space-time
- The action for $X^{M}(\tau, \sigma)$, M = 1, ..., 10

 $S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$

Metsaev, Tseytlin '98 Strings are closed ⇔ sigma-model is defined on a cylinder

AdS/CFT duality conjecture

String integrability and spectral problem

The planar AdS/CFT duality conjecture

- Planar scaling dimensions Δ(λ) in Yang-Mills theory should be computable by string theory! Simultaneously, this should test the conjecture.
- The string theory is type IIB superstring moving in the ${\rm AdS}_5 \times {\rm S}^5$ space-time
- The action for $X^{M}(\tau, \sigma)$, M = 1, ..., 10

 $S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$

Metsaev, Tseytlin '98 Strings are closed ⇔ sigma-model is defined on a cylinder

AdS/CFT duality conjecture

String integrability and spectral problem

The planar AdS/CFT duality conjecture

- Planar scaling dimensions Δ(λ) in Yang-Mills theory should be computable by string theory! Simultaneously, this should test the conjecture.
- The string theory is type IIB superstring moving in the $AdS_5 \times S^5$ space-time
- The action for $X^{M}(\tau, \sigma)$, M = 1, ..., 10

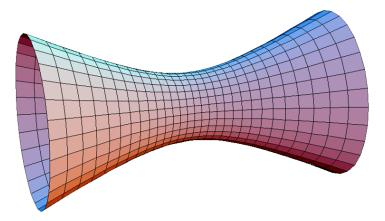
$$S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$$

Strings are closed ⇔ sigma-model is defined on a cylinder

AdS/CFT duality conjecture

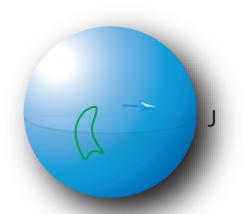
String integrability and spectral problem

Anti-de Sitter space Maximally symmetric space of constant negative curvature



String energy *E* is a conserved Noether charge corresponding to the SO(2) subgroup of the conformal group SO(4, 2)

String integrability and spectral problem



J is a conserved Noether charge corresponding to one of the Cartan generators of SO(6)

String integrability and spectral problem

The planar AdS/CFT duality conjecture

The conformal+R-symmetry groups $SO(4, 2) \times SO(6)$

- Symmetry group of the $\mathcal{N} = 4$ super Yang-Mills
- Isometry group of $AdS_5 \times S^5$ space-time, i.e. the global symmetry group of string sigma model

Representations are described by a set of numbers

$$[\Delta = E, S_1, S_2; J_1, J_2, J_3]$$

String integrability and spectral problem

The planar AdS/CFT duality conjecture

The conformal+R-symmetry groups $SO(4, 2) \times SO(6)$

- Symmetry group of the $\mathcal{N} = 4$ super Yang-Mills
- Isometry group of $AdS_5 \times S^5$ space-time, i.e. the global symmetry group of string sigma model

• Representations are described by a set of numbers

$$[\Delta = E, S_1, S_2; J_1, J_2, J_3]$$

String integrability and spectral problem

The planar AdS/CFT duality conjecture

The conformal+R-symmetry groups $SO(4, 2) \times SO(6)$

- Symmetry group of the $\mathcal{N} = 4$ super Yang-Mills
- Isometry group of $AdS_5 \times S^5$ space-time, i.e. the global symmetry group of string sigma model

Representations are described by a set of numbers

 $[\Delta = E, S_1, S_2; J_1, J_2, J_3]$

String integrability and spectral problem

The planar AdS/CFT duality conjecture

The conformal+R-symmetry groups $SO(4, 2) \times SO(6)$

- Symmetry group of the $\mathcal{N} = 4$ super Yang-Mills
- Isometry group of $AdS_5 \times S^5$ space-time, i.e. the global symmetry group of string sigma model
- Representations are described by a set of numbers

$$[\Delta = E, S_1, S_2; J_1, J_2, J_3]$$

AdS/CFT duality conjecture

String integrability and spectral problem

AdS/CFT duality conjecture

• The gauge-string correspondence

- 't Hooft coupling $\lambda \hspace{0.1in} \Leftrightarrow \hspace{0.1in}$ Inverse string tension $g=rac{\sqrt{\lambda}}{2\pi}$
 - SYM operators \Leftrightarrow String states
- Scaling dimension $\Delta(\lambda) \iff$ String energy E(g)

AdS/CFT duality conjecture

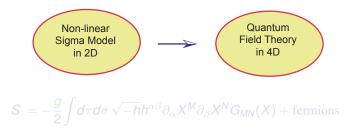
String integrability and spectral problem

AdS/CFT duality conjecture

- The gauge-string correspondence
 - 't Hooft coupling $\lambda \quad \Leftrightarrow \quad$ Inverse string tension $g = rac{\sqrt{\lambda}}{2\pi}$
 - SYM operators \Leftrightarrow String states
 - Scaling dimension $\Delta(\lambda) \Leftrightarrow$ String energy E(g)

AdS/CFT duality conjecture

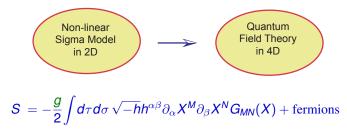
String integrability and spectral problem



- To compute E(g) and therefore $\Delta(g)$, one needs to solve the 2-dim quantum sigma model on a cylinder! Very hard ...
- In the last 5 years a lot of evidence has been collected that string integrability is the key to the solution

AdS/CFT duality conjecture

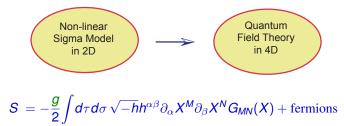
String integrability and spectral problem



- To compute E(g) and therefore $\Delta(g)$, one needs to solve the 2-dim quantum sigma model on a cylinder! Very hard ...
- In the last 5 years a lot of evidence has been collected that string integrability is the key to the solution

AdS/CFT duality conjecture

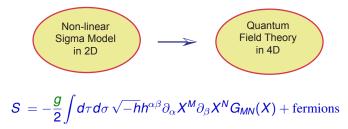
String integrability and spectral problem



- To compute *E*(*g*) and therefore ∆(*g*), one needs to solve the 2-dim quantum sigma model on a cylinder! Very hard ...
- In the last 5 years a lot of evidence has been collected that string integrability is the key to the solution

AdS/CFT duality conjecture

String integrability and spectral problem



- To compute *E*(*g*) and therefore ∆(*g*), one needs to solve the 2-dim quantum sigma model on a cylinder! Very hard ...
- In the last 5 years a lot of evidence has been collected that string integrability is the key to the solution

AdS/CFT duality conjecture

String integrability and spectral problem

$AdS_5 \times S^5$ superstring in the light-cone gauge

- Classical string sigma model is integrable: it exhibits an infinite number of conservation laws!
 Bena, Polchinski and Roiban '03
- Quantum integrability is a plausible assumption!
- Sigma model has a local diffeomorphism symmetry. It is eliminated through the light-cone gauge fixing. Frolov and G.A. 104
- Sigma model is on a cylinder of circumference $P_+ = J$, where *J* is an angular momentum of string around S⁵
- Sigma model has soliton solutions "giant magnons"

- Classical string sigma model is integrable: it exhibits an infinite number of conservation laws!
 Bena, Polchinski and Roiban '03
- Quantum integrability is a plausible assumption!
- Sigma model has a local diffeomorphism symmetry. It is eliminated through the light-cone gauge fixing. Frolov and G.A. 104
- Sigma model is on a cylinder of circumference $P_+ = J$, where *J* is an angular momentum of string around S⁵
- Sigma model has soliton solutions "giant magnons"

- Classical string sigma model is integrable: it exhibits an infinite number of conservation laws!
 Bena, Polchinski and Roiban '03
- Quantum integrability is a plausible assumption!
- Sigma model has a local diffeomorphism symmetry. It is eliminated through the light-cone gauge fixing. Frolov and G.A. '04
- Sigma model is on a cylinder of circumference $P_+ = J$, where *J* is an angular momentum of string around S⁵
- Sigma model has soliton solutions "giant magnons"

- Classical string sigma model is integrable: it exhibits an infinite number of conservation laws!
 Bena, Polchinski and Roiban '03
- Quantum integrability is a plausible assumption!
- Sigma model has a local diffeomorphism symmetry. It is eliminated through the light-cone gauge fixing. Frolov and G.A. '04
- Sigma model is on a cylinder of circumference P₊ = J, where J is an angular momentum of string around S⁵
- Sigma model has soliton solutions "giant magnons"

- Classical string sigma model is integrable: it exhibits an infinite number of conservation laws!
 Bena, Polchinski and Roiban '03
- Quantum integrability is a plausible assumption!
- Sigma model has a local diffeomorphism symmetry. It is eliminated through the light-cone gauge fixing. Frolov and G.A. '04
- Sigma model is on a cylinder of circumference P₊ = J, where J is an angular momentum of string around S⁵
- Sigma model has soliton solutions "giant magnons"

AdS/CFT duality conjecture

String integrability and spectral problem

GIANT MAGNON

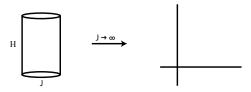
Frolov, Zamaklar and G.A. '06

AdS/CFT duality conjecture

String integrability and spectral problem

Integrability on a plane \Leftrightarrow Factorized Scattering

• When $J \rightarrow \infty$ the cylinder decompactifies into a plane



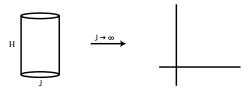
- Integrability implies:
 - the number of particles is conserved
 - scattering permutes momenta
 - any multi-particle scattering process is factorised into a sequence of two-body events. Two-particle S-matrix S(p₁, p₂) is the main object

AdS/CFT duality conjecture

String integrability and spectral problem

Integrability on a plane \Leftrightarrow Factorized Scattering

• When $J \rightarrow \infty$ the cylinder decompactifies into a plane



- Integrability implies:
 - the number of particles is conserved
 - scattering permutes momenta
 - any multi-particle scattering process is factorised into a sequence of two-body events. Two-particle S-matrix S(p₁, p₂) is the main object

AdS/CFT duality conjecture

String integrability and spectral problem

Dispersion relation and the two-body S-matrix

- Particles form a 16-dim multiplet of I.c. symmetry algebra
- Exact dispersion relation for string excitations

$$\epsilon(p) = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$$

Beisert, Dippel and Staudacher '04

• Exact two-body S-matrix

$S_{256\times 256}(p_1,p_2) \quad \Leftarrow \quad \text{exact in } g$

was found from various symmetry considerations and the perturbative data Frolov, Staudacher and G.A. '04; Staudacher '0

olov, Staudacher and G.A. 04; Staudacher '04; Beisert '05; Frolov, Zamaklar and G.A. '06 Janik '06; Beisert, Hernandez and Lopez '06 Beisert, Eden and Staudacher '06

Dispersion relation and the two-body S-matrix

- Particles form a 16-dim multiplet of I.c. symmetry algebra
- Exact dispersion relation for string excitations

$$\epsilon(p) = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$$

Beisert, Dippel and Staudacher '04

• Exact two-body S-matrix

$S_{256\times 256}(p_1,p_2) \quad \Leftarrow \quad \text{exact in } g$

was found from various symmetry considerations and the perturbative data Frolov, Staudacher and G.A. '04; Staudacher '0

rolov, Staudacher and G.A. '04; Staudacher '04; Beisert '05; Frolov, Zamaklar and G.A. '06 Janik '06; Beisert, Hernandez and Lopez '06 Beisert, Eden and Staudacher '06

Dispersion relation and the two-body S-matrix

- Particles form a 16-dim multiplet of I.c. symmetry algebra
- Exact dispersion relation for string excitations

$$\epsilon(p) = \sqrt{1 + 4g^2 \sin^2 rac{p}{2}}$$

Beisert, Dippel and Staudacher '04

Exact two-body S-matrix

$S_{256 \times 256}(p_1, p_2) \iff \text{exact in } g$

was found from various symmetry considerations and the perturbative data Frolov, Staudacher and G.A. '04; Staudacher '04;

rolov, Staudacher and G.A. '04; Staudacher '04; Beisert '05; Frolov, Zamaklar and G.A. '06 Janik '06; Beisert, Hernandez and Lopez '06 Beisert, Eden and Staudacher '06

AdS/CFT duality conjecture

String integrability and spectral problem

Properties of the S-matrix

- $S_{23}S_{13}S_{12} = S_{12}S_{13}S_{23}$ \leftarrow Yang-Baxter equation
- $S_{12}(p_1^*, p_2^*) S_{12}(p_1, p_2)^{\dagger} = \mathbb{I} \leftarrow$ generalized physical unitarity
- $S_{12}(p_1, p_2)^T = I_{12}^g S_{12}(p_1, p_2) I_{12}^g$
- $S_{12}(p_1, p_2)^{-1} = S_{12}(-p_1, -p_2)$
- $S_{12}(p_1, p_2)S_{21}(p_2, p_1) = \mathbb{I}$
- $S_{21}(p_2^*, p_1^*) = S_{12}(p_1, p_2)^{\dagger}$

- hermitian analyticity

← unitarity

← CPT invariance

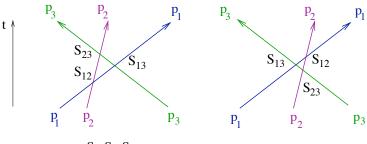
parity transformation

• $\mathscr{C}_1^{-1} \mathcal{S}_{12}^{t_1}(p_1, p_2) \mathscr{C}_1 \mathcal{S}_{12}(-p_1, p_2) = \mathbb{I} \quad \longleftarrow \text{ crossing}$

AdS/CFT duality conjecture

String integrability and spectral problem

Factorized scattering



 $S_{23}S_{13}S_{12}$

 $S_{12}S_{13}S_{23}$

AdS/CFT duality conjecture

String integrability and spectral problem

Spectrum on a large circle

Bethe-Yang equations

$$"e^{ip_kJ}\prod_{k\neq i}^M S(p_i,p_k)=1"$$

(+ additional equations with auxiliary roots encoding non-diagonal structure of $\ensuremath{\mathcal{S}}\xspace)$

Beisert,Staudacher '04

• Given $\{p_i\}_{i=1}^M$, the energy (dimension) is given by $E = \sum_{i=1}^M \epsilon(p_i) = \sum_{i=1}^M \sqrt{1 + 4g^2 \sin^2 \frac{p_i}{2}} = E(g, J)$

This is incorrect answer for finite J!

Higher loop Feynman graphs, finite-size corrections to classical string energies, etc., all points to this...

AdS/CFT duality conjecture

String integrability and spectral problem

Spectrum on a large circle

Bethe-Yang equations

$$"e^{ip_kJ}\prod_{k\neq i}^M S(p_i,p_k)=1"$$

(+ additional equations with auxiliary roots encoding non-diagonal structure of $\ensuremath{\mathcal{S}}\xspace)$

Beisert, Staudacher '04

• Given $\{p_i\}_{i=1}^M$, the energy (dimension) is given by

$$E = \sum_{i=1}^{M} \epsilon(p_i) = \sum_{i=1}^{M} \sqrt{1 + 4g^2 \sin^2 \frac{p_i}{2}} = E(g, J)$$

• This is incorrect answer for finite *J*!

Higher loop Feynman graphs, finite-size corrections to classical string energies, etc., all points to this...

AdS/CFT duality conjecture

String integrability and spectral problem

Spectrum on a large circle

Bethe-Yang equations

$$e^{ip_k J}\prod_{k\neq i}^M S(p_i,p_k)=1$$

(+ additional equations with auxiliary roots encoding non-diagonal structure of $\ensuremath{\mathcal{S}}\xspace)$

Beisert,Staudacher '04

• Given $\{p_i\}_{i=1}^M$, the energy (dimension) is given by

$$E = \sum_{i=1}^{M} \epsilon(p_i) = \sum_{i=1}^{M} \sqrt{1 + 4g^2 \sin^2 \frac{p_i}{2}} = E(g, J)$$

• This is incorrect answer for finite *J*!

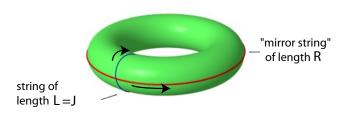
Higher loop Feynman graphs, finite-size corrections to classical string energies, etc., all points to this...

AdS/CFT duality conjecture

String integrability and spectral problem

TBA and mirror theory Follow the TBA approach for relativistic models (Zamolodchikov '90)

Frolov and G.A. '07



 One Euclidean theory – two Minkowski theories. One is related to the other by the double Wick rotation:

 $\tilde{\sigma} = -i au \,, \qquad ilde{ au} = i\sigma$

The Hamiltonian \tilde{H} w.r.t. $\tilde{\tau}$ defines the *mirror theory*.

• Ground state energy $(R \rightarrow \infty)$ is related to the free energy of its mirror

E(L) = Lf(L)

Free energy *f* can be found from the Bethe ansatz for the mirror model

AdS/CFT duality conjecture

String integrability and spectral problem

TBA and mirror theory Follow the TBA approach for relativistic models (Zamolodchikov '90)



 One Euclidean theory – two Minkowski theories. One is related to the other by the double Wick rotation:

 $\tilde{\sigma} = -i\tau$, $\tilde{\tau} = i\sigma$

The Hamiltonian \tilde{H} w.r.t. $\tilde{\tau}$ defines the *mirror theory*.

• Ground state energy $(R \rightarrow \infty)$ is related to the free energy of its mirror

E(L) = Lf(L)

Free energy *f* can be found from the Bethe ansatz for the mirror model

AdS/CFT duality conjecture

String integrability and spectral problem

TBA and mirror theory Follow the TBA approach for relativistic models (Zamolodchikov '90)

 One Euclidean theory – two Minkowski theories. One is related to the other by the double Wick rotation:

 $\tilde{\sigma} = -i\tau$, $\tilde{\tau} = i\sigma$

The Hamiltonian \tilde{H} w.r.t. $\tilde{\tau}$ defines the *mirror theory*.

• Ground state energy $(R \rightarrow \infty)$ is related to the free energy of its mirror

E(L) = Lf(L)

Free energy *f* can be found from the Bethe ansatz for the mirror model

AdS/CFT duality conjecture

String integrability and spectral problem

Mirror dispersion relation

• The pole of the Euclidean two-point function

$${
m H_{E}^{2}}+4g^{2}\sin^{2}rac{
ho_{{
m E}}}{2}+1$$

• In string theory:
$$H_E \rightarrow -iH$$
, $p_E \rightarrow p \implies$
 $H = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$

- In mirror theory: $H_E \rightarrow \tilde{p}, \quad p_E \rightarrow i\tilde{H} \implies$ $\tilde{H} = 2 \arcsinh \frac{\sqrt{1 + \tilde{p}^2}}{2q}$
- Magnitude of the correction $(L \equiv J)$ at weak coupling

$$\textit{magnitude} \sim e^{-L ilde{ extsf{H}}} = e^{-2J ext{arcsinh} rac{\sqrt{1+ ilde{
ho}^2}}{2g}} \overset{g
ightarrow 0}{\sim} rac{g^{2J}}{(1+ ilde{
ho}^2)^J} + \dots ..$$

AdS/CFT duality conjecture

String integrability and spectral problem

Mirror dispersion relation

• The pole of the Euclidean two-point function

$$H_{\rm E}^2 + 4g^2 \sin^2 \frac{p_{\rm E}}{2} + 1$$

• In string theory:
$$H_E \rightarrow -iH$$
, $p_E \rightarrow p \implies$
 $H = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$

• In mirror theory:
$$H_E \rightarrow \tilde{p}, \quad p_E \rightarrow i\tilde{H} \implies$$

 $\tilde{H} = 2 \arcsinh \frac{\sqrt{1 + \tilde{p}^2}}{2g}$

• Magnitude of the correction $(L \equiv J)$ at weak coupling

$$\textit{magnitude} \sim e^{-L ilde{ extsf{H}}} = e^{-2J_{\mathrm{arcsinh}} rac{\sqrt{1+ ilde{
ho}^2}}{2g}} \overset{g
ightarrow 0}{\sim} rac{g^{2J}}{(1+ ilde{
ho}^2)^J} + \dots ..$$

AdS/CFT duality conjecture

String integrability and spectral problem

Mirror dispersion relation

• The pole of the Euclidean two-point function

$$H_{\rm E}^2 + 4g^2\sin^2\frac{p_{\rm E}}{2} + 1$$

• In string theory:
$$H_E \rightarrow -iH$$
, $p_E \rightarrow p \implies$
 $H = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$

• In mirror theory:
$$H_E \rightarrow \tilde{p}, \quad p_E \rightarrow i\tilde{H} \implies$$

 $\tilde{H} = 2 \operatorname{arcsinh} \frac{\sqrt{1 + \tilde{p}^2}}{2g}$

• Magnitude of the correction $(L \equiv J)$ at weak coupling

$$\textit{magnitude} \sim e^{-L ilde{ extsf{H}}} = e^{-2J ext{arcsinh} rac{\sqrt{1+ ilde{
ho}^2}}{2g}} \stackrel{g o 0}{\sim} rac{g^{2J}}{(1+ ilde{
ho}^2)^J} + \dots ...$$

AdS/CFT duality conjecture

String integrability and spectral problem

Mirror dispersion relation

• The pole of the Euclidean two-point function

$$H_{\rm E}^2 + 4g^2 \sin^2 \frac{p_{\rm E}}{2} + 1$$

• In string theory:
$$H_E \rightarrow -iH$$
, $p_E \rightarrow p \implies$
 $H = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$

• In mirror theory:
$$H_E \rightarrow \tilde{p}, \quad p_E \rightarrow i\tilde{H} \implies$$

 $\tilde{H} = 2 \operatorname{arcsinh} \frac{\sqrt{1 + \tilde{p}^2}}{2g}$

• Magnitude of the correction $(L \equiv J)$ at weak coupling

$$\textit{magnitude} \sim e^{-L ilde{ extsf{H}}} = e^{-2J \arctan \frac{\sqrt{1+ ilde{ extsf{p}}^2}}{2g}} \overset{g
ightarrow 0}{\sim} rac{g^{2J}}{(1+ ilde{ extsf{p}}^2)^J} + \dots \dots$$

AdS/CFT duality conjecture

String integrability and spectral problem

TBA equations for pseudo-energies of mirror particles

$$\begin{array}{ll} \bullet & Q \text{-particles} & \epsilon_{Q} = L \widetilde{\mathcal{E}}_{Q} - \log\left(1 + e^{-\epsilon_{Q'}}\right) \star K_{\mathfrak{s}(2)}^{Q',Q} - \log\left(1 + e^{-\epsilon_{M'}^{(\alpha)}}\right) \star K_{\mathsf{wwx}}^{M',Q} \\ & -\log\left(1 - e^{ih_{\alpha} - \epsilon_{Y^{-}}^{(\alpha)}}\right) \star K_{-}^{yQ} - \log\left(1 - e^{ih_{\alpha} - \epsilon_{Y^{+}}^{(\alpha)}}\right) \star K_{+}^{yQ} \\ \bullet & y \text{-particles} & \epsilon_{y^{\pm}}^{(\alpha)} = -\log\left(1 + e^{-\epsilon_{Q'}}\right) \star K_{\pm}^{Qy} + \log\frac{1 + e^{-\epsilon_{M'}^{(\alpha)}}}{1 + e^{-\epsilon_{M'}^{(\alpha)}}} \star K_{M} \\ \bullet & M|_{\mathsf{vw}\text{-strings}} & \epsilon_{M|_{\mathsf{vw}}}^{(\alpha)} = -\log\left(1 + e^{-\epsilon_{Q'}}\right) \star K_{X'}^{Qy} \\ & +\log\left(1 + e^{-\epsilon_{M'}^{(\alpha)}}\right) \star K_{M'M} - \log\frac{1 - e^{ih_{\alpha} - \epsilon_{Y^{+}}^{(\alpha)}}}{1 - e^{ih_{\alpha} - \epsilon_{Y^{-}}^{(\alpha)}}} \star K_{M} \\ \bullet & M|_{\mathsf{w}\text{-strings}} & \epsilon_{M|_{\mathsf{w}}}^{(\alpha)} = \log\left(1 + e^{-\epsilon_{M'}^{(\alpha)}}\right) \star K_{M'M} - \log\frac{1 - e^{ih_{\alpha} - \epsilon_{Y^{+}}^{(\alpha)}}}{1 - e^{ih_{\alpha} - \epsilon_{Y^{-}}^{(\alpha)}}} \star K_{M} \\ \bullet & M|_{\mathsf{w}\text{-strings}} & \epsilon_{M|_{\mathsf{w}}}^{(\alpha)} = \log\left(1 + e^{-\epsilon_{M'}^{(\alpha)}}\right) \star K_{M'M} - \log\frac{1 - e^{ih_{\alpha} - \epsilon_{Y^{+}}^{(\alpha)}}}{1 - e^{ih_{\alpha} - \epsilon_{Y^{-}}^{(\alpha)}}} \star K_{M} \\ \bullet & M|_{\mathsf{w}\text{-strings}} & \epsilon_{M|_{\mathsf{w}}}^{(\alpha)} = \log\left(1 + e^{-\epsilon_{M'}^{(\alpha)}}\right) \star K_{M'M} - \log\frac{1 - e^{ih_{\alpha} - \epsilon_{Y^{+}}^{(\alpha)}}}{1 - e^{ih_{\alpha} - \epsilon_{Y^{-}}^{(\alpha)}}} \star K_{M} \\ \bullet & M|_{\mathsf{w}\text{-strings}} & \epsilon_{M|_{\mathsf{w}}}^{(\alpha)} = \log\left(1 + e^{-\int du}\sum_{Q=1}^{\infty} \frac{1}{2\pi} \frac{dpQ}{du}} \log\left(1 + e^{-\epsilon_{Q}}\right) \\ \bullet & Frolov \text{ and } G.A. \ Deserve and S.A. \ Deserve$$

Infinite system of coupled equations. Analysis is underway.

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Konishi operator is the simplest non-protected operator in $\mathcal{N} = 4$ SYM:

 $\operatorname{Tr} \Phi_i^2$

It has a susy descendent

 $\operatorname{Tr}(W^2Z^2) \rightarrow J=2$

• Solving BY equations iteratively for M = 2, one finds $p_1 = -p_2 = p$ with

$$p = \frac{2\pi}{3} - \sqrt{3}g^2 + \frac{9\sqrt{3}}{2}g^4 - \frac{72\sqrt{3} + 8 \cdot 8\sqrt{3}\zeta(3)}{3}g^6 + \dots$$

This gives the energy

$$E_{\rm BY} = \underbrace{4 + 12g^2 - 48g^4 + 336g^6}_{-(2820 + 288\zeta(3))g^8 + \dots} - \underbrace{(2820 + 288\zeta(3))g^8 + \dots}_{-(2820 + 288\zeta(3))g^8 + \dots}$$

agrees with pert.compt

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Konishi operator is the simplest non-protected operator in $\mathcal{N} = 4$ SYM:

 $\operatorname{Tr} \Phi_i^2$

It has a susy descendent

 $Tr(W^2Z^2) \rightarrow J = 2$

• Solving BY equations iteratively for M = 2, one finds $p_1 = -p_2 = p$ with

$$p = \frac{2\pi}{3} - \sqrt{3}g^2 + \frac{9\sqrt{3}}{2}g^4 - \frac{72\sqrt{3} + 8 \cdot 8\sqrt{3}\zeta(3)}{3}g^6 + \dots$$

This gives the energy

$$E_{\rm BY} = \underbrace{4 + 12g^2 - 48g^4 + 336g^6}_{-(2820 + 288\zeta(3))g^8 + \dots} - \underbrace{(2820 + 288\zeta(3))g^8 + \dots}_{-(2820 + 288\zeta(3))g^8 + \dots}$$

agrees with pert.compt

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Konishi operator is the simplest non-protected operator in $\mathcal{N} = 4$ SYM:

 $\operatorname{Tr} \Phi_i^2$

It has a susy descendent

 $Tr(W^2Z^2) \rightarrow J = 2$

• Solving BY equations iteratively for M = 2, one finds $p_1 = -p_2 = p$ with

$$p = \frac{2\pi}{3} - \sqrt{3}g^2 + \frac{9\sqrt{3}}{2}g^4 - \frac{72\sqrt{3} + 8 \cdot 8\sqrt{3}\zeta(3)}{3}g^6 + \dots$$

This gives the energy

$$E_{\rm BY} = \underbrace{4 + 12g^2 - 48g^4 + 336g^6}_{-(2820 + 288\zeta(3))g^8 + \dots} - \underbrace{(2820 + 288\zeta(3))g^8 + \dots}_{-(2820 + 288\zeta(3))g^8 + \dots}$$

agrees with pert.compt

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Konishi operator is the simplest non-protected operator in $\mathcal{N} = 4$ SYM:

 $\operatorname{Tr} \Phi_i^2$

It has a susy descendent

 $Tr(W^2Z^2) \rightarrow J = 2$

• Solving BY equations iteratively for M = 2, one finds $p_1 = -p_2 = p$ with

$$p = \frac{2\pi}{3} - \sqrt{3}g^2 + \frac{9\sqrt{3}}{2}g^4 - \frac{72\sqrt{3} + 8 \cdot 8\sqrt{3}\zeta(3)}{3}g^6 + \dots$$

This gives the energy

$$E_{\rm BY} = \underbrace{4 + 12g^2 - 48g^4 + 336g^6}_{(2820 + 288\zeta(3))g^8 + \dots} - \underbrace{(2820 + 288\zeta(3))g^8 + \dots}_{(2820 + 288\zeta(3))g^8 + \dots}$$

agrees with pert.compt

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

Direct field-theoretical computation of the four-loop contribution:

 $E_{\rm SYM} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

Fiamberti, Santambrogio, Sieg , Zanon '07 (~ 200 supergraphs!) Velizhanin '08 (131015 graphs!)

Compare to the result based on BY equations:

 $E_{\rm BY} = 4 + 12g^2 - 48g^4 + 336g^6 - (2820 + 288\zeta(3))g^8 + \dots$

Lüscher correction (large L approximation to the TBA equations)

 $E_{\text{MIRROR}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Direct field-theoretical computation of the four-loop contribution:

 $E_{\text{SYM}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

Fiamberti, Santambrogio, Sieg , Zanon '07 (\sim 200 supergraphs!) Velizhanin '08 (131015 graphs!)

• Compare to the result based on BY equations:

 $E_{\rm BY} = 4 + 12g^2 - 48g^4 + 336g^6 - (2820 + 288\zeta(3))g^8 + \dots$

Lüscher correction (large L approximation to the TBA equations)

 $E_{\text{MIRROR}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Direct field-theoretical computation of the four-loop contribution:

 $E_{\text{SYM}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

Fiamberti, Santambrogio, Sieg , Zanon '07 (~ 200 supergraphs!) Velizhanin '08 (131015 graphs!)

Compare to the result based on BY equations:

 $E_{\rm BY} = 4 + 12g^2 - 48g^4 + 336g^6 - (2820 + 288\zeta(3))g^8 + \dots$

Lüscher correction (large L approximation to the TBA equations)

 $E_{\text{MIRROR}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

• Direct field-theoretical computation of the four-loop contribution:

 $E_{\rm SYM} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

Fiamberti, Santambrogio, Sieg , Zanon '07 (~ 200 supergraphs!) Velizhanin '08 (131015 graphs!)

Compare to the result based on BY equations:

 $E_{\rm BY} = 4 + 12g^2 - 48g^4 + 336g^6 - (2820 + 288\zeta(3))g^8 + \dots$

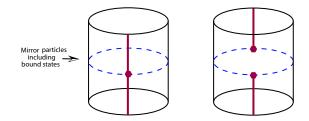
Lüscher correction (large L approximation to the TBA equations)

 $E_{\text{MIRROR}} = 4 + 12g^2 - 48g^4 + 336g^6 + (-2496 + 576\zeta(3) - 1440\zeta(5))g^8 + \dots$

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory



Lüscher corrections: the *F*- and μ -terms

In relativistic QFT's the leading correction to single particle energies is due to Lüscher

$$E_n(L) = m \cosh \theta_n - \underbrace{m \int_{-\infty}^{+\infty} \frac{d\theta}{2\pi} \frac{\cosh(\theta - \theta_n)}{\cosh \theta_n} \left(S(\theta + \frac{i\pi}{2} - \theta_n) - 1\right) e^{-mL \cosh \theta}}_{F-\text{term}}$$

+
$$\underbrace{\text{residues}}_{\mu-\text{term}}$$

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

The leading exponential correction in *L* was found by BJ by generalizing the Lüscher formulae

- to multi-particle states
- to a non-Lorentz invariant case
- to non-diagonal scattering

$$\begin{split} \Delta E_n &= E_n(L) - E_n^{\rm BY}(L) = \\ &- \sum_{Q} \int \frac{d\tilde{p}}{2\pi} \sum_{Q_1,\ldots,Q_n} (-1)^F [S_{Q_1a}^{Q_2a}(\tilde{p},p_1) S_{Q_2a}^{Q_3a}(\tilde{p},p_2) \ldots S_{Q_na}^{Q_1a}(\tilde{p},p_n)] e^{-\tilde{H}_a(\tilde{p})L} \end{split}$$

- p_1, \ldots, p_n are momenta of physical particles in string theory
- \tilde{p} is the momentum of a *Q*-particle in the mirror theory
- The leading large L approx. to the exact TBA should reproduce this formula

For the relativistic O(4), see Gromov, Kazakov, Vieira '08

AdS/CFT duality conjecture

String integrability and spectral problem

Konishi operator in perturbation theory

The leading exponential correction in *L* was found by BJ by generalizing the Lüscher formulae

- to multi-particle states
- to a non-Lorentz invariant case
- to non-diagonal scattering

$$\Delta E_n = E_n(L) - E_n^{BY}(L) = - \sum_{Q} \int \frac{d\tilde{p}}{2\pi} \sum_{Q_1,...,Q_n} (-1)^F [S_{Q_1a}^{Q_2a}(\tilde{p},p_1) S_{Q_2a}^{Q_3a}(\tilde{p},p_2) \dots S_{Q_na}^{Q_1a}(\tilde{p},p_n)] e^{-\tilde{H}_a(\tilde{p})L}$$

- p_1, \ldots, p_n are momenta of physical particles in string theory
- \tilde{p} is the momentum of a *Q*-particle in the mirror theory
- The leading large L approx. to the exact TBA should reproduce this formula

For the relativistic O(4), see Gromov, Kazakov, Vieira '08

String integrability and spectral problem

Konishi operator in perturbation theory

The leading exponential correction in *L* was found by BJ by generalizing the Lüscher formulae

- to multi-particle states
- to a non-Lorentz invariant case
- to non-diagonal scattering

$$\begin{aligned} \Delta E_n &= E_n(L) - E_n^{\rm BY}(L) = \\ &- \sum_{Q} \int \frac{d\tilde{p}}{2\pi} \sum_{Q_1, \dots, Q_n} (-1)^F [S_{Q_1 a}^{Q_2 a}(\tilde{p}, p_1) S_{Q_2 a}^{Q_3 a}(\tilde{p}, p_2) \dots S_{Q_n a}^{Q_1 a}(\tilde{p}, p_n)] e^{-\tilde{H}_a(\tilde{p})L} \end{aligned}$$

- p_1, \ldots, p_n are momenta of physical particles in string theory
- \tilde{p} is the momentum of a *Q*-particle in the mirror theory
- The leading large L approx. to the exact TBA should reproduce this formula

For the relativistic O(4), see Gromov, Kazakov, Vieira '08

AdS/CFT duality conjecture

Conclusions

The spectral problem for $AdS_5 \times S^5$ superstring in the light-cone gauge $P_+ = J$:

- Infinite J spectrum is trivial
- Large but finite J spectrum is encoded in the BY equations based on the known exact S-matrix. Corrections exponential in J are missed
- Finite J spectrum is encoded into an infinite set of coupled TBA equations in the mirror theory
- Lüscher correction perfectly reproduces the direct perturbative result which goes beyond the validity of the BY equations. Highly non-trivial check of the mirror theory approach