A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

Klaus Bering

May 18, 2009

Table of Contents

Collaborator: Igor Batalin

(1) Anti-Poisson Geometry

- Poisson Vs. Anti-Poisson
- Laplacian
- The Odd Scalar ν_{ρ}
- The Δ Operator
(2) Riemannian Geometry
- The Even Scalar ν_{ρ}
- Particle in Curved Space
(3) Conclusions

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

(1) Anti-Poisson Geometry
(2) Riemannian Geometry
(3) Conclusions

Darboux Coordinates

Poisson

Darboux Coordinates

Poisson

Coordinates
 Momenta
 p_{i}

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
Momenta	p_{i}	\downarrow	Boson
Fermion			

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\downarrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Anti-Poisson

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\downarrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Anti-Poisson

Fields ϕ^{α}
 Antifields ϕ_{α}^{*}

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\downarrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Anti-Poisson

Fields	ϕ^{α}	Boson	Fermion
		\uparrow	\downarrow
Antifields	ϕ_{α}^{*}	Fermion	Boson

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\uparrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Anti-Poisson

Fields	ϕ^{α}	Boson	Fermion
		\downarrow	\downarrow
Antifields	ϕ_{α}^{*}	Fermion	Boson

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\uparrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Poisson Bracket $\{,\}_{\text {PB }}$

$$
\begin{aligned}
\left\{q^{i}, q^{j}\right\}_{P B} & =0 \\
\left\{q^{i}, p_{j}\right\}_{P B} & =\delta_{j}^{i} \\
\left\{p_{i}, p_{j}\right\}_{P B} & =0
\end{aligned}
$$

Anti-Poisson

Fields	ϕ^{α}	Boson	Fermion
		\uparrow	\downarrow
Antifields	ϕ_{α}^{*}	Fermion	Boson

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\uparrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Anti-Poisson

Fields	ϕ^{α}	Boson	Fermion
		\uparrow	\uparrow

Poisson Bracket $\{,\}_{P B}$

$$
\begin{aligned}
& \left\{q^{i}, q^{j}\right\}_{P B}=0 \\
& \left\{q^{i}, p_{j}\right\}_{P B}=\delta_{j}^{i} \\
& \left\{p_{i}, p_{j}\right\}_{P B}=0
\end{aligned}
$$

Antibracket (,) $A B$

Antifields ϕ_{α}^{*} Fermion Boson

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
Momenta	p_{i}	\downarrow	\uparrow
Boson	Fermion		

Anti-Poisson

Fields	ϕ^{α}	Boson	Fermion
		\uparrow	\uparrow
Antifields	ϕ^{*}	Fermion	Boson

Poisson Bracket $\{,\}_{P B}$

$$
\begin{aligned}
& \left\{q^{i}, q^{j}\right\}_{P B}=0 \\
& \left\{q^{i}, p_{j}\right\}_{P B}=\delta_{j}^{i} \\
& \left\{p_{i}, p_{j}\right\}_{P B}=0
\end{aligned}
$$

Antibracket (,) ${ }_{A B}$

$$
\begin{aligned}
\left(\phi^{\alpha}, \phi^{\beta}\right)_{A B} & =0 \\
\left(\phi^{\alpha}, \phi_{\beta}^{*}\right)_{A B} & =\delta_{\beta}^{\alpha} \\
\left(\phi_{\alpha}^{*}, \phi_{\beta}^{*}\right)_{A B} & =0
\end{aligned}
$$

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
Momenta	p_{i}	Boson	\uparrow
Fermion			

Poisson Bracket $\{,\}_{P B}$

$$
\begin{aligned}
& \left\{q^{i}, q^{j}\right\}_{P B}=0 \\
& \left\{q^{i}, p_{j}\right\}_{P B}=\delta_{j}^{i} \\
& \left\{p_{i}, p_{j}\right\}_{P B}=0
\end{aligned}
$$

"Comma is a Boson"

Antibracket (,) $A B$

$$
\begin{aligned}
\left(\phi^{\alpha}, \phi^{\beta}\right)_{A B} & =0 \\
\left(\phi^{\alpha}, \phi_{\beta}^{*}\right)_{A B} & =\delta_{\beta}^{\alpha} \\
\left(\phi_{\alpha}^{*}, \phi_{\beta}^{*}\right)_{A B} & =0
\end{aligned}
$$

Darboux Coordinates

Poisson

Coordinates	q^{i}	Boson	Fermion
		\uparrow	\uparrow
Momenta	p_{i}	Boson	Fermion

Poisson Bracket $\{,\}_{P B}$

$$
\begin{aligned}
& \left\{q^{i}, q^{j}\right\}_{P B}=0 \\
& \left\{q^{i}, p_{j}\right\}_{P B}=\delta_{j}^{i} \\
& \left\{p_{i}, p_{j}\right\}_{P B}=0
\end{aligned}
$$

"Comma is a Boson"

Antibracket (,) ${ }_{A B}$

$$
\begin{aligned}
\left(\phi^{\alpha}, \phi^{\beta}\right)_{A B} & =0 \\
\left(\phi^{\alpha}, \phi_{\beta}^{*}\right)_{A B} & =\delta_{\beta}^{\alpha} \\
\left(\phi_{\alpha}^{*}, \phi_{\beta}^{*}\right)_{A B} & =0
\end{aligned}
$$

"Comma is a Fermion"

General Coordinates

General Coordinates

Poisson Bracket

$$
\begin{aligned}
\left\{z^{A}, z^{B}\right\}_{P B} & =\omega^{A B} \\
\{F, G\}_{P B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) \omega^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

General Coordinates

Poisson Bracket

$$
\begin{aligned}
\left\{z^{A}, z^{B}\right\}_{P B} & =\omega^{A B} \\
\{F, G\}_{P B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) \omega^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

Antibracket

$$
\begin{aligned}
\left(z^{A}, z^{B}\right)_{A B} & =E^{A B} \\
(F, G)_{A B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) E^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

General Coordinates

Poisson Bracket

$$
\begin{aligned}
\left\{z^{A}, z^{B}\right\}_{P B} & =\omega^{A B} \\
\{F, G\}_{P B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) \omega^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

Grassmann-parity

$$
\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}
$$

Even

Antibracket

$$
\begin{aligned}
\left(z^{A}, z^{B}\right)_{A B} & =E^{A B} \\
(F, G)_{A B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) E^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

General Coordinates

Poisson Bracket

$$
\begin{aligned}
\left\{z^{A}, z^{B}\right\}_{P B} & =\omega^{A B} \\
\{F, G\}_{P B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) \omega^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

Grassmann-parity

$$
\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}
$$

Even

Antibracket

$$
\begin{aligned}
\left(z^{A}, z^{B}\right)_{A B} & =E^{A B} \\
(F, G)_{A B} & =\left(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right) E^{A B}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G\right)
\end{aligned}
$$

Grassmann-parity

$$
\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1
$$

Odd

General Coordinates

General Coordinates

Poisson Case

$\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}$

- Antisymmetric

General Coordinates

Poisson Case

$$
\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}
$$

- Antisymmetric

Inverse 2-form
 $\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$

$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$

- Skewsymmetric

General Coordinates

Poisson Case

$$
\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}
$$

- Antisymmetric

Anti-Poisson Case

$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$

$$
\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}
$$

- Skewsymmetric

Inverse 2-form $\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$

- Antiskewsymmetric

General Coordinates

Poisson Case

$$
\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}
$$

- Antisymmetric

$$
\text { Inverse 2-form } \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}
$$

$$
\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}
$$

- Skewsymmetric

Anti-Poisson Case

$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$

- Antiskewsymmetric
- Morally Symmetric like the Riemannian Case

General Coordinates

Poisson Case

$$
\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}
$$

- Antisymmetric

$$
\text { Inverse 2-form } \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}
$$

$$
\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}
$$

- Skewsymmetric

Anti-Poisson Case

$$
E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}
$$

- Antiskewsymmetric
- Morally Symmetric like the Riemannian Case

Inverse 2-form

$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$

$$
E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} E_{A B}
$$

- Antisymmetric

General Coordinates

Poisson Case

$$
\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B}
$$

- Antisymmetric

$$
\text { Inverse 2-form } \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}
$$

$$
\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}
$$

- Skewsymmetric

Inverse 2-form $E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$

$$
E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} E_{A B}
$$

- Antisymmetric
- Morally

Skewsymmetric like the Symplectic Case

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$
\sum_{\text {cycl. } f, g, h}(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
$$

Jacobi Identity and Closeness Relation

$$
\begin{aligned}
& \text { Jacobi Identity for Poisson Bracket } \\
& \qquad \sum_{\text {cycl. } f, g, h}(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
\end{aligned}
$$

Jacobi Identity for Antibracket

$$
\sum(-1)^{\left(\varepsilon_{f}+1\right)\left(\varepsilon_{h}+1\right)}(f,(g, h))=0
$$ cycl. f, g, h

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$
\sum(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
$$ cycl. f, g, h

Jacobi Identity for Antibracket

$$
\sum(-1)^{\left(\varepsilon_{f}+1\right)\left(\varepsilon_{h}+1\right)}(f,(g, h))=0
$$

$$
\operatorname{cycl.} f, g, h
$$

Symplectic Case
 Closed 2-form:

$$
d \omega=0
$$

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$
\sum(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
$$

$$
\operatorname{cycl.} f, g, h
$$

Symplectic Case

Closed 2-form:

$$
d \omega=0
$$

Anti-Symplectic Case

Closed 2-form:

$$
d E=0
$$

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$
\sum(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
$$

$$
\operatorname{cycl.f}, g, h
$$

Const. rank \Rightarrow Darboux Thm.

Jacobi Identity for Antibracket

Symplectic Case

Closed 2-form:

$$
d \omega=0
$$

Anti-Symplectic Case Closed 2-form:

$$
d E=0
$$

cycl. f, g, h

Const. rank \Rightarrow Darboux Thm.

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$
\sum_{\text {cycl. } f, g, h}(-1)^{\varepsilon_{f} \varepsilon_{h}}\{f,\{g, h\}\}=0
$$

Const. rank \Rightarrow Darboux Thm.
Jacobi Identity for Antibracket

Symplectic Case

Closed 2-form:

$$
d \omega=0
$$

Anti-Symplectic Case Closed 2-form:

$$
d E=0
$$

$$
(-1)^{\left(\varepsilon_{f}+1\right)\left(\varepsilon_{h}+1\right)}(f,(g, h))=0
$$

Const. rank \Rightarrow Darboux Thm.

Riemannian Case

No Jacobi Identity, no Closeness Relation, and no Darboux Thm.

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density

$$
\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}
$$

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density $\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}$

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- No canonical density!

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density $\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}$
- Δ_{ρ}^{2} is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- No canonical density!

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density $\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}$
- Δ_{ρ}^{2} is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- No canonical density!
- Δ_{ρ}^{2} is a 1st-order operator.

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density $\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}$
- Δ_{ρ}^{2} is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- No canonical density!
- Δ_{ρ}^{2} is a 1 st-order operator.
- When is $\Delta_{\rho}^{2}=0$ nilpotent?

Laplacian

Even Laplacian in Riemannian Case

$$
\Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- Canonical density $\rho_{g}:=\sqrt{g}:=\sqrt{\operatorname{sdet}\left(g_{A B}\right)}$
- Δ_{ρ}^{2} is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$
2 \Delta_{\rho}=\frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{A B} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}
$$

- No canonical density!
- Δ_{ρ}^{2} is a 1 st-order operator.
- When is $\Delta_{\rho}^{2}=0$ nilpotent?

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=d z^{A} g_{A B} \vee d z^{B}$	$g=d z^{A} g_{A B} \vee d z^{B}$
Riemannian	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B}$	$g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Riemannian	$g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B}$	$g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$	$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$
Symplectic	$\varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$	$E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} E_{A B}}$
Two-Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Symplectic	$\omega^{B A}=-(-1)^{\varepsilon} \varepsilon_{A} \varepsilon_{B} \omega_{A B}$	$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=d z^{A} g_{A B} \vee d z^{B}$	$g=d z^{A} g_{A B} \vee d z^{B}$
Riemannian	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B}$	$g_{B A}=(-1)^{\varepsilon} \varepsilon_{B} \varepsilon_{B} g_{A B}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Riemannian	$g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B}$	$g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
Symplectic	$\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$	$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$
Covariant	$\varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Two-Form	$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$	$E_{B A}=-(-1)_{A} \varepsilon_{B} E_{A B}$
	Skewsymmetric	Antisymmetric
Closeness Relation	Closeness Relation	
Inverse	$\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Symplectic	$\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} \omega^{A B}}$	$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$\begin{gathered} \hline \hline g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B} \\ \text { Antiskewsymmetric } \\ \text { No Closeness Relation } \end{gathered}$	$\begin{gathered} g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g_{B A}=(-1)^{\varepsilon} \varepsilon_{B} g_{A B} \\ \text { Symmetric } \end{gathered}$ No Closeness Relation
Inverse Riemannian Contravariant Metric	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B} \end{gathered}$ Symmetric Even Laplacian	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B} \\ \text { Skewsymmetric } \\ \text { No Laplacian } \end{gathered}$
Symplectic Covariant Two-Form	$\begin{gathered} \hline \hline \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B} \\ \varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega_{B A}=(-1){ }^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B} \\ \text { Skewsymmetric } \\ \text { Closeness Relation } \end{gathered}$	$\begin{gathered} \hline E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B} \\ \varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E_{B A}=-(-1)^{\varepsilon} \varepsilon_{B} E_{A B} \\ \text { Antisymmetric } \end{gathered}$ Closeness Relation
Inverse Symplectic Contravariant Tensor	$\begin{gathered} \varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}}{ }^{A B} \end{gathered}$ Antisymmetric No Laplacian	$\begin{gathered} \varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B} \\ \text { Symmetric } \\ \text { Odd Laplacian } \end{gathered}$

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$\begin{gathered} \hline \hline g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g_{B A}=-(-1)\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right) \\ \text { Antiskewsymmetric } g_{A B} \\ \text { No Closeness Relation } \end{gathered}$	$\begin{gathered} \hline \hline g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B} \\ \text { Symmetric } \\ \text { No Closeness Relation } \end{gathered}$
Inverse Riemannian Contravariant Metric	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B} \\ \text { Symmetric } \\ \text { Even Laplacian } \end{gathered}$	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B} \\ \text { Skewsymmetric } \\ \text { No Laplacian } \end{gathered}$
Symplectic Covariant Two-Form	$\begin{gathered} \hline \hline \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B} \\ \varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega_{B A}=(-1)\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right) \omega_{A B} \\ \text { Skewsymmetric } \\ \text { Closeness Relation } \end{gathered}$	$\begin{gathered} \hline E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B} \\ \varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} E_{A B} \\ \text { Antisymmetric } \\ \text { Closeness Relation } \end{gathered}$
Inverse Symplectic Contravariant Tensor	$\begin{gathered} \varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega^{B A}=-(-1)^{\varepsilon} \varepsilon^{\varepsilon_{B}} \omega^{A B} \\ \text { Antisymmetric } \\ \text { No Laplacian } \end{gathered}$	$\begin{gathered} \varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B} \\ \text { Symmetric } \\ \text { Odd Laplacian } \end{gathered}$

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$\begin{gathered} \hline g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B} \\ \text { Antiskewsymmetric } \\ \text { No Closeness Relation } \end{gathered}$	$\begin{gathered} g=d z^{A} g_{A B} \vee d z^{B} \\ \varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B} \\ \text { Symmetric } \end{gathered}$ No Closeness Relation
Inverse Riemannian Contravariant Metric	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B} \\ \text { Symmetric } \\ \text { Even Laplacian } \end{gathered}$	$\begin{gathered} \varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B} \\ \text { Skewsymmetric } \\ \text { No Laplacian } \end{gathered}$
Symplectic Covariant Two-Form	$\begin{gathered} \omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B} \\ \varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B} \\ \text { Skewsymmetric } \\ \text { Closeness Relation } \end{gathered}$	$\begin{gathered} \hline E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B} \\ \varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} E_{A B} \\ \text { Antisymmetric } \\ \text { Closeness Relation } \end{gathered}$
Inverse Symplectic Contravariant Tensor	$\begin{gathered} \varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B} \\ \omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B}} \omega^{A B} \\ \text { Antisymmetric } \\ \text { No Laplacian } \end{gathered}$	$\begin{gathered} \varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1 \\ E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B} \\ \text { Symmetric } \\ \text { Odd Laplacian } \end{gathered}$

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=d z^{A} g_{A B} \vee d z^{B}$	$g=d z^{A} g_{A B} \vee d z^{B}$
Riemannian	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B}$	$g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Riemannian	$g^{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g^{A B}$	$g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$	$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$
Symplectic	$\varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$	$E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} E_{A B}}$
Two-Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Symplectic	$\omega^{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} \omega^{A B}}$	$E^{B A}=-(-1) \varepsilon_{A}=-\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right) E^{A B}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=d z^{A} g_{A B} \vee d z^{B}$	$g=d z^{A} g_{A B} \vee d z^{B}$
Riemannian	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B}$	$g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Riemannian	$g^{B A}=(-1)^{\varepsilon} \varepsilon_{B} \varepsilon_{B} g^{A B}$	$g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$	$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$
Symplectic	$\varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$	$E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} E_{A B}}$
Two-Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Symplectic	$\omega^{B A}=-(-1)^{\varepsilon} \varepsilon_{A} \varepsilon_{B} \omega_{A B}$	$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

The $2 \times 2=4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=d z^{A} g_{A B} \vee d z^{B}$	$g=d z^{A} g_{A B} \vee d z^{B}$
Riemannian	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$g_{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g_{A B}$	$g_{B A}=(-1)^{\varepsilon_{A} \varepsilon_{B}} g_{A B}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(g^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Riemannian	$g^{B A}=(-1)^{\varepsilon} \varepsilon_{B} \varepsilon_{B} g^{A B}$	$g^{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} g^{A B}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega=\frac{1}{2} d z^{A} \omega_{A B} \wedge d z^{B}$	$E=\frac{1}{2} d z^{A} E_{A B} \wedge d z^{B}$
Symplectic	$\varepsilon\left(\omega_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E_{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Covariant	$\omega_{B A}=(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} \omega_{A B}$	$E_{B A}=-(-1)^{\varepsilon_{A} \varepsilon_{B} E_{A B}}$
Two-Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon\left(\omega^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}$	$\varepsilon\left(E^{A B}\right)=\varepsilon_{A}+\varepsilon_{B}+1$
Symplectic	$\omega^{B A}=-(-1)^{\varepsilon} \varepsilon_{A} \varepsilon_{B} \omega_{A B}$	$E^{B A}=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{B}+1\right)} E^{A B}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

The Odd Scalar ν_{ρ}

Odd Scalar in Antisymplectic Geometry (KB 2006)

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

The Odd Scalar ν_{ρ}

Odd Scalar in Antisymplectic Geometry

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

Terms built from E and ρ

$$
\nu_{\rho}^{(\mathbf{0})}:=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right)
$$

The Odd Scalar ν_{ρ}

Odd Scalar in Antisymplectic Geometry

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

Terms built from E and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}}
\end{aligned}
$$

The Odd Scalar ν_{ρ}

Odd Scalar in Antisymplectic Geometry

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

Terms built from E and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}} \\
\nu^{(2)} & :=-(-1)^{\varepsilon_{B}}\left(\frac{\partial^{\ell}}{\partial z^{A}} E_{B C}\right)\left(z^{C},\left(z^{B}, z^{A}\right)\right)
\end{aligned}
$$

The Odd Scalar ν_{ρ}

Odd Scalar in Antisymplectic Geometry

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

Terms built from E and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}} \\
\nu^{(2)} & :=-(-1)^{\varepsilon_{B}}\left(\frac{\partial^{\ell}}{\frac{\partial z^{A}}{\vec{A}}} E_{B C}\right)\left(z^{C},\left(z^{B}, z^{A}\right)\right) \\
& =(-1)^{\varepsilon_{A} \varepsilon_{D}}\left(\frac{\partial^{\ell}}{\partial z^{D}} E^{A B}\right) E_{B C}\left(E^{C D} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right)
\end{aligned}
$$

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{A B} \rightarrow \lambda E^{A B}$, where λ is a z-independent parameter,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{A B} \rightarrow \lambda E^{A B}$, where λ is a z-independent parameter,
- and each term in ν contains precisely two z-derivatives?

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{A B} \rightarrow \lambda E^{A B}$, where λ is a z-independent parameter,
- and each term in ν contains precisely two z-derivatives?

Unique Answer (up to scaling)

$$
\nu=\alpha \nu_{\rho}
$$

The \triangle Operator

Question
 What is (the local form of) the most general differential operator Δ

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of 2nd-order,

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of 2 nd-order,
- and the $2 n d-o r d e r$ part is non-degenerate?

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of 2 nd-order,
- and the 2nd-order part is non-degenerate?

Unique Answer (modulo an odd constant) (Batalin,KB 2007)

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

The \triangle Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of 2 nd-order,
- and the 2nd-order part is non-degenerate?

Unique Answer (modulo an odd constant)

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

The Δ Operator $=$ Odd Laplacian + Odd Scalar.

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Additive form

$\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Additive form

$$
\begin{aligned}
& \qquad \frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho} \\
& \text { Odd scalar } \nu_{\rho} \text { enters at } \\
& \text { 2-loop. }
\end{aligned}
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master

 Action$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Action

$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$
(S, S)=0
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Action

$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$
(S, S)=0 \leftarrow \text { Classical Master Equation }
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Action

$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$
\begin{aligned}
(S, S) & =0 \quad \leftarrow \quad \text { Classical Master Equation } \\
\left(M_{1}, S\right) & =i\left(\Delta_{\rho} S\right)
\end{aligned}
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Action

$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$
\begin{aligned}
(S, S) & =0 \\
\left(M_{1}, S\right) & =i\left(\Delta_{\rho} S\right) \\
\left(M_{2}, S\right) & =i\left(\Delta_{\rho} M_{1}\right)-\frac{1}{2}\left(M_{1}, M_{1}\right)+\nu_{\rho}
\end{aligned}
$$

Quantum Master Equation

Exponential form

$$
\Delta e^{\frac{i}{\hbar} W}=0
$$

Quantum Master Action

$$
W=S+\sum_{n=1}^{\infty} \hbar^{n} M_{n}
$$

Additive form

$$
\frac{1}{2}(W, W)=i \hbar \Delta_{\rho} W+\hbar^{2} \nu_{\rho}
$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$
\begin{aligned}
(S, S) & =0 \\
\left(M_{1}, S\right) & =i\left(\Delta_{\rho} S\right) \\
\left(M_{2}, S\right) & =i\left(\Delta_{\rho} M_{1}\right)-\frac{1}{2}\left(M_{1}, M_{1}\right)+\nu_{\rho} \\
\forall n \geq 3: \quad\left(M_{n}, S\right) & =i\left(\Delta_{\rho} M_{n-1}\right)-\frac{1}{2} \sum_{r=1}^{n-1}\left(M_{r}, M_{n-r}\right)
\end{aligned}
$$

Khudaverdian's \triangle_{E} Operator

The \triangle Operator

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

$=$ Odd Laplacian + Odd Scalar
$=$ built from E and ρ.

Khudaverdian's Δ_{E} Operator

The \triangle Operator

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

$=$ Odd Laplacian + Odd Scalar
$=$ built from E and ρ.

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of
ρ !

Khudaverdian's \triangle_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

Curious Fact

$\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$
is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's \triangle_{E} Operator

- In Darboux Coordinates:

$$
\Delta_{E}:=\Delta_{1}=(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}}
$$

(Khudaverdian 1997)
Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

- In Darboux Coordinates:

$$
\Delta_{E}:=\Delta_{1}=(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}}
$$

(Khudaverdian 1997)

- In General Coordinates:

$$
\begin{array}{r}
\Delta_{E}:=\Delta_{1}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24} \\
(\mathrm{~KB} 2006)
\end{array}
$$

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

- In Darboux Coordinates:

$$
\begin{aligned}
\Delta_{E}:=\Delta_{1} & =(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}} \\
& \text { (Khudaverdian 1997) }
\end{aligned}
$$

- In General Coordinates:

$$
\begin{aligned}
\Delta_{E}:=\Delta_{1}+\frac{\nu^{(1)}}{8}- & \frac{\nu^{(2)}}{24} \\
& (\mathrm{~KB} 2006)
\end{aligned}
$$

Proporties of Δ_{E}

- Δ_{E} takes

 semidensities to semidensities.
Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

- In Darboux Coordinates:

$$
\Delta_{E}:=\Delta_{1}=(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}}
$$

(Khudaverdian 1997)

- In General Coordinates:

$$
\Delta_{E}:=\Delta_{1}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

(KB 2006)

Proporties of Δ_{E}

- Δ_{E} takes semidensities to semidensities.
- Δ_{E} is manifestly independent of
ρ.

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

- In Darboux Coordinates:

$$
\Delta_{E}:=\Delta_{1}=(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}}
$$

(Khudaverdian 1997)

- In General Coordinates:

$$
\Delta_{E}:=\Delta_{1}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

(KB 2006)

Proporties of Δ_{E}

- Δ_{E} takes semidensities to semidensities.
- Δ_{E} is manifestly independent of ρ.
- Δ_{E} is nilpotent!

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Khudaverdian's Δ_{E} Operator

Def: Khudaverdian's Δ_{E} Operator

- In Darboux Coordinates:

$$
\Delta_{E}:=\Delta_{1}=(-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi_{\alpha}^{*}}
$$

(Khudaverdian 1997)

- In General Coordinates:

$$
\Delta_{E}:=\Delta_{1}+\frac{\nu^{(1)}}{8}-\frac{\nu^{(2)}}{24}
$$

(KB 2006)

Proporties of Δ_{E}

- Δ_{E} takes semidensities to semidensities.
- Δ_{E} is manifestly independent of ρ.
- Δ_{E} is nilpotent!

Curious Fact

$\Delta_{E}=\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$ is independent of ρ !

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

(1) Anti-Poisson Geometry
(2) Riemannian Geometry
(3) Conclusions

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\nu_{\rho}^{(0)}:=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right)
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\begin{aligned}
& \nu_{\rho}^{(0)}:=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
& \nu^{(1)}:=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}}
\end{aligned}
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\partial^{\ell}}{\partial z^{A}} g^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}} \\
\nu^{(2)} & :=-(-1)^{\varepsilon} \subset\left(z^{C},\left(z^{B}, z^{A}\right)\right)\left(\frac{\partial^{\ell}}{\partial z^{A}} g_{B C}\right)
\end{aligned}
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}} \\
\nu^{(2)} & :=-(-1)^{\varepsilon} C\left(z^{C},\left(z^{B}, z^{A}\right)\right)\left(\frac{\partial^{\ell}}{\partial z^{A}} g_{B C}\right) \\
& =-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{D}+1\right)}\left(\frac{\partial^{\ell}}{\partial z^{D}} g^{A B}\right) g_{B C}\left(g^{C D} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right)
\end{aligned}
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\begin{aligned}
\nu_{\rho}^{(0)} & :=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
\nu^{(1)} & :=(-1)^{\varepsilon_{A}}\left(\frac{\partial^{\ell}}{\partial z^{A}} g^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}} \\
\nu^{(2)} & :=-(-1)^{\varepsilon_{C}}\left(z^{C},\left(z^{B}, z^{A}\right)\right)\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g_{B C}\right) \\
& =-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{D}+1\right)}\left(\frac{\partial^{\ell}}{\partial z^{D}} g^{A B}\right) g_{B C}\left(g^{C D} \stackrel{\partial^{r}}{\partial z^{A}}\right) \\
\nu^{(3)} & :=(-1)^{\varepsilon_{A}}\left(g_{A B}, g^{B A}\right)
\end{aligned}
$$

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$
\nu_{\rho}:=\nu_{\rho}^{(0)}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Terms built from g and ρ

$$
\begin{aligned}
& \nu_{\rho}^{(0)}:=\frac{1}{\sqrt{\rho}}\left(\Delta_{1} \sqrt{\rho}\right) \\
& \nu^{(1)}:=(-1)^{\varepsilon_{A}}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{A B} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}\right)(-1)^{\varepsilon_{B}}
\end{aligned}
$$

$$
\nu^{(2)}:=-(-1)^{\varepsilon} c\left(z^{C},\left(z^{B}, z^{A}\right)\right)\left(\overrightarrow{\partial^{\ell}} g_{\partial z^{A}} g_{B C}\right)
$$

$$
=-(-1)^{\left(\varepsilon_{A}+1\right)\left(\varepsilon_{D}+1\right)}\left(\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{D}} g^{A B}\right) g_{B C}\left(g^{C D} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}\right)
$$

$$
\nu^{(3)}:=(-1)^{\varepsilon_{A}}\left(g_{A B}, g^{B A}\right) \leftarrow \text { bracket wrt. metric } \mathrm{g} \text {. }
$$

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita

Connection ∇, i.e., ∇ is:

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

- antisymplectic,

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

- antisymplectic,
- torsionfree,

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

- antisymplectic,
- torsionfree,
- and compatible with
ρ.

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Riemannian Case /w General ρ

$$
\nu_{\rho}=\sqrt{\frac{\rho_{g}}{\rho}}\left(\Delta_{\rho_{g}} \sqrt{\frac{\rho}{\rho_{g}}}\right)-\frac{R}{4}
$$

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

- antisymplectic,
- torsionfree,
- and compatible with ρ.

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$
\nu_{\rho_{g}}=-\frac{R}{4}
$$

Even Scalar Curvature

$$
R:=(-1)^{\varepsilon_{A}} R_{A B} g^{B A}
$$

for the Levi-Civita Connection ∇, i.e., ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$
2 \nu_{\rho}=-\frac{R}{4}
$$

Odd Scalar Curvature

$$
R:=R_{A B} E^{B A}
$$

for any Connection ∇, that is:

- antisymplectic,
- torsionfree,
- and compatible with ρ.

Riemannian Case /w General ρ

$$
\nu_{\rho}=\sqrt{\frac{\rho_{g}}{\rho}}\left(\Delta_{\rho_{g}} \sqrt{\frac{\rho}{\rho_{g}}}\right)-\frac{R}{4}
$$

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $g^{A B} \rightarrow \lambda g^{A B}$, where λ is a z-independent parameter,

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $g^{A B} \rightarrow \lambda g^{A B}$, where λ is a z-independent parameter,
- and each term in ν contains precisely two z-derivatives?

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu=\nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{A B}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $g^{A B} \rightarrow \lambda g^{A B}$, where λ is a z-independent parameter,
- and each term in ν contains precisely two z-derivatives?

Complete Solution

$$
\nu=\alpha \nu_{\rho}+\beta \nu_{\rho_{g}}+\gamma\left(\ln \frac{\rho}{\rho_{g}}, \ln \frac{\rho}{\rho_{g}}\right)
$$

The Even \triangle Operator

Even Δ		Even		Even
Operator		Laplacian		Scalar
Δ	$:=$	Δ_{ρ}	+	ν_{ρ}

The Even \triangle Operator

Even Δ		Even		Even	
Operator		Laplacian		Scalar	
Δ	:=	Δ_{ρ}	$+$	ν_{ρ}	
		\downarrow		\downarrow	for $\quad \rho \rightarrow \rho_{g}$
		$\Delta_{\rho_{g}}$	-	$\frac{R}{4}$	
		Laplace-		a quarter	
		Beltrami		of the Scalar	
		Operator		Curvature	

The Even \triangle Operator

For comparison: Conformally Covariant Laplacian

$$
\Delta_{\rho_{g}}-\frac{(N-2) R}{(N-1) 4}
$$

The Even \triangle Operator

For comparison: Conformally Covariant Laplacian

$$
\Delta_{\rho_{g}}-\frac{(N-2) R}{(N-1) 4} \quad \rightarrow \quad \Delta_{\rho_{g}}-\frac{R}{4} \quad \text { for } \quad N \rightarrow \infty
$$

Riemannian version Δ_{g} of Khudaverdian's Δ_{E} Operator

The \triangle Operator

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

$=$ Even Laplacian + Even Scalar
$=$ built from g and ρ.

Riemannian version Δ_{g} of Khudaverdian's Δ_{E} Operator

The Δ Operator

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

$=$ Even Laplacian + Even Scalar
$=$ built from g and ρ.

Curious Fact

$\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$
is independent of ρ !

Riemannian version Δ_{g} of Khudaverdian's \triangle_{E} Operator

Definition of Δ_{g}

$$
\Delta_{g}:=\Delta_{1}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Riemannian version Δ_{g} of Khudaverdian's \triangle_{E} Operator

Definition of Δ_{g}

$$
\Delta_{g}:=\Delta_{1}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Proporties of Δ_{g}

- Δ_{g} takes semidensities to semidensities.

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Riemannian version Δ_{g} of Khudaverdian's Δ_{E} Operator

Definition of Δ_{g}

$$
\Delta_{g}:=\Delta_{1}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Proporties of Δ_{g}

- Δ_{g} takes semidensities to semidensities.
- Δ_{g} is manifestly independent of
ρ.

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Riemannian version Δ_{g} of Khudaverdian's Δ_{E} Operator

Definition of Δ_{g}

$$
\Delta_{g}:=\Delta_{1}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Proporties of Δ_{g}

- Δ_{g} takes semidensities to semidensities.
- Δ_{g} is manifestly independent of ρ.
- NB! Δ_{g} is not nilpotent.

Curious Fact

$$
\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}
$$

is independent of ρ !

Riemannian version Δ_{g} of Khudaverdian's Δ_{E} Operator

Definition of Δ_{g}

$$
\Delta_{g}:=\Delta_{1}+\frac{\nu^{(1)}}{4}-\frac{\nu^{(2)}}{8}-\frac{\nu^{(3)}}{16}
$$

Proporties of Δ_{g}

- Δ_{g} takes semidensities to semidensities.
- Δ_{g} is manifestly independent of ρ.
- NB! Δ_{g} is not nilpotent.

Curious Fact

$\Delta_{g}=\sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$ is independent of ρ !

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int_{1} d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
H_{\mathrm{cl}} & =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
H_{\mathrm{cl}} & =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Naive Quantum Hamiltonian

$$
\hat{H}_{\rho}=\frac{1}{2 \sqrt{\rho(\hat{z})}} \hat{p}_{A} \rho(\hat{z}) g^{A B}(\hat{z}) \hat{p}_{B} \frac{(-1)^{\varepsilon_{B}}}{\sqrt{\rho(\hat{z})}}
$$

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
H_{\mathrm{cl}} & =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Naive Quantum Hamiltonian

$$
\hat{H}_{\rho}=\frac{1}{2 \sqrt{\rho(\hat{z})}} \hat{p}_{A} \rho(\hat{z}) g^{A B}(\hat{z}) \hat{p}_{B} \frac{(-1)^{\varepsilon_{B}}}{\sqrt{\rho(\hat{z})}}
$$

Full Quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z}) \sim T\left(H_{\mathrm{cl}}\right)
$$

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int_{H_{\mathrm{cl}}} d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
& =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Schrödinger Representation

$\frac{\hbar}{i} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}}=\sqrt{\rho(\hat{z})} \hat{p}_{A} \frac{(-1)^{\varepsilon_{A}}}{\sqrt{\rho(\hat{z})}}$

Naive Quantum Hamiltonian

$$
\hat{H}_{\rho}=\frac{1}{2 \sqrt{\rho(\hat{z})}} \hat{p}_{A} \rho(\hat{z}) g^{A B}(\hat{z}) \hat{p}_{B} \frac{(-1)^{\varepsilon_{B}}}{\sqrt{\rho(\hat{z})}}
$$

Full Quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z}) \sim T\left(H_{\mathrm{cl}}\right)
$$

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int_{\mathrm{cl}} d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
H_{\mathrm{cl}} & =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Naive Quantum Hamiltonian

$$
\hat{H}_{\rho}=\frac{1}{2 \sqrt{\rho(\hat{z})}} \hat{p}_{A} \rho(\hat{z}) g^{A B}(\hat{z}) \hat{p}_{B} \frac{(-1)^{\varepsilon_{B}}}{\sqrt{\rho(\hat{z})}}
$$

Laplacian

Full Quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z}) \sim T\left(H_{\mathrm{cl}}\right)
$$

Particle in Curved Space

Classical Hamiltonian Action

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int_{\mathrm{cl}} d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right) \\
H_{\mathrm{cl}} & =\frac{1}{2} p_{A} p_{B} g^{B A} \\
\left\{z^{A}, p_{B}\right\}_{P B} & =\delta_{B}^{A}
\end{aligned}
$$

Naive Quantum Hamiltonian

$$
\hat{H}_{\rho}=\frac{1}{2 \sqrt{\rho(\hat{z})}} \hat{p}_{A} \rho(\hat{z}) g^{A B}(\hat{z}) \hat{p}_{B} \frac{(-1)^{\varepsilon_{B}}}{\sqrt{\rho(\hat{z})}}
$$

Full Quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z}) \sim T\left(H_{\mathrm{cl}}\right)
$$

$$
\Delta=\Delta_{\rho}+\nu_{\rho}
$$

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)

The operator formalism

with the full Hamiltonian operator \hat{H}
\downarrow corresponds to \downarrow
a Hamiltonian path integral formulation where the path integral action is the pure classical action S_{cl} with no quantum corrections.

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)
The operator formalism
with the full Hamiltonian operator \hat{H}
\downarrow corresponds to \downarrow
a Hamiltonian path integral formulation where the path integral action is the pure classical action S_{cl} with no quantum corrections.

$$
\left\langle z_{f}\right| \exp \left[-\frac{i}{\hbar} \hat{H} \Delta t\right]\left|z_{i}\right\rangle \sim \int_{z\left(t_{i}\right)=z_{i}}^{z\left(t_{f}\right)=z_{f}}[d z][d p] \exp \left[\frac{i}{\hbar} S_{\mathrm{cl}}[z, p]\right]
$$

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)

The operator formalism with the full Hamiltonian operator \hat{H} corresponds to a Hamiltonian path integral formulation where the path integral action is the pure classical action S_{cl} with no quantum corrections.

$$
\left\langle z_{f}\right| \exp \left[-\frac{i}{\hbar} \hat{H} \Delta t\right]\left|z_{i}\right\rangle \sim \int_{z\left(t_{i}\right)=z_{i}}^{z\left(t_{f}\right)=z_{f}}[d z][d p] \exp \left[\frac{i}{\hbar} S_{\mathrm{cl}}[z, p]\right]
$$

Full Quantum
Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z})
$$

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)

The operator formalism with the full Hamiltonian operator \hat{H} corresponds to a Hamiltonian path integral formulation where the path integral action is the pure classical action S_{cl} with no quantum corrections.

$$
\left\langle z_{f}\right| \exp \left[-\frac{i}{\hbar} \hat{H} \Delta t\right]\left|z_{i}\right\rangle \sim \int_{z\left(t_{i}\right)=z_{i}}^{z\left(t_{f}\right)=z_{f}}[d z][d p] \exp \left[\frac{i}{\hbar} S_{\mathrm{cl}}[z, p]\right]
$$

Full Quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z})
$$

Classical Action

$$
S_{\mathrm{cl}}[z, p]=\int d t\left(p_{A} \dot{z}^{A}-H_{\mathrm{cl}}\right)
$$

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

(1) Anti-Poisson Geometry
(2) Riemannian Geometry
(3) Conclusions

Conclusions

Odd \triangle Operator in Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

Conclusions

Odd \triangle Operator in
Antisymplectic Geometry

$$
\begin{aligned}
& 2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4} \\
& \text { Characterized by } \\
& \text { nilpotency }
\end{aligned}
$$

Conclusions

Odd \triangle Operator in
Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Conclusions

Even \triangle Operator in Riemannian Geometry

$\Delta=\Delta_{\rho}+\nu_{\rho} \rightarrow \Delta_{\rho_{g}}-\frac{R}{4}$

Odd \triangle Operator in
Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Conclusions

Even \triangle Operator in
Riemannian Geometry

$$
\Delta=\Delta_{\rho}+\nu_{\rho} \rightarrow \Delta_{\rho_{g}}-\frac{R}{4}
$$

- Characterized by a ρ independence argument.

Odd Δ Operator in
Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Conclusions

Even Δ Operator in
Riemannian Geometry

$$
\Delta=\Delta_{\rho}+\nu_{\rho} \rightarrow \Delta_{\rho_{g}}-\frac{R}{4}
$$

- Characterized by a ρ independence argument.

Odd \triangle Operator in
Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Particle in Curved Space

Δ is the full quantum

 Hamiltonian$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z})
$$

in the Schrödinger representation.

Conclusions

Even \triangle Operator in
Riemannian Geometry

$$
\Delta=\Delta_{\rho}+\nu_{\rho} \rightarrow \Delta_{\rho_{g}}-\frac{R}{4}
$$

- Characterized by a ρ independence argument.

Particle in Curved Space

Δ is the full quantum Hamiltonian

$$
\hat{H}=\hat{H}_{\rho}-\frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z})
$$

in the Schrödinger representation.

Odd \triangle Operator in
Antisymplectic Geometry

$$
2 \Delta=2 \Delta_{\rho}+2 \nu_{\rho}=2 \Delta_{\rho}-\frac{R}{4}
$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Curvature term in
Quantum Master Equation

$$
(W, W)=2 i \hbar \Delta_{\rho} W-\hbar^{2} \frac{R}{4}
$$

Important 2-loop effect.

References

(1) K. Bering, A Note on Semidensities in Antisymplectic Geometry, J. Math. Phys. 47 (2006) 123513, arXiv:hep-th/0604117.
(2) I.A. Batalin and K. Bering, Odd Scalar Curvature in Field-Antifield Formalism, J. Math. Phys. 49 (2008) 033515, arXiv:0708.0400.
(3) I.A. Batalin and K. Bering, Odd Scalar Curvature in Anti-Poisson Geometry Phys. Lett. B663 (2008) 132, arXiv:0712.3699.
(9) I.A. Batalin and K. Bering, A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry, arXiv:0809.4269

