A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

Klaus Bering

May 18, 2009

・ロト ・聞ト ・ヨト ・ヨト

1/25

Table of Contents

Collaborator: Igor Batalin

<ロ> (四) (四) (三) (三) (三)

2/25

1 Anti-Poisson Geometry

- Poisson Vs. Anti-Poisson
- Laplacian
- The Odd Scalar $\nu_{
 ho}$
- The Δ Operator
- 2 Riemannian Geometry
 - The Even Scalar ν_{ρ}
 - Particle in Curved Space

3 Conclusions

Poisson Vs. Anti-Poiss Laplacian The Odd Scalar $\nu_{
ho}$ The Δ Operator

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

2 Riemannian Geometry

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Darboux Coordinates

Poisson

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

 $\begin{array}{l} \mbox{Poisson Vs. Anti-Poisson} \\ \mbox{Laplacian} \\ \mbox{The Odd Scalar } \nu_{\rho} \\ \mbox{The } \Delta \mbox{ Operator} \end{array}$

Poisson			
Coordinates	q ⁱ	Boson ↑	Fermion ↑
Momenta	p _i	Boson	Fermion

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Anti-Poisson					
Fields	ϕ^{α}	Boson	Fermion		
		\uparrow	\$		
Antifields	ϕ^*_{α}	Fermion	Boson		

 $\begin{array}{l} \mbox{Poisson Vs. Anti-Poisson} \\ \mbox{Laplacian} \\ \mbox{The Odd Scalar } \nu_{\rho} \\ \mbox{The } \Delta \mbox{ Operator} \end{array}$

Darboux Coordinates

Poisson				Poisson Bracket $\{,\}_{PB}$
Coordinates	q ⁱ	Boson	Fermion	
Momenta	p _i	↓ Boson	↓ Fermion	
Anti-Poisson				
Fields	ϕ^{α}	Boson	Fermion	
Antifields	ϕ^*_{lpha}	↓ Fermion	↓ Boson	
				_

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson		Poisson Bracket $\{,\}_{PB}$
Coordinates	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$	
Momenta	p _i Boson Fermi	on $\{q^{i},q^{j}\}_{PB} = 0$ $\{q^{i},p_{j}\}_{PB} = \delta^{i}_{j}$ $\{p_{i},p_{j}\}_{PB} = 0$
		$\{p_i, p_j\}_{PB} = 0$
Anti-Poisson		
Fields	$\phi^{lpha} \mid \begin{array}{c c} \operatorname{Boson} & \operatorname{Fermi} \\ \uparrow & \uparrow \end{array}$	on
Antifields	ϕ_{α}^{*} Fermion Bosc	n
		(ロ) (問) (問) (言) (言) () ()

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson				Poisson Bracket { , } _{PB}
Coordinate		1	Fermion ↓	$\{q^i,q^j\}_{PB} = 0$
Momenta		; Boson	Fermion	$ \begin{array}{rcl} \{q^{i},q^{j}\}_{PB} &=& 0\\ \{q^{i},p_{j}\}_{PB} &=& \delta^{i}_{j}\\ \{p_{i},p_{j}\}_{PB} &=& 0 \end{array} \end{array} $
Anti-Poissor	า			Antibracket $(,)_{AB}$
Anti-Poissor Fields	ו ϕ^{lpha}	Boson ↓	Fermion ↓	Antibracket (,) _{AB}
		Boson ↓ Fermion	Fermion ↓ Boson	Antibracket (,) _{AB}
Fields	ϕ^{lpha}	\$	\uparrow	Antibracket (,) _{AB}

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson	Poisson Bracket $\{ , \}_{PB}$
Coordinates q^i BosonFermion \uparrow \uparrow \uparrow Momenta p_i BosonFermion	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Anti-Poisson	Antibracket (,) _{AB}
Anti-PoissonFields ϕ^{α} BosonFermionAntifields ϕ^{*}_{α} FermionBoson	Antibracket $(,)_{AB}$ $(\phi^{\alpha}, \phi^{\beta})_{AB} = 0$ $(\phi^{\alpha}, \phi^{*}_{\beta})_{AB} = \delta^{\alpha}_{\beta}$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson				Poisson Bracket { , } _{PB}
Coordinate	s q ⁱ	1	Fermion ↓	$\{q^i,q^j\}_{PB} = 0$
Momenta	p _i	Boson	Fermion	$ \begin{array}{rcl} \{q^{i},q^{j}\}_{PB} &=& 0\\ \{q^{i},p_{j}\}_{PB} &=& \delta^{i}_{j}\\ \{p_{i},p_{j}\}_{PB} &=& 0 \end{array} $
				"Comma is a Boson"
Anti-Poissor	I			Antibracket (,) _{AB}
Fields	ϕ^{lpha}	Boson ↓	Fermion ↓	
	ϕ^{lpha}	¢	Fermion ↓ Boson	Antibracket $(,)_{AB}$ $(\phi^{\alpha}, \phi^{\beta})_{AB} = 0$ $(\phi^{\alpha}, \phi^{*}_{\beta})_{AB} = \delta^{\alpha}_{\beta}$ $(\phi^{*}_{\alpha}, \phi^{*}_{\beta})_{AB} = 0$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Poisson				Poisson Bracket { , } _{PB}
Coordinate	s q	i Boson ↑	Fermion ↑	$\left(a^{i}a^{j}\right) = 0$
Momenta	p	Boson	Fermion	$\begin{array}{rcl} \{q^{i},q^{j}\}_{PB} &=& 0\\ \{q^{i},p_{j}\}_{PB} &=& \delta^{i}_{j}\\ \{p_{i},p_{j}\}_{PB} &=& 0 \end{array}$
				"Comma is a Boson"
Anti-Poisson				Antibracket (,) _{AB}
Fields Antifields	$\phi^{lpha} \ \phi^{st}_{lpha}$	¢	Fermion ↓ Boson	$egin{array}{rcl} (\phi^lpha,\phi^eta)_{AB}&=&0\ (\phi^lpha,\phi^sta)_{AB}&=&\delta^lpha_eta\ (\phi^sta,\phi^sta)_{AB}&=&0 \end{array}$
				$(\phi^*_{\alpha}, \phi^*_{\beta})_{AB} = 0$ "Comma is a Fermion"

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

<ロト < 部ト < 目ト < 目ト 目 のへの 5/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

★ロト ★課 ト ★注 ト ★注 ト 一注

5/25

General Coordinates

Poisson Bracket

$$\{z^{A}, z^{B}\}_{PB} = \omega^{AB}$$

$$\{F, G\}_{PB} = (F\frac{\overleftarrow{\partial r}}{\partial z^{A}})\omega^{AB}(\frac{\overrightarrow{\partial \ell}}{\partial z^{B}}G)$$

 $\begin{array}{l} \mbox{Poisson Vs. Anti-Poisson} \\ \mbox{Laplacian} \\ \mbox{The Odd Scalar } \nu_{\rho} \\ \mbox{The } \Delta \mbox{ Operator} \end{array}$

General Coordinates

Poisson Bracket

$$\{z^{A}, z^{B}\}_{PB} = \omega^{AB}$$

$$\{F, G\}_{PB} = (F\frac{\overrightarrow{\partial r}}{\partial z^{A}})\omega^{AB}(\frac{\overrightarrow{\partial \ell}}{\partial z^{B}}G)$$

Antibracket

$$(z^{A}, z^{B})_{AB} = E^{AB}$$

(F, G)_{AB} = $(F \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}) E^{AB} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}} G)$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Bracket

$$\{z^{A}, z^{B}\}_{PB} = \omega^{AB}$$

$$\{F, G\}_{PB} = (F\frac{\overleftarrow{\partial r}}{\partial z^{A}})\omega^{AB}(\frac{\overrightarrow{\partial \ell}}{\partial z^{B}}G)$$

Grassmann-parity
$$\varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B$$
 Even

Antibracket

$$(z^{A}, z^{B})_{AB} = E^{AB}$$

(F, G)_{AB} = (F $\frac{\partial^{r}}{\partial z^{A}}$) $E^{AB}(\frac{\partial^{\ell}}{\partial z^{B}}G)$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Bracket

$$\{z^{A}, z^{B}\}_{PB} = \omega^{AB}$$

$$\{F, G\}_{PB} = (F\frac{\overleftarrow{\partial r}}{\partial z^{A}})\omega^{AB}(\frac{\overrightarrow{\partial \ell}}{\partial z^{B}}G)$$

Grassmann-parity
$$\varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B$$
 Even

Antibracket

$$(z^{A}, z^{B})_{AB} = E^{AB}$$

(F, G)_{AB} = (F $\frac{\overleftarrow{\partial r}}{\partial z^{A}}$) $E^{AB}(\frac{\overrightarrow{\partial \ell}}{\partial z^{B}}G)$

Grassmann-parity $\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1$ **Odd**

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

<ロト < 部ト < 目ト < 目ト 目 のへの 6/25

 $\begin{array}{l} \mbox{Poisson Vs. Anti-Poisson} \\ \mbox{Laplacian} \\ \mbox{The Odd Scalar } \nu_{\rho} \\ \mbox{The } \Delta \mbox{ Operator} \end{array}$

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

Antisymmetric

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

• Antisymmetric

Inverse 2-form

$$\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$$

$$\omega_{BA} = (-1)^{(\varepsilon_A+1)(\varepsilon_B+1)} \omega_{AB}$$

• Skewsymmetric

<ロト < 昂 > < 言 > < 言 > こ き < つ へ () 6/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

• Antisymmetric

Inverse 2-form
$$\omega = rac{1}{2} dz^A \omega_{AB} \wedge dz^B$$

$$\omega_{BA} = (-1)^{(\varepsilon_A+1)(\varepsilon_B+1)} \omega_{AB}$$

イロト 不得下 イヨト イヨト 三日

6/25

• Skewsymmetric

Anti-Poisson Case

$$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$$

Antiskewsymmetric

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

• Antisymmetric

Inverse 2-form
$$\omega=rac{1}{2}dz^{A}\omega_{AB}\wedge dz^{B}$$

$$\omega_{BA} = (-1)^{(\varepsilon_A+1)(\varepsilon_B+1)} \omega_{AB}$$

Skewsymmetric

Anti-Poisson Case

$$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$$

• Antiskewsymmetric

 Morally Symmetric like the Riemannian Case

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

• Antisymmetric

$$\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$$

Inverse 2-form $\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$

• Skewsymmetric

Anti-Poisson Case

$$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$$

- Antiskewsymmetric
- Morally Symmetric like the Riemannian Case

Inverse 2-form $E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$

$$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$$

Antisymmetric

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

General Coordinates

Poisson Case

$$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$$

Antisymmetric

Inverse 2-form
$$\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$$

 $\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$

• Skewsymmetric

Anti-Poisson Case

$$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$$

- Antiskewsymmetric
- Morally Symmetric like the Riemannian Case

Inverse 2-form $E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$

$$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$$

- Antisymmetric
- Morally Skewsymmetric like the Symplectic Case

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

イロト 不得下 イヨト イヨト 三日

7/25

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$\sum_{\text{cycl. } f,g,h} (-1)^{\varepsilon_f \varepsilon_h} \{f, \{g,h\}\} = 0$$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

イロト 不得下 イヨト イヨト 三日

7/25

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$\sum_{\text{rcl. } f,g,h} (-1)^{\varepsilon_f \varepsilon_h} \{f, \{g,h\}\} = 0$$

Jacobi Identity for Antibracket

Cy

$$\sum_{\text{cycl. } f,g,h} (-1)^{(\varepsilon_f+1)(\varepsilon_h+1)}(f,(g,h)) = 0$$

 $\begin{array}{l} \mbox{Poisson Vs. Anti-Poisson} \\ \mbox{Laplacian} \\ \mbox{The Odd Scalar } \nu_{\rho} \\ \mbox{The } \Delta \mbox{ Operator} \end{array}$

Jacobi Identity and Closeness Relation

Jacobi Identity for Poisson Bracket

$$\sum_{\text{ycl. } f,g,h} (-1)^{\varepsilon_f \varepsilon_h} \{f, \{g,h\}\} = 0$$

Symplectic Case Closed 2-form: $d\omega = 0$

<ロ> (四) (四) (三) (三) (三) (三)

7/25

Jacobi Identity for Antibracket

C

$$\sum_{\text{cycl. } f,g,h} (-1)^{(\varepsilon_f+1)(\varepsilon_h+1)}(f,(g,h)) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{
ho} = rac{(-1)^{arepsilon_{A}}}{
ho} rac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}}
ho g^{AB} rac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

<ロト < 合 ト < 言 ト < 言 ト こ の < で 8/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

うへで 8/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• Canonical density $\rho_g := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

o Canonical density $\rho_{g} := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• No canonical density!

Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• Canonical density $ho_g := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

• Δ_{ρ}^2 is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

No canonical density!

० (~ 8/25

Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• Canonical density $ho_g := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

• Δ_{ρ}^2 is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• No canonical density!

•
$$\Delta^2_
ho$$
 is a 1st-order operator.

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• Canonical density $ho_g := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

• Δ_{ρ}^2 is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$2\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

- No canonical density!
- Δ_{ρ}^2 is a 1st-order operator.
- When is $\Delta_{\rho}^2 = 0$ nilpotent?

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Laplacian

Even Laplacian in Riemannian Case

$$\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho g^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

• Canonical density $ho_g := \sqrt{g} := \sqrt{\operatorname{sdet}(g_{AB})}$

• Δ_{ρ}^2 is a 4th-order operator.

Odd Laplacian in Anti-Poisson Case

$$\mathbf{2}\Delta_{\rho} = \frac{(-1)^{\varepsilon_{A}}}{\rho} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} \rho E^{AB} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{B}}$$

- No canonical density!
- Δ_{ρ}^2 is a 1st-order operator.
- When is $\Delta_{\rho}^2 = 0$ nilpotent?

Anti-Poisson Geometry Riemannian Geometry Conclusions Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

	Even Geometry	Odd Geometry
	5	, ,
	$g=dz^Ag_{AB}ee dz^B$	$g = dz^A g_{AB} \lor dz^B$
Riemannian	$\varepsilon(g_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$g_{BA} = -(-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)}g_{AB}$	$g_{BA} = (-1)^{arepsilon_A arepsilon_B} g_{AB}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Riemannian	$g^{BA} = (-1)^{\varepsilon_A \varepsilon_B} g^{\widetilde{A}B}$	$g^{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} g^{AB}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$	$E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$
Symplectic	$\varepsilon(\omega_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$
Two–Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Symplectic	$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$	$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

Anti-Poisson Geometry Riemannian Geometry Conclusions Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$\begin{array}{c} g = dz^{A}g_{AB} \lor dz^{B} \\ \varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B} \\ g_{BA} = -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{B}+1)}g_{AB} \\ \text{Antiskewsymmetric} \\ \text{No Closeness Relation} \end{array}$	$g = dz^{A}g_{AB} \lor dz^{B}$ $\varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B} + 1$ $g_{BA} = (-1)^{\varepsilon_{A}\varepsilon_{B}}g_{AB}$ Symmetric No Closeness Relation
Inverse Riemannian Contravariant Metric	$\begin{split} \varepsilon(g^{AB}) &= \varepsilon_A + \varepsilon_B \\ g^{BA} &= (-1)^{\varepsilon_A \varepsilon_B} g^{AB} \\ \text{Symmetric} \\ \text{Even Laplacian} \end{split}$	$ \begin{array}{c} \varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ g^{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)}g^{AB} \\ \text{Skewsymmetric} \\ \text{No Laplacian} \end{array} $
Symplectic Covariant Two–Form	$\begin{split} \omega &= \frac{1}{2} dz^A \omega_{AB} \wedge dz^B \\ \varepsilon(\omega_{AB}) &= \varepsilon_A + \varepsilon_B \\ \omega_{BA} &= (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB} \\ \text{Skewsymmetric} \\ \text{Closeness Relation} \end{split}$	$ \begin{array}{c} E = \frac{1}{2} dz^A E_{AB} \wedge dz^B \\ \varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB} \\ Antisymmetric \\ Closeness Relation \end{array} $
Inverse Symplectic Contravariant Tensor	$\begin{array}{c} \varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B \\ \omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB} \\ \text{Antisymmetric} \\ \text{No Laplacian} \end{array}$	$ \begin{split} \varepsilon(E^{AB}) &= \varepsilon_A + \varepsilon_B + 1 \\ E^{BA} &= -(-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} E^{AB} \\ \text{Symmetric} \\ \text{Odd Laplacian} \end{split} $

 Anti-Poisson Geometry
 Poisson Vs. Anti-Poisso

 Riemannian Geometry
 Laplacian

 Conclusions
 The Odd Scalar ν_{ρ}

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$\begin{array}{c} g = dz^{A}g_{AB} \lor dz^{B} \\ \varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B} \\ g_{BA} = -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{B}+1)}g_{AB} \\ \text{Antiskewsymmetric} \\ \text{No Closeness Relation} \end{array}$	$\begin{array}{c} g = dz^{A}g_{AB} \lor dz^{B} \\ \varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B} + 1 \\ g_{BA} = (-1)^{\varepsilon_{A}\varepsilon_{B}}g_{AB} \\ \text{Symmetric} \\ \text{No Closeness Relation} \end{array}$
Inverse Riemannian Contravariant Metric	$\begin{split} \varepsilon(g^{AB}) &= \varepsilon_A + \varepsilon_B \\ g^{BA} &= (-1)^{\varepsilon_A \varepsilon_B} g^{AB} \\ \text{Symmetric} \\ \text{Even Laplacian} \end{split}$	$ \begin{array}{c} \varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ g^{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)}g^{AB} \\ \text{Skewsymmetric} \\ \text{No Laplacian} \end{array} $
Symplectic Covariant Two–Form	$\begin{split} \omega &= \frac{1}{2} dz^A \omega_{AB} \wedge dz^B \\ \varepsilon(\omega_{AB}) &= \varepsilon_A + \varepsilon_B \\ \omega_{BA} &= (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB} \\ \text{Skewsymmetric} \\ \text{Closeness Relation} \end{split}$	$ \begin{array}{c} E = \frac{1}{2} dz^A E_{AB} \wedge dz^B \\ \varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB} \\ Antisymmetric \\ Closeness Relation \end{array} $
Inverse Symplectic Contravariant Tensor	$\begin{array}{c} \varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B \\ \omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB} \\ \text{Antisymmetric} \\ \text{No Laplacian} \end{array}$	$ \begin{array}{c} \varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ E^{BA} = -(-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} E^{AB} \\ \text{Symmetric} \\ \text{Odd Laplacian} \end{array} $

Anti-Poisson Geometry
Riemannian Geometry
ConclusionsPoisson Vs. Anti-Poiss
Laplacian
The Odd Scalar ν_{ρ}
The Δ Operator

The $2 \times 2 = 4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g=dz^Ag_{AB}ee dz^B$	$g = dz^A g_{AB} \lor dz^B$
Riemannian	$\varepsilon(\mathbf{g}_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$g_{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}g_{AB}$	$g_{BA} = (-1)^{\varepsilon_A \varepsilon_B} g_{AB}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Riemannian	$g^{BA} = (-1)^{arepsilon_A arepsilon_B} g^{AB}$	$g^{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} g^{AB}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$	$E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$
Symplectic	$\varepsilon(\omega_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$
Two–Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$arepsilon(\omega^{AB}) = arepsilon_A + arepsilon_B$	$\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Symplectic	$\omega^{BA} = -(-1)^{arepsilon_A arepsilon_B} \omega^{AB}$	$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

9/25

Anti-Poisson Geometry Riemannian Geometry Conclusions Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

The $2 \times 2 = 4$ Classical Geometries and their Symmetries

$\frac{dz^B}{dz^B} + 1$ \mathcal{g}_{AB}
_B + 1
g _{AB}
ation
_B + 1
^B ⁺¹⁾ g ^{AB}
ic
n
dz ^B
_B + 1
в Е _{АВ}
c
ion
$_{B} + 1$
$E_{B}^{(+1)}E^{AB}$
$E^{B+1)}E^{AB}$

9/25

Anti-Poisson Geometry
Riemannian Geometry
ConclusionsPoisson Vs. Anti-Poiss
Laplacian
The Odd Scalar ν_{ρ}

	Even Geometry	Odd Geometry
Riemannian Covariant Metric	$g = dz^{A}g_{AB} \lor dz^{B}$ $\varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B}$ $g_{BA} = -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{B}+1)}g_{AB}$ Antiskewsymmetric No Closeness Relation	$g = dz^{A}g_{AB} \lor dz^{B}$ $\varepsilon(g_{AB}) = \varepsilon_{A} + \varepsilon_{B} + 1$ $g_{BA} = (-1)^{\varepsilon_{A}\varepsilon_{B}}g_{AB}$ Symmetric No Closeness Relation
Inverse Riemannian Contravariant Metric	$\begin{aligned} \varepsilon(g^{AB}) &= \varepsilon_A + \varepsilon_B \\ g^{BA} &= (-1)^{\varepsilon_A \varepsilon_B} g^{AB} \\ \text{Symmetric} \\ \text{Even Laplacian} \end{aligned}$	$\begin{array}{c} \varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1\\ g^{BA} = (-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}g^{AB}\\ \text{Skewsymmetric}\\ \text{No Laplacian} \end{array}$
Symplectic Covariant Two–Form	$ \begin{split} \omega &= \frac{1}{2} dz^A \omega_{AB} \wedge dz^B \\ \varepsilon(\omega_{AB}) &= \varepsilon_A + \varepsilon_B \\ \omega_{BA} &= (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB} \\ \text{Skewsymmetric} \\ \text{Closeness Relation} \end{split} $	$ \begin{array}{l} E = \frac{1}{2} dz^A E_{AB} \wedge dz^B \\ \varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1 \\ E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB} \\ Antisymmetric \\ Closeness Relation \end{array} $
Inverse Symplectic Contravariant Tensor	$\begin{array}{c} \varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B \\ \omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB} \\ \text{Antisymmetric} \\ \text{No Laplacian} \end{array}$	$ \begin{aligned} \varepsilon(E^{AB}) &= \varepsilon_A + \varepsilon_B + 1 \\ E^{BA} &= -(-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} E^{AB} \\ \text{Symmetric} \\ \text{Odd Laplacian} \end{aligned} $

 Anti-Poisson Geometry Riemannian Geometry Conclusions
 Poisson Vs. Anti-Poisso Laplacian

 The Odd Scalar ν_{ρ}

 The Δ Operator

The $2 \times 2 = 4$ Classical Geometries and their Symmetries

	Even Geometry	Odd Geometry
	$g = dz^A g_{AB} \vee dz^B$	$g = dz^A g_{AB} \vee dz^B$
Riemannian	$\varepsilon(\mathbf{g}_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g_{AB}) = \varepsilon_A^{AB} + \varepsilon_B^{A} + 1$
Covariant	$g_{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}g_{AB}$	$g_{BA}^{}=(-1)^{arepsilon_Aarepsilon_B}g_{AB}^{}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Riemannian	$g^{BA}=(-1)^{arepsilon_Aarepsilon_B}g^{AB}$	$g^{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} g^{AB}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega = rac{1}{2} dz^A \omega_{AB} \wedge dz^B$	$E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$
Symplectic	$\varepsilon(\omega_{AB}) = \varepsilon_A + \varepsilon_B$ $\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$\varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$
Two–Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Symplectic	$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \bar{\omega}^{AB}$	$E^{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{AB}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

9/25

Anti-Poisson Geometry Riemannian Geometry Conclusions Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} The Δ Operator

	Even Geometry	Odd Geometry
	-	· · · · ·
	$g = dz^A g_{AB}^A \lor dz^B$	$g = dz^A g_{AB}^{} \lor dz^B$
Riemannian	$\varepsilon(\mathbf{g}_{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$g_{BA} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}g_{AB}$	$g_{BA} = (-1)^{arepsilon_A arepsilon_B} g_{AB}$
Metric	Antiskewsymmetric	Symmetric
	No Closeness Relation	No Closeness Relation
Inverse	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(g^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Riemannian	$g^{BA} = (-1)^{arepsilon_A arepsilon_B} g^{AB}$	$g^{BA} = (-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}g^{AB}$
Contravariant	Symmetric	Skewsymmetric
Metric	Even Laplacian	No Laplacian
	$\omega = \frac{1}{2} dz^A \omega_{AB} \wedge dz^B$	$E = \frac{1}{2} dz^A E_{AB} \wedge dz^B$
Symplectic	$\varepsilon(\omega_{AB}) = \varepsilon_A + \varepsilon_B$ $\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$\varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1$
Covariant	$\omega_{BA} = (-1)^{(\varepsilon_A + 1)(\varepsilon_B + 1)} \omega_{AB}$	$E_{BA} = -(-1)^{\varepsilon_A \varepsilon_B} E_{AB}$
Two–Form	Skewsymmetric	Antisymmetric
	Closeness Relation	Closeness Relation
Inverse	$\varepsilon(\omega^{AB}) = \varepsilon_A + \varepsilon_B$	$\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1$
Symplectic	$\omega^{BA} = -(-1)^{\varepsilon_A \varepsilon_B} \omega^{AB}$	$E^{BA} = -(-1)^{(\varepsilon_A^{-}+1)(\varepsilon_B^{-}+1)}E^{AB}$
Contravariant	Antisymmetric	Symmetric
Tensor	No Laplacian	Odd Laplacian

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

The Odd Scalar $u_{ ho}$

Odd Scalar in Antisymplectic Geometry

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$

<ロト < 合 ト < 言 ト < 言 ト こ の < で 10/25

(KB 2006)

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

The Odd Scalar $u_{ ho_1}$

Odd Scalar in Antisymplectic Geometry

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$

Terms built from *E* and ρ

$$u^{(\mathbf{0})}_{
ho} := rac{1}{\sqrt{
ho}} (\Delta_1 \sqrt{
ho})$$

(KB 2006)

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar $\nu_{
ho}$ The Δ Operator

The Odd Scalar $u_{ ho}$

Odd Scalar in Antisymplectic Geometry

(KB 2006)

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$

Terms built from E and ρ

$$\begin{split} \nu_{\rho}^{(0)} &:= \frac{1}{\sqrt{\rho}} (\Delta_1 \sqrt{\rho}) \\ \nu^{(1)} &:= (-1)^{\varepsilon_A} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^A} E^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^B}) (-1)^{\varepsilon_B} \end{split}$$

うへで 10/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

The Odd Scalar $\nu_{ ho}$

Odd Scalar in Antisymplectic Geometry

(KB 2006)

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$

Terms built from E and ρ

$$\nu_{\rho}^{(0)} := \frac{1}{\sqrt{\rho}} (\Delta_{1}\sqrt{\rho})$$

$$\nu^{(1)} := (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}}$$

$$\nu^{(2)} := -(-1)^{\varepsilon_{B}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E_{BC}) (z^{C}, (z^{B}, z^{A}))$$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

The Odd Scalar $u_{ ho}$

Odd Scalar in Antisymplectic Geometry

(KB 2006)

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$

Terms built from E and ρ

$$\begin{aligned}
\nu_{\rho}^{(0)} &:= \frac{1}{\sqrt{\rho}} (\Delta_{1} \sqrt{\rho}) \\
\nu^{(1)} &:= (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}} \\
\nu^{(2)} &:= -(-1)^{\varepsilon_{B}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} E_{BC}) (z^{C}, (z^{B}, z^{A})) \\
&= (-1)^{\varepsilon_{A} \varepsilon_{D}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{D}} E^{AB}) E_{BC} (E^{CD} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}})
\end{aligned}$$

うへで 10/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Classification of 2nd-order Differential Invariants

Question

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu = \nu(z)$ such that

• $\nu(z)$ is a scalar,

Poisson Vs. Anti-Poisson Laplacian **The Odd Scalar** ν_{ρ} The Δ Operator

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{AB}(z)$, the density $\rho(z)$, their inverses, and *z*-derivatives thereof in the point *z*,

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar $\nu_{
ho}$ The Δ Operator

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{AB} \rightarrow \lambda E^{AB}$, where λ is a *z*-independent parameter,

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{AB} \rightarrow \lambda E^{AB}$, where λ is a *z*-independent parameter,
- and each term in ν contains precisely two *z*-derivatives?

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar $\nu_{
ho}$ The Δ Operator

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu = \nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $E_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $E^{AB} \rightarrow \lambda E^{AB}$, where λ is a *z*-independent parameter,
- and each term in ν contains precisely two *z*-derivatives?

Unique Answer (up to scaling)

(Batalin,KB 2008)

$$u = \alpha \nu_{
ho}$$

Poisson Vs. Anti-Poisso Laplacian The Odd Scalar ν_{ρ} **The \Delta Operator**

The Δ Operator

Question

What is (the local form of) the most general differential operator Δ

 Anti-Poisson Geometry Riemannian Geometry Conclusions The Δd Scalar The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator $\boldsymbol{\Delta}$

• that takes scalar functions to scalar functions,

Anti-Poisson Geometry Riemannian Geometry Conclusions The Δd Scalar The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator $\boldsymbol{\Delta}$

イロト 不得下 イヨト イヨト 三日

12/25

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,

Anti-Poisson Geometry Riemannian Geometry Conclusions The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator $\boldsymbol{\Delta}$

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,

Anti-Poisson Geometry Riemannian Geometry Conclusions The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator $\boldsymbol{\Delta}$

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of 2nd-order,

Anti-Poisson Geometry Riemannian Geometry Conclusions The Odd Scalar The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator $\boldsymbol{\Delta}$

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of **2nd-order**,
- and the 2nd-order part is non-degenerate?

Anti-Poisson Geometry Riemannian Geometry Conclusions The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of **2nd-order**,
- and the 2nd-order part is non-degenerate?

Unique Answer (modulo an odd constant) (Batalin,KB 2007)

$$\Delta = \Delta_{
ho} +
u_{
ho}$$

Anti-Poisson Geometry Riemannian Geometry Conclusions The Odd Scalar The Δ Operator

The Δ Operator

Question

What is (the local form of) the most general differential operator Δ

- that takes scalar functions to scalar functions,
- that is Grassmann-odd,
- that is nilpotent,
- that is of **2nd-order**,
- and the 2nd-order part is non-degenerate?

Unique Answer (modulo an odd constant) (Batalin,KB 2007)

$$\Delta = \Delta_{\rho} + \nu_{\rho}$$

The Δ Operator = Odd Laplacian + Odd Scalar.

イロト イヨト イヨト

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

 $\Delta e^{\frac{i}{\hbar}W} = 0$

Exponential form

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

13/25

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

 $\Delta e^{\frac{i}{\hbar}W} = 0$

Exponential form

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

<ロ> (四) (四) (三) (三) (三) (三)

13/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$(S,S) = 0$$

うへで 13/25

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

 $(S,S) = 0 \leftarrow Classical Master Equation$

つへで 13/25

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$(S,S) = 0 \leftarrow (M_1,S) = i(\Delta_{\rho}S)$$

Classical Master Equation

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$\begin{array}{rcl} (S,S) &=& 0 &\leftarrow & \text{Classical Master Equation} \\ (M_1,S) &=& i(\Delta_{\rho}S) \\ (M_2,S) &=& i(\Delta_{\rho}M_1) - \frac{1}{2}(M_1,M_1) \ + \ \nu_{\rho} \end{array}$$

२ (२ 13/25

Poisson Vs. Anti-Poissor Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Quantum Master Equation

Exponential form

A

 $\Delta e^{rac{i}{\hbar}W} = 0$

Quantum Master Action

$$W = S + \sum_{n=1}^{\infty} \hbar^n M_n$$

Additive form

$$\frac{1}{2}(W,W) = i\hbar\Delta_{\rho}W + \hbar^{2}\nu_{\rho}$$

Odd scalar ν_{ρ} enters at 2-loop.

Infinite Tower of Master Equations

$$(S,S) = 0 \leftarrow \text{Classical Master Equation}$$
$$(M_1,S) = i(\Delta_{\rho}S)$$
$$(M_2,S) = i(\Delta_{\rho}M_1) - \frac{1}{2}(M_1,M_1) + \nu_{\rho}$$
$$n \ge 3: (M_n,S) = i(\Delta_{\rho}M_{n-1}) - \frac{1}{2}\sum_{r=1}^{n-1}(M_r,M_{n-r})$$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

14/25

Khudaverdian's Δ_E Operator

The \triangle Operator

$$\Delta = \Delta_{\rho} + \nu_{\rho}$$

= Odd Laplacian + Odd Scalar = built from E and ρ .

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

 ρ !

Khudaverdian's Δ_E Operator

The Δ Operator

$$\Delta = \Delta_{\rho} + \nu_{\rho}$$

= Odd Laplacian + Odd Scalar = built from E and ρ .

Curious Fact

 $\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$ is independent of

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E **Operator**

Curious Fact

$$\sqrt{
ho}\Deltarac{1}{\sqrt{
ho}}$$
s independent of ho !

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_{E} := \Delta_{1} = (-1)^{\varepsilon_{lpha}} rac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{lpha}} rac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{st}_{lpha}}$$

(Khudaverdian 1997)

Curious Fact

$$\sqrt{
ho}\Deltarac{1}{\sqrt{
ho}}$$
s independent of $ho!$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_E := \Delta_1 = (-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{*}_{\alpha}}$$

(Khudaverdian 1997)

• In General Coordinates:

$$\Delta_E := \Delta_1 + rac{
u^{(1)}}{8} - rac{
u^{(2)}}{24}$$
(KB 2006)

Curious Fact

$$\frac{\sqrt{\rho}\Delta\frac{1}{\sqrt{\rho}}}{\text{is independent of }\rho!}$$

◆□ ▶ ◆圖 ▶ ◆ 注 ▶ ◆ 注 ▶ ─ 注 …

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_E := \Delta_1 = (-1)^{arepsilon_lpha} rac{\partial^\ell}{\partial \phi^lpha} rac{\partial^\ell}{\partial \phi^st_lpha}$$

(Khudaverdian 1997)

• In General Coordinates:

$$\Delta_E := \Delta_1 + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$
(KB 2006)

Proporties of Δ_E

• Δ_E takes semidensities to semidensities.

Curious Fact
$$\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$$
 is independent of $\rho!$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_{{\sf E}} \ := \ \Delta_1 \ = \ (-1)^{arepsilon_lpha} rac{ec{\partial^\ell}}{\partial \phi^lpha} rac{ec{\partial^\ell}}{\partial \phi^lpha}$$

(Khudaverdian 1997)

)6)

• In General Coordinates:

$$\Delta_E := \Delta_1 + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$
(KB 200

Proporties of Δ_E

- Δ_E takes semidensities to semidensities.
- Δ_E is manifestly independent of

 ρ .

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_{E} := \Delta_{1} = (-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\ast}_{\alpha}}$$

(Khudaverdian 1997)

• In General Coordinates:

$$\Delta_E := \Delta_1 + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24}$$
(KB 2006)

Proporties of Δ_E

- Δ_E takes semidensities to semidensities.
- Δ_E is manifestly independent of ρ .

•
$$\Delta_E$$
 is nilpotent!

Curious Fact

$$\sqrt{
ho}\Deltarac{1}{\sqrt{
ho}}$$
 is independent of $ho!$

Poisson Vs. Anti-Poisson Laplacian The Odd Scalar ν_{ρ} The Δ Operator

Khudaverdian's Δ_E Operator

Def: Khudaverdian's Δ_E Operator

• In Darboux Coordinates:

$$\Delta_{E} := \Delta_{1} = (-1)^{\varepsilon_{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\alpha}} \frac{\overrightarrow{\partial^{\ell}}}{\partial \phi^{\ast}_{\alpha}}$$

(Khudaverdian 1997)

• In General Coordinates:

$$\Delta_E := \Delta_1 + rac{
u^{(1)}}{8} - rac{
u^{(2)}}{24}$$
(KB 2006)

Proporties of Δ_E

- Δ_E takes semidensities to semidensities.
- Δ_E is manifestly independent of ρ .

•
$$\Delta_E$$
 is nilpotent!

Curious Fact

$$\Delta_{E} = \sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$$

s independent of ρ !

The Even Scalar $u_{
m g}$ Particle in Curved Space

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

2 Riemannian Geometry

The Even Scalar ν_{ρ} Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ρ

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

$$u^{(0)}_{
ho} := rac{1}{\sqrt{
ho}} (\Delta_1 \sqrt{
ho})$$

The Even Scalar $\nu_{\rm p}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$u_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

$$egin{array}{rcl}
u_{
ho}^{(0)} & := & rac{1}{\sqrt{
ho}}(\Delta_1\sqrt{
ho}) \
u^{(1)} & := & (-1)^{arepsilon_A}(rac{\partial^\ell}{\partial z^A}g^{AB}rac{\partial^r}{\partial z^B})(-1)^{arepsilon_B} \end{array}$$

The Even Scalar $\nu_{\rm p}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$u_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

$$\nu_{\rho}^{(0)} := \frac{1}{\sqrt{\rho}} (\Delta_{1} \sqrt{\rho})$$

$$\nu^{(1)} := (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}}$$

$$\nu^{(2)} := -(-1)^{\varepsilon_{C}} (z^{C}, (z^{B}, z^{A})) (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g_{BC})$$

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$u_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

$$\begin{aligned}
\nu_{\rho}^{(0)} &:= \frac{1}{\sqrt{\rho}} (\Delta_{1} \sqrt{\rho}) \\
\nu^{(1)} &:= (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}} \\
\nu^{(2)} &:= -(-1)^{\varepsilon_{C}} (z^{C}, (z^{B}, z^{A})) (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g_{BC}) \\
&= -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{D}+1)} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{D}} g^{AB}) g_{BC} (g^{CD} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}})
\end{aligned}$$

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$u_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

Terms built from g and ρ

$$\begin{split} \nu_{\rho}^{(0)} &:= \frac{1}{\sqrt{\rho}} (\Delta_{1}\sqrt{\rho}) \\ \nu^{(1)} &:= (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}} \\ \nu^{(2)} &:= -(-1)^{\varepsilon_{C}} (z^{C}, (z^{B}, z^{A})) (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g_{BC}) \\ &= -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{D}+1)} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{D}} g^{AB}) g_{BC} (g^{CD} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}) \\ \nu^{(3)} &:= (-1)^{\varepsilon_{A}} (g_{AB}, g^{BA}) \end{split}$$

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

The Even Scalar ν_{ρ}

Even Scalar in Riemannian Geometry with density ho

$$\nu_{\rho} := \nu_{\rho}^{(0)} + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

Terms built from g and ρ

$$\begin{split} \nu_{\rho}^{(0)} &:= \frac{1}{\sqrt{\rho}} (\Delta_{1}\sqrt{\rho}) \\ \nu^{(1)} &:= (-1)^{\varepsilon_{A}} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g^{AB} \frac{\overleftarrow{\partial^{r}}}{\partial z^{B}}) (-1)^{\varepsilon_{B}} \\ \nu^{(2)} &:= -(-1)^{\varepsilon_{C}} (z^{C}, (z^{B}, z^{A})) (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} g_{BC}) \\ &= -(-1)^{(\varepsilon_{A}+1)(\varepsilon_{D}+1)} (\frac{\overrightarrow{\partial^{\ell}}}{\partial z^{D}} g^{AB}) g_{BC} (g^{CD} \frac{\overleftarrow{\partial^{r}}}{\partial z^{A}}) \\ \nu^{(3)} &:= (-1)^{\varepsilon_{A}} (g_{AB}, g^{BA}) \quad \leftarrow \text{ bracket wrt. metric g.} \end{split}$$

The Even Scalar ν_{ρ} Particle in Curved Space

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

 $\nu_{\rho_g} = -\frac{\pi}{4}$

The Even Scalar ν_{ρ} Particle in Curved Space

17/25

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$\nu_{\rho_g} = -\frac{F}{Z}$$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

The Even Scalar ν_{ρ} Particle in Curved Space

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

17/25

Interpretation of $u_{ ho}$ in terms of Scalar Curvature R

Riemannian Case

 $\nu_{\rho_g} = -\frac{R}{4}$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

• metric,

The Even Scalar ν_{ρ} Particle in Curved Space

17/25

Interpretation of ν_{ρ} in terms of Scalar Curvature R

Riemannian Case

 $\nu_{\rho_g} = -\frac{R}{4}$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

- metric,
- and torsionfree.

The Even Scalar ν_{ρ} Particle in Curved Space

Interpretation of u_{ρ} in terms of Scalar Curvature R

Riemannian Case

$$\nu_{\rho_g} = -\frac{R}{4}$$

Antisymplectic Case

$$2\nu_{\rho} = -\frac{\kappa}{4}$$

17/25

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

- metric,
- and torsionfree.

• and torsionfree.

Interpretation of $u_{ ho}$ in terms of Scalar Curvature R

Riemannian Case

$$\nu_{\rho_g} = -\frac{\kappa}{4}$$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$2\nu_{\rho} = -\frac{R}{4}$$

Odd Scalar Curvature

$$R := R_{AB}E^{BA}$$

for any Connection $\nabla,$ that is:

- antisymplectic,
- torsionfree,
- and compatible with ρ .

Interpretation of $u_{ ho}$ in terms of Scalar Curvature R

Riemannian Case

$$\nu_{\rho_g} = -\frac{\kappa}{4}$$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

- metric,
- and torsionfree.

Antisymplectic Case

$$2\nu_{\rho} = -\frac{R}{4}$$

Odd Scalar Curvature

$$R := R_{AB}E^{BA}$$

for any Connection $\boldsymbol{\nabla},$ that is:

- antisymplectic,
- torsionfree,
- and compatible with ρ .

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Interpretation of $u_{ ho}$ in terms of Scalar Curvature R

Riemannian Case

$$\nu_{\rho_g} = -\frac{\kappa}{4}$$

Even Scalar Curvature

$$R := (-1)^{\varepsilon_A} R_{AB} g^{BA}$$

for the Levi-Civita Connection ∇ , *i.e.*, ∇ is:

- metric,
- and torsionfree.

Riemannian Case /w General
$$\rho$$

 $\nu_{\rho} = \sqrt{\frac{\rho_{g}}{\rho}} (\Delta_{\rho_{g}} \sqrt{\frac{\rho}{\rho_{g}}}) - \frac{R}{4}$

Antisymplectic Case

$$\mathbf{2}\nu_{\rho} = -\frac{R}{4}$$

Odd Scalar Curvature

$$R := R_{AB}E^{BA}$$

for any Connection $\boldsymbol{\nabla},$ that is:

- antisymplectic,
- torsionfree,
- and compatible with ρ .

The Even Scalar ν_{ρ} Particle in Curved Space

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu = \nu(z)$ such that

The Even Scalar ν_{e} Particle in Curved Space

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu = \nu(z)$ such that

• $\nu(z)$ is a scalar,

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{AB}(z)$, the density $\rho(z)$, their inverses, and *z*-derivatives thereof in the point *z*,

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,
- ν scales as $\nu \rightarrow \lambda \nu$ under constant Weyl scaling $g^{AB} \rightarrow \lambda g^{AB}$, where λ is a *z*-independent parameter,

Classification of 2nd-order Differential Invariants

Question

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a *z*-independent parameter,
- ν scales as $\nu \to \lambda \nu$ under constant Weyl scaling $g^{AB} \to \lambda g^{AB}$, where λ is a *z*-independent parameter,
- and each term in ν contains precisely two *z*-derivatives?

Classification of 2nd-order Differential Invariants

Question

What is the most general function $\nu = \nu(z)$ such that

- $\nu(z)$ is a scalar,
- $\nu(z)$ is a polynomial of the metric $g_{AB}(z)$, the density $\rho(z)$, their inverses, and z-derivatives thereof in the point z,
- ν is invariant under constant rescaling of the density $\rho \rightarrow \lambda \rho$, where λ is a z-independent parameter,
- ν scales as $\nu \to \lambda \nu$ under constant Weyl scaling $g^{AB} \to \lambda g^{AB}$, where λ is a *z*-independent parameter,
- and each term in ν contains precisely two *z*-derivatives?

Complete Solution

$$\nu = \alpha \ \nu_{\rho} + \beta \ \nu_{\rho_{g}} + \gamma \ (\ln \frac{\rho}{\rho_{g}}, \ln \frac{\rho}{\rho_{g}})$$

The Even Scalar $\nu_{\rm p}$ Particle in Curved Space

The Even Scalar ν_{ρ} Particle in Curved Space

・ロト ・日子・ ・ ヨア・

.⊒ **)** ∃

19/25

The Even Scalar $\nu_{
m e}$ Particle in Curved Space

19/25

Even Δ Operator Δ :=	Even Laplacian $\Delta_ ho$	+	Even Scalar $ u_{ ho}$			
	\downarrow		\downarrow	for	$\rho \to \rho_{\rm g}$	
	$\Delta_{ ho_g}$ Laplace- Beltrami Operator	_	Ra quarterof the ScalarCurvature			
For comparison: Conformally Covariant Laplacian						
$\Delta_{ ho_g} - rac{(N-2)R}{(N-1)4}$						

The Even Scalar $\nu_{
m e}$ Particle in Curved Space

19/25

Even Δ Operator Δ :=	Even Laplacian = $\Delta_{ ho}$	Even Scalar $+$ $ u_{ ho}$				
	\downarrow	\downarrow	for $\rho \rightarrow \rho_g$			
	$\Delta_{ ho_g}$ Laplace- Beltrami Operator	 ^R/₄ a quarter of the Scalar Curvature 				
For comparison: Conformally Covariant Laplacian						
$\Delta_{ ho_g} - rac{(N)}{(N)}$	$(-2)R \ -1)4 \rightarrow$	$\Delta_{ ho_g} - rac{R}{4}$ for	$N \to \infty$.			

The Even Scalar ν_{ρ} Particle in Curved Space

20/25

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

The \triangle Operator

$$\Delta = \Delta_{\rho} + \nu_{\rho}$$

- = Even Laplacian + Even Scalar
- = built from g and ρ .

The Even Scalar ν_{ρ} Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

The Δ Operator

$$\Delta = \Delta_{
ho} + \nu_{
ho}$$

- = Even Laplacian + Even Scalar
- = built from g and ρ .

Curious Fact $\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$ is independent of $\rho!$

The Even Scalar ν_{ρ} Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

Definition of
$$\Delta_g$$

 $\Delta_g := \Delta_1 + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$

Curious Fact
$$\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$$
 is independent of $\rho!$

・ロト ・雪ト ・ヨト

The Even Scalar ν_{ρ} Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

Definition of Δ_g

$$\Delta_g := \Delta_1 + rac{
u^{(1)}}{4} - rac{
u^{(2)}}{8} - rac{
u^{(3)}}{16}$$

Proporties of Δ_g

• Δ_g takes semidensities to semidensities.

Curious Fact

$$\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$$

is independent of ρ !

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

Definition of Δ_g

$$\Delta_g := \Delta_1 + rac{
u^{(1)}}{4} - rac{
u^{(2)}}{8} - rac{
u^{(3)}}{16}$$

Proporties of Δ_g

 ρ .

- Δ_g takes semidensities to semidensities.
- Δ_g is manifestly independent of

Curious Fact $\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$ is independent of $\rho!$

The Even Scalar $\nu_{\rm g}$ Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

Definition of
$$\Delta_g$$

$$\Delta_g := \Delta_1 + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

Proporties of Δ_g

- Δ_g takes semidensities to semidensities.
- Δ_g is manifestly independent of ρ .
- NB! Δ_g is not nilpotent.

Curious Fact
$$\sqrt{\rho}\Delta \frac{1}{\sqrt{\rho}}$$
 is independent of $\rho!$

イロト 不得 トイヨト イヨト 三日

The Even Scalar ν_{ρ} Particle in Curved Space

Riemannian version Δ_g of Khudaverdian's Δ_E Operator

Definition of
$$\Delta_g$$

$$\Delta_g := \Delta_1 + \frac{\nu^{(1)}}{4} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{16}$$

Proporties of Δ_g

- Δ_g takes semidensities to semidensities.
- Δ_g is manifestly independent of ρ .
- NB! Δ_g is not nilpotent.

Curious Fact $\Delta_g = \sqrt{\rho} \Delta \frac{1}{\sqrt{\rho}}$ is independent of ρ !

The Even Scalar ν_{ρ} Particle in Curved Space

・ロト ・雪ト ・ヨト

3

21/25

Particle in Curved Space

Classical Hamiltonian Action

$$S_{cl} = \int dt \left(p_A \dot{z}^A - H_{cl} \right)$$
$$H_{cl} = \frac{1}{2} p_A p_B g^{BA}$$
$$\{ z^A, p_B \}_{PB} = \delta^A_B$$

The Even Scalar ν_{ρ} Particle in Curved Space

Particle in Curved Space

Classical Hamiltonian Action

$$S_{cl} = \int dt \left(p_A \dot{z}^A - H_{cl} \right)$$
$$H_{cl} = \frac{1}{2} p_A p_B g^{BA}$$
$$\{ z^A, p_B \}_{PB} = \delta^A_B$$

Naive Quantum Hamiltonian

$$\hat{H}_{
ho} \;=\; rac{1}{2\sqrt{
ho(\hat{z})}}\; \hat{
ho}_{A} \;
ho(\hat{z}) \; g^{AB}(\hat{z}) \; \hat{
ho}_{B} \; rac{(-1)^{arepsilon_{B}}}{\sqrt{
ho(\hat{z})}}$$

The Even Scalar ν_{ρ} Particle in Curved Space

Particle in Curved Space

Classical Hamiltonian Action

$$S_{cl} = \int dt \left(p_A \dot{z}^A - H_{cl} \right)$$
$$H_{cl} = \frac{1}{2} p_A p_B g^{BA}$$
$$\{h, p_B\}_{PB} = \delta_B^A$$

Naive Quantum Hamiltonian

 $\{z^A$

$$\hat{H}_{
ho} \;=\; rac{1}{2\sqrt{
ho(\hat{z})}}\; \hat{
ho}_{A}\;
ho(\hat{z})\; g^{AB}(\hat{z})\; \hat{
ho}_{B}\; rac{(-1)^{arepsilon_{B}}}{\sqrt{
ho(\hat{z})}}$$

Full Quantum Hamiltonian

$$\hat{H} = \hat{H}_
ho - rac{\hbar^2}{2}
u_
ho(\hat{z}) \sim T(H_{
m cl})$$

The Even Scalar ν_{ρ} Particle in Curved Space

Particle in Curved Space

Classical Hamiltonian Action

$$S_{cl} = \int dt \left(p_A \dot{z}^A - H_{cl} \right)$$
$$H_{cl} = \frac{1}{2} p_A p_B g^{BA}$$
$$\{ z^A, p_B \}_{PB} = \delta^A_B$$

Schrödinger Representation

イロト 不得 トイヨト イヨト

$$\frac{\hbar}{i} \frac{\overrightarrow{\partial^{\ell}}}{\partial z^{A}} = \sqrt{\rho(\hat{z})} \, \hat{p}_{A} \, \frac{(-1)^{\varepsilon_{A}}}{\sqrt{\rho(\hat{z})}}$$

Naive Quantum Hamiltonian

$$\hat{H}_{
ho} \;=\; rac{1}{2\sqrt{
ho(\hat{z})}}\; \hat{p}_{A}\;
ho(\hat{z})\; g^{AB}(\hat{z})\; \hat{p}_{B}\; rac{(-1)^{arepsilon_{B}}}{\sqrt{
ho(\hat{z})}}$$

Full Quantum Hamiltonian

$$\hat{H} = \hat{H}_{
ho} - rac{\hbar^2}{2}
u_{
ho}(\hat{z}) \sim T(H_{
m cl})$$

The Even Scalar ν_{ρ} Particle in Curved Space

Particle in Curved Space

The Even Scalar ν_{ρ} Particle in Curved Space

Particle in Curved Space

Anti-Poisson Geometry Riemannian Geometry Particle in Curved Space Conclusions Operator Formalism ↔ Path Integral Formalism (starting with DeWitt 1957) The operator formalism with the full Hamiltonian operator \hat{H} \uparrow corresponds to \uparrow a Hamiltonian path integral formulation where the path integral action is the pure classical action S_{cl} with no quantum corrections.

$$\langle z_f | \exp\left[-rac{i}{\hbar}\hat{H}\Delta t
ight] | z_i
angle \ \sim \int\limits_{z(t_i)=z_i} [dz][dp] \ \exp\left[rac{i}{\hbar}S_{
m cl}[z,p]
ight]$$

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣。

The operator formalism with the full Hamiltonian operator \hat{H} corresponds to a Hamiltonian path integral formulation where the path integral action is the pure classical action $S_{\rm cl}$ with **no** quantum corrections.

$$\langle z_f | \exp\left[-\frac{i}{\hbar}\hat{H}\Delta t\right] | z_i \rangle \sim \int_{z(t_i)=z_i}^{z(t_f)=z_f} [dz][dp] \exp\left[\frac{i}{\hbar}S_{\rm cl}[z,p]\right]$$

Full Quantum Hamiltonian $\hat{H} = \hat{H}_{\rho} - \frac{\hbar^2}{2} \nu_{\rho}(\hat{z})$

Fu

The Even Scalar ν_{ρ} Particle in Curved Space

Operator Formalism \leftrightarrow Path Integral Formalism

(starting with DeWitt 1957)

The operator formalism with the full Hamiltonian operator \hat{H} corresponds to a Hamiltonian path integral formulation where the path integral action is the pure classical action $S_{\rm cl}$ with **no** quantum corrections.

$$\langle z_{f} | \exp \left[-\frac{i}{\hbar} \hat{H} \Delta t \right] | z_{i} \rangle \sim \int_{z(t_{i})=z_{i}}^{z(t_{f})=z_{f}} [dz][dp] \exp \left[\frac{i}{\hbar} S_{cl}[z, p] \right]$$

Il Quantum Hamiltonian
$$\hat{H} = \hat{H}_{\rho} - \frac{\hbar^{2}}{2} \nu_{\rho}(\hat{z})$$
$$Classical Action
$$S_{cl}[z, p] = \int dt \left(p_{A} \dot{z}^{A} - H_{cl} \right)$$$$

A Comparative Study of Laplacians in Riemannian and Antisymplectic Geometry

2 Riemannian Geometry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

Odd \triangle Operator in Antisymplectic Geometry

$$2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{\kappa}{4}$$

・ロト ・ 理 ト ・ ヨ ト ・

 $\exists \rightarrow$

Conclusions

Odd Δ Operator in Antisymplectic Geometry

$$2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{\kappa}{4}$$

・ロト ・ 理 ・ ・ ヨ ・ ・

 $\exists \rightarrow$

24/25

• Characterized by nilpotency

Conclusions

Odd Δ Operator in Antisymplectic Geometry

$$2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{R}{4}$$

- Characterized by nilpotency
- and characterized by a ρ independence argument.

Anti-Poisson Geometry Riemannian Geometry Conclusions Conclusions Odd Δ Operator in Even \triangle Operator in Antisymplectic Geometry **Riemannian Geometry** $2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{\kappa}{4}$ R $\Delta = \Delta_{\rho} + \nu_{\rho} \rightarrow \Delta_{\rho_{g}}$ • Characterized by nilpotency • and characterized by a ρ independence argument.

イロト イヨト イヨト イ

Conclusions

Even ∆ Operator in Riemannian Geometry

$$\Delta = \Delta_{\rho} + \nu_{\rho} \rightarrow \Delta_{\rho_g} - \frac{\kappa}{4}$$

• Characterized by a ρ independence argument.

Odd Δ Operator in Antisymplectic Geometry

$$2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{\kappa}{4}$$

• Characterized by nilpotency

イロト イポト イヨト イヨト

24/25

 and characterized by a ρ independence argument.

Anti-Poisson Geometry Riemannian Geometry Conclusions Conclusions Even Δ Operator in Odd Δ Operator in **Riemannian Geometry** Antisymplectic Geometry $\Delta = \Delta_{\rho} + \nu_{\rho} \rightarrow \Delta_{\rho_{\sigma}} - \frac{R}{4}$ $2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{R}{4}$ Characterized by nilpotency • Characterized by a ρ • and characterized by a ρ independence argument. independence argument. Particle in Curved Space Δ is the full quantum Hamiltonian $\hat{H} = \hat{H}_{\rho} - \frac{\hbar^2}{2} \nu_{\rho}(\hat{z})$ in the Schrödinger representation.

Conclusions

Even ∆ Operator in Riemannian Geometry

$$\Delta = \Delta_{\rho} + \nu_{\rho} \rightarrow \Delta_{\rho_g} - \frac{\kappa}{4}$$

• Characterized by a ρ independence argument.

Odd Δ Operator in Antisymplectic Geometry

$$2\Delta = 2\Delta_{\rho} + 2\nu_{\rho} = 2\Delta_{\rho} - \frac{R}{4}$$

• Characterized by nilpotency

 and characterized by a ρ independence argument.

Particle in Curved Space

 Δ is the full quantum Hamiltonian

$$\hat{H} = \hat{H}_{\rho} - \frac{\hbar^2}{2} \nu_{\rho}(\hat{z})$$

in the Schrödinger representation.

Curvature term in Quantum Master Equation

$$(W, W) = 2i\hbar\Delta_{\rho}W - \hbar^2 \frac{R}{4}$$

イロト イポト イヨト イヨト

Important 2-loop effect.

References

- K. Bering, A Note on Semidensities in Antisymplectic Geometry, J. Math. Phys. 47 (2006) 123513, arXiv:hep-th/0604117.
- I.A. Batalin and K. Bering, Odd Scalar Curvature in Field-Antifield Formalism, J. Math. Phys. 49 (2008) 033515, arXiv:0708.0400.
- I.A. Batalin and K. Bering, Odd Scalar Curvature in Anti-Poisson Geometry Phys. Lett. B663 (2008) 132, arXiv:0712.3699.
- I.A. Batalin and K. Bering, A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry, arXiv:0809.4269