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The Odd Scalar νρ
Odd Scalar in Antisymplectic Geometry (KB 2006)

νρ := ν(0)
ρ +

ν(1)

8
− ν(2)

24

Terms built from E and ρ

ν(0)
ρ :=

1
√
ρ

(∆1
√
ρ)

ν(1) := (−1)εA(

→
∂`

∂zA
EAB

←
∂r

∂zB
)(−1)εB

ν(2) := −(−1)εB (

→
∂`

∂zA
EBC )(zC , (zB , zA))

= (−1)εAεD (

→
∂`

∂zD
EAB)EBC (ECD

←
∂r

∂zA
)
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Classification of 2nd-order Differential Invariants

Question

What is the most general function ν = ν(z)
such that

ν(z) is a scalar,

ν(z) is a polynomial of the metric EAB(z), the density ρ(z),
their inverses, and z–derivatives thereof in the point z ,

ν is invariant under constant rescaling of the density ρ→ λρ,
where λ is a z–independent parameter,

ν scales as ν → λν under constant Weyl scaling
EAB → λEAB , where λ is a z–independent parameter,

and each term in ν contains precisely two z–derivatives?

Unique Answer (up to scaling) (Batalin,KB 2008)

ν = α νρ
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The ∆ Operator

Question

What is (the local form of) the most general
differential operator ∆

that takes scalar functions to scalar functions,

that is Grassmann-odd,

that is nilpotent,

that is of 2nd-order,

and the 2nd-order part is non-degenerate?

Unique Answer (modulo an odd constant) (Batalin,KB 2007)

∆ = ∆ρ + νρ

The ∆ Operator = Odd Laplacian + Odd Scalar.
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Quantum Master Equation

Exponential form

∆e
i
~ W = 0

Quantum Master Action

W = S +
∞∑

n=1

~nMn

Additive form

1

2
(W ,W ) = i~∆ρW + ~2νρ

Odd scalar νρ enters at 2-loop.

Infinite Tower of Master Equations

(S ,S) = 0

← Classical Master Equation
(M1,S) = i(∆ρS)

(M2,S) = i(∆ρM1)− 1

2
(M1,M1) + νρ

∀n ≥ 3 : (Mn,S) = i(∆ρMn−1)− 1

2

n−1∑
r=1

(Mr ,Mn−r )
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Khudaverdian’s ∆E Operator

The ∆ Operator

Def:
Khudaverdian’s ∆E

Operator

∆ = ∆ρ + νρ

= Odd Laplacian + Odd Scalar
= built from E and ρ.

In Darboux Coordinates:

∆E := ∆1 = (−1)εα

→
∂`

∂φα

→
∂`

∂φ∗α

(Khudaverdian 1997)

In General Coordinates:

∆E := ∆1 +
ν(1)

8
− ν(2)

24

(KB 2006)

Proporties of ∆E

∆E takes semidensities
to semidensities.

∆E is manifestly
independent of ρ.

∆E is nilpotent!

Curious Fact

∆E =

√
ρ∆ 1√

ρ

is independent of ρ!
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The Even Scalar νρ
Even Scalar in Riemannian Geometry with
density ρ

νρ := ν(0)
ρ +

ν(1)

4
− ν(2)

8
− ν(3)

16

Terms built from g and ρ

ν(0)
ρ :=

1
√
ρ

(∆1
√
ρ)

ν(1) := (−1)εA(

→
∂`

∂zA
gAB

←
∂r

∂zB
)(−1)εB

ν(2) := −(−1)εC (zC , (zB , zA))(

→
∂`

∂zA
gBC )

= −(−1)(εA+1)(εD+1)(

→
∂`

∂zD
gAB)gBC (gCD

←
∂r

∂zA
)

ν(3) := (−1)εA(gAB , g
BA) ← bracket wrt. metric g.
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Interpretation of νρ in terms of Scalar Curvature R

Riemannian Case

νρg
= −R

4

Antisymplectic Case

2νρ = −R

4

Even Scalar Curvature

R := (−1)εARABgBA

for the Levi-Civita Connection ∇,
i.e., ∇ is:

metric,

and torsionfree.

Riemannian Case /w General ρ

νρ =

√
ρg

ρ
(∆ρg

√
ρ
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Classification of 2nd-order Differential Invariants

Question

What is the most general function ν = ν(z)
such that

ν(z) is a scalar,

ν(z) is a polynomial of the metric gAB(z), the density ρ(z),
their inverses, and z–derivatives thereof in the point z ,

ν is invariant under constant rescaling of the density ρ→ λρ,
where λ is a z–independent parameter,

ν scales as ν → λν under constant Weyl scaling
gAB → λgAB , where λ is a z–independent parameter,

and each term in ν contains precisely two z–derivatives?

Complete Solution

ν = α νρ + β νρg
+ γ (ln

ρ

ρg

, ln
ρ

ρg

)
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The Even ∆ Operator

Even ∆ Even Even
Operator Laplacian Scalar

∆ := ∆ρ + νρ

↓ ↓ for ρ→ ρg

∆ρg
− R

4

Laplace- a quarter
Beltrami of the Scalar
Operator Curvature

For comparison: Conformally Covariant Laplacian

∆ρg
− (N − 2)R

(N − 1)4

→ ∆ρg
− R

4
for N →∞.
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Riemannian version ∆g of Khudaverdian’s ∆E Operator

The ∆ Operator

Definition
of ∆g

∆ = ∆ρ + νρ

= Even Laplacian + Even Scalar
= built from g and ρ.

∆g := ∆1 +
ν(1)

4
− ν(2)

8
− ν(3)

16

Proporties of ∆g

∆g takes semidensities
to semidensities.

∆g is manifestly
independent of ρ.

NB! ∆g is not
nilpotent.

Curious Fact

∆g =

√
ρ∆ 1√

ρ

is independent of ρ!
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Particle in Curved Space

Classical Hamiltonian Action

Scl =

∫
dt
(
pAżA − Hcl

)
Hcl =

1

2
pApBgBA

{zA, pB}PB = δA
B

Schrödinger Representation

~
i

→
∂`

∂zA
=
√
ρ(ẑ) p̂A

(−1)εA√
ρ(ẑ)

Naive Quantum Hamiltonian

Ĥρ =
1

2
√
ρ(ẑ)

p̂A ρ(ẑ) gAB(ẑ) p̂B

(−1)εB√
ρ(ẑ)

Laplacian

∆ρ

Full Quantum Hamiltonian

Ĥ = Ĥρ −
~2

2
νρ(ẑ) ∼ T (Hcl)

The Even ∆ Operator

∆ = ∆ρ + νρ
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Ĥρ =
1

2
√
ρ(ẑ)
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νρ(ẑ) ∼ T (Hcl)

The Even ∆ Operator

∆ = ∆ρ + νρ

21/25



Anti-Poisson Geometry
Riemannian Geometry

Conclusions

The Even Scalar νρ
Particle in Curved Space

Operator Formalism ↔ Path Integral Formalism

(starting with DeWitt 1957)

The operator formalism
with the full Hamiltonian operator Ĥ

l corresponds to l
a Hamiltonian path integral formulation

where the path integral action is the pure
classical action Scl with no quantum
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Conclusions

Even ∆ Operator in
Riemannian Geometry

∆ = ∆ρ+νρ → ∆ρg
−R

4

Characterized by a ρ
independence argument.

Odd ∆ Operator in
Antisymplectic Geometry

2∆ = 2∆ρ+2νρ = 2∆ρ−
R

4

Characterized by
nilpotency

and characterized by a ρ
independence argument.

Particle in Curved Space

∆ is the full quantum Hamiltonian

Ĥ = Ĥρ−
~2

2
νρ(ẑ)

in the Schrödinger representation.

Curvature term in
Quantum Master Equation

(W ,W ) = 2i~∆ρW−~2 R

4

Important 2-loop effect.
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Ĥ = Ĥρ−
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