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Construction of consistent self-interactions

for higher spin gauge fields

Two main avenues of approach:

GAUGING approach

A priori global but non-Abelian H.S. gauge al-

gebra. FDA’s. General covariance built in from

the beginning.

Initiated by Vasiliev and Fradkin, developed by

M. Vasiliev. Many more authors (Sezgin, Sun-

dell, ...)

DEFORMATION approach

No apriori gauge algebra - local but abelian

gauge symmetries. Treat all spins equally - no

preference to spin 2

Proposed by Fang and Fronsdal in 1978 as

”Gupta program for higher spin”.
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Self-interactions for integer spin gauge fields

s = 1: Lie group gauge theories on fixed space-time
backgrounds. Yang-Mills theory ...

s = 2: Gauge theory of spacetime itself. General Rela-
tivity, Einstein gravity ...

s ≥ 3: What more can there possibly be?

• Interactions for s = 3 ⇒ ∀s : s ≥ 3

• Non-polynomial

• Increasing numbers of derivatives in vertices

Spin s, n-point vertex: at least (n − 2)s − 2n + 6
derivatives.

Weinberg 1964: high spin massless particles cannot pro-

duce macroscopic fields

But we already knew that, didn’t we (even then)? Oth-
erwise they’d been seen? So where are they?
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Philosophy

Study Higher Spins as free-standing theoretical

constructs.

The problem of interactions is characterized by

high COMPLEXITY

My approach to deformation

• Simplify

• Abstract

• Look for a physical picture

... while keeping what’s characteristic of the

problem.
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Quite natural ideas

Pack all higher spin fields away in some

Master F ield Φ

Fronsdal (1979): Cotangent symplectic struc-

ture (xµ, πν) over spacetime

Φ(π, x) =
∑

n f(n)φµ1µ2...µn(x)πµ1πµ2 · · ·πµn

I don’t know how far this carried, haven’t found

any real reference. [There is a conference paper from 1979]

Derivative basis:

Φ =
∑

s φµ1µ2...µs∂µ1∂µ2 · · · ∂µs

Jet bundle formulation seems natural.[Worked on

this with I. Bengtsson]
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Quite natural ideas

BRST: String field theory inspiration [Ouvry and

Stern, Bengtsson, 1986] [Independently rediscovered over and over]

|Φ〉= ∑
n φµ1µ2...µnα

†
µ1α
†
µ2 · · ·α

†
µn|0〉

+ auxiliary ghost terms.

This actually works!

Action and gauge transformations

A = 〈Φ|Q|Φ〉

δA = 0 with δ|Φ〉 = Q|Ξ〉

Reproduces all free field actions & gauge in-

variances.

Tracelessness: T |Φ〉 = T |Ξ〉 = 0
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Quite natural ideas

Vasiliev construction in AdS

ω(Y |x) =
∑∞

l=0 ωA1...Al,B1...Bl
Y

A1
1 . . . Y

Al
1 Y

B1
1 . . . Y

Bl
1

with oscillators [Y A
i , Y B

j ] = εijη
AB.

Bilinears in Y A
i span an O(D-2,2) algebra.

Polynomials of unbounded degree span an in-

finite dimensional extension of O(D-2,2).

ω is a one-form, general covariance is included

from the start.

7



Abstraction (in Computer Science sense)

Focus on what we want to do, rather than

how it is done in detail (cf Category Theory).

Computer Science ”split thinking”:

Interface ←→ Implementation

Syntax ←→ Semantics

! Pack the fields away, but don’t worry about

the details (Spacetime dimension, signature,

multiplet structure, supersymmetry, ...)

! Abstract the free field theory

! Abstract interactions and gauge transfor-

mations

! A semantic map ↪→

from syntax to semantics,

or from interface to implementation
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An abstract interface (1)

Pack away the fields into Φ(σi) (short Φi) where

σi parametrizes all inner structure, as well gives

us a handle to treat field configurations.

Possible support for the abstraction:

1. Set theoretic: Fields Φ belong to some set

H (Hilbert space or vector space) (→ sections

of bundles ...)

2. Type theoretic: Φ :: Hs

A type is an abstract ”template” for a variable

or an object, specifying the allowed ”values”

and the supported ”operations”.

3. Category theoretic: Φ objects of a cate-

gory HSField. There are various possibilities

for the morphisms, some involving operads.

9



An abstract interface (2)

Let’s go for type theoretic: Φ :: Hs, supposing

the type Hs supports the standard linear opera-

tions (more technical stuff, Grassman parities,

symmetrisations).

”Inner product” is a map

in(·, ·) :: Hs2→ k (a number field)

where Hsn is short for the function type

Hs→ Hs→ · · · → Hs︸ ︷︷ ︸
n

”Linear operators”

K :: Hs→ Hs

Free field theory action A(Φ) = in(Φ, KΦ).
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An abstract interface (3)

A product of n fields is a multilinear map

pr :: Hsn → Hs

pr(Φ(σ1),Φ(σ2), . . . ,Φ(σn))→ Φ(σn+1).

A shorthand notation

pr(Φn) ≡ pr(Φ(σ1),Φ(σ2), . . . ,Φ(σn)) ≡

pr(Φ1, . . . ,Φn)

Simplified notation for low indices n = 0 and

n = 1

pr(Φ0) ≡ pr() = 0

where Φ0 is defined to be a void argument,

and

pr(Φ) = KΦ
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An abstract interface (4)

”n-point” interaction is a multilinear map vx

typed by

vx :: Hsn → k

and syntactically defined by

vx(Φ1,Φ2, . . . ,Φn) ≡ in(Φn,pr(Φ1,Φ2, . . . ,Φn−1))

NOTE: In my way of looking at it, brackets

([·, ·] et cetera ...) belong to the (concrete

calculational) implementation (i.e. the seman-

tics).
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Action and gauge invariance

A(Φ) =
∑∞

i=2
gi−2

i! vx(Φ1,Φ2, . . . ,Φi) =

in(Φ, KΦ) +
∑∞

i=3
gi−2

i! in(Φ,pr(Φi−1))

δΞΦ =
∑∞

i=0
gi

i!pr(Φi,Ξ) =

KΞ +
∑∞

i=1
gi

i!pr(Φi,Ξ)

Gauge invariance to all orders forces

∑k+l=n
k=0
l=0

1
k! l!pr(Φk,pr(Φl)) = 0

The product identities for a strongly homo-

topy Lie algebra (L∞). [Stasheff, cf Zweibach

closed string field theory, implicit(?) in BBvD(?)]

Note that this follows from the syntax alone

using only equational reasoning!
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Mechanical two-particle models

• Discretized string [Gershun and Pashnev, 1988]

Regge trajectory of massive excitations

• Rigid string [Casalbuoni, Dominici and Longhi, 1975-76]

Massless (and massive), single spin, exci-

tations

• Vibrating ”spring” Discussions with Bo Sundborg,

1989

Infinite tower of massless excitations

Also zero-slope limit, but there is still a dimensionful
parameter in the theory as can be seen from

a =
1√
2mω

(π − imωξ)

So we can take

α′ ∼ 1

mω
∼ κ2
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Mechanical two-particle models

Simplest possible setting: two point particles

considered as a physical harmonic oscillator

Coordinates and momenta (tµ, bµ), (uµ, dµ)

t

b

Center of mass and relative coordinates

qµ =
1

2
(tµ + bµ), ξµ =

1

2
(tµ − bµ)

pµ = uµ + dµ, πµ = uµ − dµ

The internal harmonic motion phase space (ξµ, πν)

can alternatively be described by oscillators (αµ, α
†
ν)

αµ =
1√
2
(κπµ −

i

κ
ξµ), α†µ =

1√
2
(κπµ +

i

κ
ξµ)
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Mechanical two-particle models

Excluding explicit x, six different bilinears can

be made out of these variables:

p2, π · p, ξ · p

π · π, ξ · ξ, π · ξ.

By chosing linear combinations of subsets of

these bi-linears as constraints, we get various

types of bi-local mechanical models, all de-

scribing arbitrary spin excitations/fields.

Supply conjugate ghost pairs (c, b), (γ, β), (γ̃, β̃)

and do BRST field theory

A =
∫

ΦQΦd(x, ξ, c, γ, β̃)

with

Q = −1

2
cp2 + γπ · p + γ̃ξ · p− 2iγγ̃b,

then lift to BV field theory.

16



States [Following Casalbuoni et al]

Relative coordinate Fock space

|µ1, . . . , µn〉= α†µ1
· · ·α†µn

|0〉
or configuration space

〈ξ|µ1, . . . , µn〉 = fµ1...µn(ξ) =

fµ1...µs(ξ) = Nsc0 exp[−ξ2/2κ2]Hs
µ1...µs

(ξ/κ).

Generalized Hermite polynomials

Hs
µ1...µs

(ξ/κ) = κs ∂(s)

∂Jµ1 . . . ∂Jµs
h(ξ, J)|J=0,

in terms of the generating function

h(ξ, J) = exp[(−J2 + 2J · ξ)/κ2].

Center of mass momentum states as usual

〈x|p〉 = 1

(2π)2
exp(ip · x).
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Fields

Fock space representation

|Φ(x, α†)〉 =
∞∑

n=0

φµ1...µn(x)|µ1, . . . , µn〉.

Configuration space representation

〈ξ|Φ(x, α†)〉= Φ(x, ξ) =

1

(2π)2

∫
d4p

∞∑

n=0

φµ1...µn(p)eip·xfµ1...µn(ξ).

Assembling everything

Φ(x, ξ) =

∫
d4pΦ(p)(s) ·D(s)

J f(x, p; ξ, J)|J=0

Φ(p)(s) ·D(s)
J =

∞∑

s=0

csφ
µ1...µs(p)

∂(s)

∂Jµ1 . . . ∂Jµs

f(x, p; ξ, J) =

c0
(2π)2

eip·x exp[−ξ2/2κ2] exp[(−J2 + 2J · ξ)/κ2]
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Implementing the abstract product (I)

Collisions with end-point coordinate overlap
t1

b1

b2

bn

y
3

y1

t2

t3

p
1

p2

p3

y
2

Semantic map: Φk ↪→ Φ(tk, bk)

pr(Φ1, . . . ,Φn−1) ↪→
∫

dy2 . . . dn−1Φ(y1, y2) . . .Φ(yn−1, yn) for n ≥ 3

evaluates to a field Φ(y1, yn) (←↩ Φn)

in(Φ1,Φ2) ↪→
∫

Φ(t1, b1)Φ(t2, b2)δ(t1−b2)δ(b1−t2)dt1dtb1dt2db2

The n:th order interaction is

∼
∫

dy1 . . . dnΦ(y1, y2) . . .Φ(yn, y1)
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Cubic interaction as an example

t1

b1

b2

b3
y
1

t2

t3

p
1

p2

p3y
2

y
3

Putting it all together (following Casalbuoni et al.)

and calculating

∼ gκ−6
∫

d4x1d4x2d4x3Φ(x1, x2)Φ(x2, x3)Φ(x3, x1)

we get a generating function for the vertex

V (Ji, pi) ∼ gκ2 exp[
1

3κ2
(J2

1 + J2
2 + J2

3)

− 4

3κ2
(J1J2 + J2J3 + J3J1)

+
2i

3
(J1(p2 − p3) + J2(p3 − p1) + J3(p1 − p2))

−κ2

6
(p2

1 + p2
2 + p2

3)]
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Result

For spin 1 we calculate

∂3

∂Jµ1∂Jµ2∂Jµ3
V (Ji, pi)

Supplying anti-symmetrisation with fabc we get

Yang-Mills cubic vertex

gfabc[ηµ1µ2(p1 − p2)µ3+

ηµ2µ3(p2 − p3)µ1 + ηµ3µ1(p3 − p1)µ2]

plus order p3 terms.

Plus a factor exp[−κ2

6 (p2
1 + p2

2 + p3
3)].

For higher order vertices and higher spin, you

get qualitatively the right combinations of mo-

menta (plus higher order terms).
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Generic form - arbitrary vertex order

Q− stands for momentum factor

N−− stands for metric factor

indexed by field spacetime indices

# derivatives types of terms comment

0 -
1 Q−
2 N−−, Q−Q−
3 N−−Q−, Q−Q−Q− Y.M. cubic
4 N−−N−− Y.M. quartic
−′′− N−−Q−Q− -
−′′− Q−Q−Q−Q− -
... ... ...
6 N−−N−−N−− -
−′′− N−−N−−Q−Q− spin 2 cubic
−′′− N−−Q−Q−Q−Q− -
−′′− Q−Q−Q−Q−Q−Q− -
... ... ...
9 N−−N−−N−−Q−Q−Q− spin 3 cubic
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The ghost complex - BV fields (1)

Generating ghost states with sources ζ̃, η:

g(γ, β̃; ζ̃, η) = exp[
ε

2κ2
γβ̃] exp[κ2ζ̃η+ε1ζ̃γ+ε2ηβ̃]

g00 = g|
ζ̃,η=0

= 1 +
ε

2κ2
γβ̃ = D00g|0

g01 =
∂g

∂ζ̃
|
ζ̃,η=0

= ε1γ = D01g|0,

g10 =
∂g

∂η
|
ζ̃,η=0

=
ε2
κ2

β̃ = D10g|0,

g11 =
∂2g

∂η∂ζ̃
|
ζ̃,η=0

= 1− ε

2κ2
γβ̃ = D11g|0.

Othonormal:

κ2
∫

g2
00dγdβ̃ = −ε,

κ2
∫

g01g10γdβ̃ = −ε,

κ2
∫

g2
11dγdβ̃ = ε, (1)

integrals over all other bilinear combinations

are zero.
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The ghost complex - BV fields (2)

ghm(·) 2 1 0 -1

states g00c g00
g01c g01 g10c g10

g11c g11

fields C# Φ# Φ C

Ghost sector expansion:

Ψ(c, γ, β̃) =
∫

db(Ψc + bΨb)e−bc

=
∫

db(Ψc
αDα + bΨb

αDα)ge−bc|0

=

∫
dbΨα(b)Dα{e−bcg(γ, β̃; ζ̃, η)}|0.

Full expansion:

Ψα(x, ξ; c, γ, β̃) =
1

(2π)2

∫
d4pdbΨ

(s)
α (b, p) ·D(s)

J Dα

× {eip·xe−bcg(γ, β̃; ζ̃, η)f(ξ, J)}|0.
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Gauge invariance

t1

b1

b2

t2

Q1

y
2

t
3

b3

t1

b1

b2

t2

y
2

t
3

b3

Q2

t1

b1

b2

t2

y
2

t
3

b3

Q
3+ + = 0

This is the semantic map of the first non-trivial

product identity (cubic order)

pr(pr(Φ1,Φ2))+pr(Φ1,pr(Φ2))+pr(Φ2,pr(Φ1)) = 0

or

Kpr(Φ1,Φ2)+pr(Φ1, KΦ2)+pr(KΦ1,Φ2) = 0
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What remains to be done

• Fix up the ghost sector

so that cubic order gauge invariance can

be checked

• Hone the formalism/calculational tecniques

so that all orders gauge invariance can be

checked

• Understand if it all make sense?
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THE END

Thanks for your interest!
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EXTRA: Strongly homotopy Lie algebras

Z2 graded vector space V = V0 ⊕ V1, elements

by x. Grading %(x) = 0 if x ∈ V0 and %(x) =

1 if x ∈ V1. A sequence of n-linear products

denoted by brackets.

The graded n-linearity is expressed by

[x1, . . . , xn, xn+1, . . . , xm] =

(−)%(xn)%(xn+1)[x1, . . . , xn+1, xn, . . . , xm]

[x1, . . . , anxn + bnx′n . . . , xm] =

an(−)ι(an,n)[x1, . . . , xn, . . . , xm]+

bn(−)ι(bn,n)[x1, . . . , x′n, . . . , xm]

where ι(an, n) = %(an)(%(x1) + . . . + %(xn−1).
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Strongly homotopy Lie algebras (2)

The defining identities for the algebra are, for

all n ∈ N

∑k+l=n
k=0
l=0

∑
π(k,l) ε(π(k, l))

[[xπ(1), . . . , xπ(k)], xπ(k+1), . . . , xπ(k+l)] = 0.

where π(k, l) stands for (k,l)-unshuffles.∗

The low index, n = 0 and n = 1 brackets are

treated separately, thus

[ · ] = 0

[x] = ∂x,

with ∂ a derivation.
∗A (k,l)-unshuffle is a permutation π of the indices
1,2, · · · , k+l such that π(1) < . . . < π(k) and π(k+1) <
. . . < π(k + l). ε(π(k, l)) is the sign picked up during
the unshuffle as the points xi with indices 0 ≤ i ≤ k are
taken through the points xj with indices k + 1 ≤ j ≤ l.
This is just the normal procedure in superalgebras.
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Strongly homotopy Lie algebras (3)

A possible semantic target for abstract higher

spin gauge field theory.

The image of a field Φn is a point xn. The

products pr(·) map into the brackets [ · ]. The

sh-Lie algebra must be supplied with an inner

product.

Which particular algebra to map to?

Map the corresponding categories.

A category of interacting fields HSField.

A category for strongly homotopy Lie algebras

shLie.

The interpretation map [| · |] is then a functor

[| · |] :: HSField→ shLie.

30



Categories, operads

A category is a class of objects. For every pair
of objects X and Y, there is a set of arrows

(morphisms). Arrows can be composed, and
there are left and right identity arrows.

The objects can be sets with extra structure,

but need not be.

The ”paradigm” of category theory is to resist

the temptation to peek into the objects.

What is the category HSField?

• Objects: Field configurations

Morphisms: Field products

Possibly multi-categories, or operads

• Objects: Field theories

Morphisms: Structure preserving maps
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EXTRA: Berends, Burgers and vanDam

Single higher spin interacting field theory at-

tempt (late 80’s), but can be generalized to

an infinite tower of fields.

L = L0(φ, φ)+gL1(φ, φ, φ)+g2L2(φ, φ, φ, φ)+· · ·

φ→ φ′ = φ + ∂ξ + gT1(φ, ξ) + g2T2(φ, φ, ξ) + · · ·

Assuming that the resulting gauge algebra is

well-behaved (closed modulo field equations &

Jacobi identities) it has been showed (Stasheff,

Lada, Fulp) that an sh-Lie algebra results.

32



EXTRA: A way to look at Q|Φ〉

In Fronsdal’s equations

∂2φ(s) − ∂ (1∂ · φs−2) + ∂(2φ′ s−2) = 0

δφ(s) = ∂( 1ξs−1)

fields, derivatives and traces are all mixed up.

When we introduce mechanical ghosts (leading
to extra fields) this can be written as

Q|Φ〉= 0

←−−→
we’re pulling the structure apart. Gauge in-
variance is encoded in

Q2 = 0

Questions are

• In what ways can this pulling apart be done
in the free field theory?

• How can these be extended to interactions?
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EXTRA: on models

Case I. Reducible tower of higher spin gauge

fields First class constraints G0, G−, G+. Infi-

nite tower of higher spin gauge fields.

Case II. Irreducible tower of higher spin

gauge fields Plus second class trace constraints

T and T †. Reproduces the Fronsdal equations.

Case III. Irreducible single higher spin gauge

field N −λ as a constraint turns T and T † into

first class (all are first class). Single higher

spin gauge field.[Casalbuoni, Dominici and Longhi]

Case IV. Reducible single higher spin gauge

field First class constraints G0, G−, G+ and N−
λ, but not T, T †. Fixes the spin to λ.

Case V. Regge trajectory of massive higher

spin fields Combining G0 and N into one con-

straint G0 + N , all the rest of the constraints

become second class. Regge trajectory of mas-

sive higher spin fields.[GershunPashnev1988].
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EXTRA: Second quantisation

The fields can now be quantised by performing

a normal mode expansion in terms of creators

Λ+(p)µ1...µn and annihilators Λ−(p)µ1...µn

Φµ1...µn(x, ξ) =

∫
d3p

√
2p0

(Λ+(p)µ1...µn exp[−ip · x]+

Λ−(p)µ1...µn exp[ip · x])fµ1...µn(ξ)

(This formula is somewhat qualitative - all de-
tails with polarisations et cetera can be fixed
up.) [Casalbuoni, Dominici and Longhi, 1976]
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EXTRA: Implementing the product (II)

Fock space vertex operator

Semantic map

Φk ↪→ |Φk〉 for k ∈ N

pr(Φ1, . . . ,Φn) ↪→ 〈Φ1| . . . 〈Φn|Vn+1〉 for n ≥ 1.

evaluates to a field

|Φn+1〉

The vertex |Vn+1〉 is very complex - computable

but impractical.
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EXTRA on Fock space vertices (I)

Recursive equations for the vertices

Base:

3∑

r=1

Qr|V3〉 = 0

Step:

n+1∑

r=1

Qr|Vn+1〉= −
b(n−3)/2c∑

p=0

|Vp+3〉 � |Vn−p〉.
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EXTRA on vertices (II)

Vn = κ(nD
2 −D−n) exp (

∞∑

m
∆n

2m)

where

∆n
2m = nY

r1s1···rmsm
a1···am η

a1
r1s1 · · · ηam

rmsm

and

• all ri and si, i ∈ [1..m] are summed over the list
[1..n]

• all ai, i ∈ [1..m] are summed over the list [1..5]

• nY r1s1···rmsm
a1···am

are algebraic numbers to be determined

• 



η1
rs = α†r · α†s

η2
rs = κα†r · ps

η3
rs = c+

r b−s

η4
rs = κc+

r b0s

η5
rs = κ2pr · ps
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