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Summary of the main results

Generalized Bargmann-Wigner equations in AdSD :

For arbirary Young-tableaux and (critical) mass, explicit construction of

the twisted-adjoint modules and derivatives i.e. complete conditions

imposed on the primary Weyl tensors

Explicit construction of unfolded equations for unitary massless tensor

[Metsaev] fields in AdSD, starting from Skvortsov’s construction in flat

spacetime. We recover the Alkalaev–Shaynkman–Vasiliev (ASV) p-form

module as being glued to the correct zero -form.

Complete system of unfolded equations in all the non-unitary [Metsaev]

massless cases as well, however without identifying the ASV-like potential.
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The gauge principle [H. Weyl, 1929]

The theory of higher-spin gauge fields has witnessed two major achievements

with Vasiliev’s formulation of fully nonlinear field equations in four

space-time dimensions [M. A. Vasiliev, 1990 – 1992] and in D space-time

dimensions [hep-th/0304049]. Some salient features are

Manifest diffeomorphism invariance without any explicit reference to a

metric

Manifest Cartan integrability, hence gauge invariance under

infinite-dimensional HS algebra

Formulation in terms of two infinite-dimensional unitarizable modules of

so(2, D − 1) : The adjoint and twisted-adjoint representations  master

1-form and master zero -form, resp.

N. Boulanger (SNS Pisa) Unfolding tensor fields in AdS 4th Sakharov Conf. 4 / 32



The gauge principle [H. Weyl, 1929]

The theory of higher-spin gauge fields has witnessed two major achievements

with Vasiliev’s formulation of fully nonlinear field equations in four

space-time dimensions [M. A. Vasiliev, 1990 – 1992] and in D space-time

dimensions [hep-th/0304049]. Some salient features are

Manifest diffeomorphism invariance without any explicit reference to a

metric

Manifest Cartan integrability, hence gauge invariance under

infinite-dimensional HS algebra

Formulation in terms of two infinite-dimensional unitarizable modules of

so(2, D − 1) : The adjoint and twisted-adjoint representations  master

1-form and master zero -form, resp.

N. Boulanger (SNS Pisa) Unfolding tensor fields in AdS 4th Sakharov Conf. 4 / 32



The gauge principle [H. Weyl, 1929]

The theory of higher-spin gauge fields has witnessed two major achievements

with Vasiliev’s formulation of fully nonlinear field equations in four

space-time dimensions [M. A. Vasiliev, 1990 – 1992] and in D space-time

dimensions [hep-th/0304049]. Some salient features are

Manifest diffeomorphism invariance without any explicit reference to a

metric

Manifest Cartan integrability, hence gauge invariance under

infinite-dimensional HS algebra

Formulation in terms of two infinite-dimensional unitarizable modules of

so(2, D − 1) : The adjoint and twisted-adjoint representations  master

1-form and master zero -form, resp.

N. Boulanger (SNS Pisa) Unfolding tensor fields in AdS 4th Sakharov Conf. 4 / 32



The gauge principle [H. Weyl, 1929]

The theory of higher-spin gauge fields has witnessed two major achievements

with Vasiliev’s formulation of fully nonlinear field equations in four

space-time dimensions [M. A. Vasiliev, 1990 – 1992] and in D space-time

dimensions [hep-th/0304049]. Some salient features are

Manifest diffeomorphism invariance without any explicit reference to a

metric

Manifest Cartan integrability, hence gauge invariance under

infinite-dimensional HS algebra

Formulation in terms of two infinite-dimensional unitarizable modules of

so(2, D − 1) : The adjoint and twisted-adjoint representations  master

1-form and master zero -form, resp.

N. Boulanger (SNS Pisa) Unfolding tensor fields in AdS 4th Sakharov Conf. 4 / 32



Unfolded equations and FDA

A free differential algebra R is sets {Xα} of a priori independent variables

that are differential forms obeying first-order equations of motion whereby

dXα are equated on-shell to algebraic functions of all the variables expressed

entirely using the exterior algebra, viz.

Rα := dXα +Qα(X) ≈ 0 , Qα(X) :=
∑
n

fαβ1...βnX
β1 · · ·Xβn .

The nilpotency of d and the integrability condition dRα ≈ 0 require

Qβ
∂LQα

∂Xβ
≡ 0 .

For Xα
[pα] with pα > 0 , gauge transformation preserving Rα ≈ 0 :

δεX
α := dεα − εβ ∂L

∂Xβ
Qα .
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The principle of unfolding [Vasiliev, 1988 –]

The concepts of spacetime, dynamics and observables are derived from

infinite-dimensional FDA’a [more on this in the talk by Per Sundell].

Unfolded dynamics is an inclusion of local d.o.f. into field theories

described on-shell by flatness conditions on generalized curvatures, and

generically infinitely many local zero -form observables in the presence of

a cosmological constant.

Spin-2 couplings arise (albeit together with exotic higher-derivative

couplings) in the limit in which the so(2, D − 1) -valued part of the

higher-spin connection one-form is treated exactly while its remaining

spin s > 2 components become weak fields together with all curvature

zero -forms
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From totally symmetric to arbitrary shapes ?

Although a set of fully nonlinear unfolded equations for nonabelian totally

symmetric gauge fields is now achieved, its extension to nonabelian

mixed-symmetry gauge fields is presently unknown.

Such massless gauge fields start being propagated in flat spacetime as

soon as D > 5 and in constantly curved spacetime as soon as D > 4 .

[Unitary massless mixed-symmetry “hook-like” tensor fields in AdS4

decompose in the flat limit into topological dittos plus one symmetric

massless field in R1,3 [Brink–Metsaev–Vasiliev (2000)].]
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Free field equations in metric-like formalism

In flat spacetime, field equations for arbitrary mixed-symmetry fields were

proposed in [J. M. F. Labastida, 1987 – 1989], then later rederived from

generalized Bargmann–Wigner equations (BW), thereby proving the

correctness of the p.d.o.f. [X. Bekaert, N.B., 2002 – 2006].

In AdSD background, Metsaev [R. Metsaev, 1995 – 1997] gave gauge-fixed

equations for arbitrary mixed-symmetry gauge fields  unitary (as well

as non-unitary) shortened irreps of o(2, D − 1) .

In conformity with the principles of Gauge Invariance and Unfolding ↪→
necessity to obtain the generalized Bargmann–Wigner equations for arbitrary

mixed-symmetry fields in AdSD .
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Free field equations in frame-like formalism

An important step was achieved by Skvortsov [E. D. Skvortsov, 2008] with the

identification and explicit construction of the correct finite-dimensional

iso(1, D − 1) p-form modules to be glued to the corresponding generalized

Weyl tensors used in [X. Bekaert, N.B., 2002] for the construction of the

generalized BW equations.

↪→ Complete unfolded equations for arbitrary mixed-symmetry free massless

fields in flat spacetime [E. D. Skvortsov, 2008] : Our starting point for the

derivation of the unfolded equation in AdSD spacetimes, by the well-known

radial reduction technique.
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Linearization

In expansions around maximally symmetric backgrounds with isometry

algebras g , the Weyl zero -form module C0 [for one irreducible field, say]

is a g-irrep that is infinite-dimensional for generic masses (including

critically massless cases in backgrounds with non-vanishing Λ) in which

case we refer to it as twisted-adjoint g-module.

The twisted-adjoint zero -forms consist of a primary Weyl tensor – such as

a scalar field φ, Faraday tensor Fab or spin-2 Weyl tensor Cab,cd – and

secondary, or descendant, Weyl tensors given on-shell by derivatives of

the primary Weyl tensor.
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One of our results : BW equations in AdSD

The generalized BW equations for the primary Weyl tensor :

∇(i)C ≈ 0 , (∇2 −M2)C ≈ 0 , B(∇)C ≡ 0 , C := X0(Θ
∗
) .

where

C is the primary Weyl tensor, the Lorentz-tensor with smallest shape Θ
∗

among all the Lorentz-tensors in the zero-form module C0 of the anti-de

Sitter algebra ;

The differential operator ∇(i) acts by taking a Lorentz-covariant

divergence in the ith row of C, projecting afterwards.

(∇2 −M2)C ≈ 0 is the wave equation for C and B(∇) takes some

∇ -curls of C on some of its columns. See examples !
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Integration of the 0-form constraints

Θ
∗
2 := , B2,1(·) :

·

≡ 0 ⇒

C(Θ
∗
2) = (∇(p2+1)

)s23ϕ2(Θ∗) =
· ·· ·

,

δϕ2(Θ∗) = ∇(p2)
ε2(Θ∗

′
) =

·

By means of the integration lemma, the primary Weyl tensor C(Θ
∗
2
) with Bianchi identity

B2,1 (Θ
∗
2
) ≡ 0 is shown to correspond to a massless gauge field ϕ2 (Θ∗) whose shape is

obtained from Θ
∗
2

by cutting off one row from its second block and by adding one row to its

third block. It possesses a one-derivative gauge symmetry with parameter ε2 (Θ∗
′
) whose

shape is obtained from Θ∗ by deleting 1 cell in the 2nd block.
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Gluing C0 to p-form modules

- degree

?
grade

•

•

•

•

•

•

•

C

ϕ1 ϕ2

C0

8>>>>>><>>>>>>:

fR1

8>>><>>>:
9>>>=>>>; fR2

Fig.: An unfolded module of the form R = R′ D eR2 where (i) R′ = C0 D eR1 is a

submodule consisting of a Weyl zero -form module C0 with primary Weyl tensor C and dual

subcycle eR1 (“potential module”) with dynamical field ϕ1 ; and (ii) eR2 is a dual cycle

(“dual potential module”) with dynamical field ϕ2 (“dual potential’). The dashed lines

indicate “gluings” by non-trivial generators in σ−
0

(whose existence conditions depend on

the nature of the underlying symmetry Lie algebra g.
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Massive-spin 1 field in flat spacetime. A.

TheWeyl zero -form module C0 is spanned by Lorentz-tensors with shapes

Θ
∗

= , Θ∗11
= , Θ∗12

= , Θ∗21
= , Θ∗22

= , etc.

The first two levels of the Weyl zero -form constraint read

∇Ca + ebΦab +
M

2
ebΦa,b ≈ 0 (α = 0) ,

∇Φab + ecΦabc +
M

4
ecΦab,c −

M
2

(D − 1)
e(aCb) ≈ 0 (α = 11) ,

∇Φa,b + ecΦc[a,b] +
2M
D − 1

e[aCb] ≈ 0 (α = 12) .

There are no primary Bianchi identities (i.e. the primary Weyl tensor Ca is

unconstrained), while there is a secondary one at the first level, viz.

∇[aΦb,c] ≈ 0 . Its integration yields dA+ 1
2e
aebΦa,b ≈ 0 .
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Massive spin-1 field in flat space. B.

Revisiting the zeroth level (α = 0), its totally anti-symmetric part reads

∇[aCb] +M ∇[aAb] ≈ 0 , which can be integrated using a 0 -form χ, yielding

the sytem of constraints

dA+
1
2
eaebΦa,b ≈ 0 , dχ+MA+ eaCa ≈ 0 .

For M > 0 we have a contractible cycle S = {χ,Z}

dχ+ Z ≈ 0 , dZ ≈ 0 , Z := MA+ eaCa ,

which manifests the massive Stückelberg shift symmetry that can be used to

fix the gauge

χ
!= 0 ⇒ A = − 1

M
eaCa .
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Foliation 1.

Take a FDA R̂ with curvature constraints

T̂ bα := d Ŵ bα + Q̂bα(Ŵ ) ≈ 0

over a base M̂D+1 with a smooth foliation i : M̂ ×R→ M̂i ⊆ M̂ where M̂i is

a region of M̂ foliated with leaves ML := i(M̂ , L) of codimension 1 and a

non-vanishing normal 1-form N = dφ , where φ : M̂i → R is defined by

φ(ML) = L (A)dSD-radius. Introduce the vector field ξ parallel to N and

such that iξN = 1 . One has (n > 0)

(Lξ)nŴ bα = Û bα
n +N V̂ bα

n , iξÛ
bα
n = 0 = iξV̂

bα
n ,

X̂bα := Û bα
0
, Ŷ bα := V̂ bα

0
, Û bα := Û bα

1
, V̂ bα := V̂ bα

1

(where V̂ bα
n ≡ 0 if pbα = 0 ) and Û bα

n ≡ (Lξ)nX̂bα , V̂ bα
n ≡ (Lξ)nŶ bα .
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Foliation 2.

Defining R̂bα
n := (1−Niξ)(Lξ)nT̂ bα and Ŝbα

n := −iξ(Lξ)nT̂ bα ,

the original constraints T̂ bα ≈ 0 become

R̂bα
n = (d−NLξ)Û bα

n + f̂ bα
n ({Ûm}nm=0) ≈ 0 ,

Ŝbα
n = (d−NLξ)V̂ bα

n + ĝbα
n({Ûm, V̂m}nm=0) − Û bα

n+1 ≈ 0 for pbα > 1 ,

where the structure functions are given by

f̂ bα
n := (1−Niξ)(Lξ)nQ̂bα(X̂ +NŶ ) = (Lξ)nQ̂bα(X̂) ,

ĝbα
n := −iξ(Lξ)nQ̂bα(X̂ +NŶ ) = −(Lξ)n

(
Ŷ

bβ∂bβQ̂bα(X̂)
)

for pbα > 1 .
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Foliation 3.

In terms of the pull-back (U bα
n , V

bα
n ;Rbα

n, S
bα
n ) := i∗L(Û bα

n , V̂
bα
n ; R̂bα

n, Ŝ
bα
n ) , one gets

Rbα
n = dU bα

n + f̂ bα
n ({Um}nm=0) ≈ 0 ,

Sbα
n = dV bα

n − U bα
n+1 + ĝbα

n({Um, Vm}nm=0) ≈ 0 for pbα > 1 .

Define f bα(X) := Q̂bα(X) and gbα(X,Y ) := −Y bβ∂bβf bα(X) . The closed

subsystem

Rbα := dXbα + f bα(X) ≈ 0 ,

Sbα := dY bα + gbα(X,Y )− U bα ≈ 0 for pbα > 1 ,

P bα := dU bα − gbα(X,U) ≈ 0 ,

contains three sets of zero -forms, namely

{Φbα0

} , {U bα0

} = {i∗LLξΦ̂bα0

} and {Y bα0

} = {i∗LiξÂbα1

} .
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Foliation 4.

An irreducible model [one field] may arise from subsidiary constraints on :

i) the normal Lie derivatives

i∗LLξX̂
bα ≡ U bα ≈ −∆bα(X,Y ) ,

where the functions ∆bα(X,Y ) thus assign scaling weights to the fields

under rescalings in L ; and

ii) zero -forms

ΞR
0

(Xbα0

, Y bα0

) ≈ 0 ,

where ΞR
0

denotes a set of functions.

Cartan integrability requires that

d∆bα − gbα(X,∆) ≡ (Rbβ∂(X)bβ + S
bβ∂(Y )bβ )∆bα ,

dΞR
0

≡ (Rbα0

∂
(X)bα0 + Sbα0

∂
(Y )bα0 )ΞR

0

.
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Foliation 5.

The former condition ensures the integrability of the constrained curvature

equations

Sbα|U=−∆ = dY bα + ∆bα(X,Y ) + gbα(X,Y ) ≈ 0 ,

since the U -dependent terms in dSbα cancel separately prior to imposing

U bα ≈ −∆bα(X,Y ) . The subsidiary constraints can equivalently be imposed

directly on M̂D+1 as(
Û bα, V̂ bα) ≈

(
∆bα(X̂, Ŷ ),Υbα(X̂, Ŷ )

)
, ΞR

0

(X̂bα0

, Ŷ bα1) ≈ 0 ,

where the functions Υbα can be determined from ∆bα using Cartan

integrability. This is the approach we actually used to reduce Skvotsov’s

system from flat (D + 1) spacetime to AdSD .
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Brink–Metsaev–Vasiliev spectrum

As found by Metsaev (1995), a given so(D − 1)-spin of shape Θ consisting

of B blocks yields B inequivalent massless lowest-weight spaces D(eI
0
; Θ)

of so(2, D − 1) , each having a single singular vector associated with the

Ith block of Θ (I = 1, . . . , B ).

The partially massive nature of the cases with B > 1 later led Brink,

Metsaev and Vasiliev (2000) to conclude that upon adding Stückelberg

fields {χ(Λ; Θ′)}Θ′∈ΣIBMV(Θ) (associated with all blocks except the Ith

one) the resulting extended system must have a smooth flat limit in the

sense of counting local degrees of freedom.
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Since only D(e1
0
; Θ) is unitary, BMV conjectured that the fully gauge

invariant action SΛ
I := S[ϕ(Λ;M2

I ; Θ), {χ(Λ; Θ′)}] should have the

flat-space limit

BMV conjecture : SΛ
I

λ→0−→
∑

Θ′∈ΣIBMV(Θ)

(−1)εI (Θ′)SΛ=0[ϕ(Λ = 0,Θ′)] ,

ΣIBMV(Θ) = Θ|so(D−2) \ ΣIth block(Θ) ,

where :

(i) ΣIth block(Θ) is the subset of Θ|so(D−2) obtained by deleting at least one

cell in the Ith block ; and

(ii) the phase factors (−1)εI (Θ′) are all positive iff I = 1 .
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Procedure. 1

Group-theoretically, the BMV conjecture implies that

D(eI
0
; Θ) λ→0−→

⊕
Θ′∈ΣIBMV(Θ)

(−1)εI (Θ′)D(Λ=0;M2=0; Θ′) . (1)

The dimensional reduction in ΣIBMV(Θ) and the fact that the zero -forms carry

the local unfolded degrees of freedom suggests the following procedure :

i) Unfold the tensor gauge field ϕ̂(Θ̂) in R2,D−1 and foliate a region of

R2,D−1 with AdSD leaves of inverse radius λ = 1/L and with normal

vector field ξ obeying ξ2 = −1 , the radial vector field ;

ii) Set the radial Lie derivative (Lξ + λ∆)X̂ = 0 , where ∆ are scaling

dimensions compatible with Cartan integrability ;
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Procedure. 2

iii) Constrain the shapes Θ̂bα (α̂ = 0, 1, . . . ) in the Weyl zero -form module

Ĉ0(Λ=0;M2=0; Θ̂) by demanding their (p
I

+ 1)st row to be transverse to

ξ where p
I

=
∑I
J=1 hJ ;

iv) Demonstrate (via harmonic expansion) that the unfolded system in AdSD

carries the massless degree of freedom D(eI
0
; Θ) found by Metsaev for

massless mixed-symmetry fields in AdSD ;

v) Take the flat limit without fixing any massive shift symmetries and show

that the resulting unfolded system in flat space carries the massless

degrees of freedom on the right-hand-side of (1) and contains the

corresponding D-dimensional Skvortsov modules.
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Oscillator realization and Howe-dual

algebra

Take bosonic (+) or fermionic (−) oscillators satisfying

[αi,a, ᾱj,b] := αi,aᾱ
j,b + (−1)

1
2 (1±1)ᾱj,bαi,a = δji δ

b
a ,

where a, b = 1, . . . , D transform in the fundamental representation of

l ∼= (gl(D; C), so(D; C), sp(D; C)), and i = 1, 2, . . . , ν± are auxiliary indices.

One has the associated Howe-dual algebras l̃±

l = gl(D; C) : l̃± = gl(ν±) ,

l = so(D; C) : l̃+ = sp(2ν+; C) , l̃− = so(2ν−; C) ,

l = sp(D; C) : l̃+ = so(2ν+; C) , l̃− = sp(2ν−; C) .
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Generalized Schur Modules

The oscillator realization of the generators of l̃± reads

N i
j = 1

2{ᾱ
i,a, αj,a} := 1

2 (ᾱi,aαj,a + αj,aᾱ
i,a) ,

Tij = αi,aαj,bJ
ab , T ij = ᾱi,aᾱj,bJab .

The oscillator algebra can be realized in various oscillator-algebra modules

M± . For given M±, the corresponding generalized Schur module

S ± ≡
⊕
eλ±

C⊗ |λ̃±〉 ,

where |λ̃±〉, which we shall refer to as the Schur states, are the ground states

of l̃± in M± with Howe-dual highest weights λ̃± = {λ̃±i }
ν±
i=1 .

N. Boulanger (SNS Pisa) Unfolding tensor fields in AdS 4th Sakharov Conf. 26 / 32



Cell operators and master fields

The oscillator formalism can be used to define the cell operators [Olver (1983),

Metsaev(1995)]
{
β±(i),a, β̄

±(i),a
}ν±
i=1

as a set of operators on the oscillator

module M± that induces a non-trivial action on the corresponding Schur

modules S ± and obeying the amputation and generation properties

(N i
j − δij(λ̃±i − 1))β±(i),a|∆〉 = 0 ,

(N i
j − δij(λ̃±i + 1))β̄±(i),a|∆〉 = 0 , 1 6 i 6 j 6 ν± , |∆〉 ∈ S ± .

In terms of these cell operator, we provided a reformulation of Skvortsov’s

equations using master-fields :

X :=
∞∑
p=0

Xp ∈ R =
⊕
p>0

Rp , Rp := Ωp(U)⊗S ± ,
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Master-field reformulation

The Skvortsov equations amount to subjecting X to : i) curvature constraints ;

and ii) irreducibility conditions

R :=
(
∇+ σ−0

)
X ≈ 0 , σ−

0
:=

∑
p>p′

(σ0)p+1
p′ ,

(σ0)p+1
p′ := −ie(p′+1) · · · e(p+1)P(p+ 1, p′ + 1) ,

where ∇ := d− i
2ω

abMab, e(i) := eaβ(i),a and P(p+ 1, p′ + 1) : R→ Rp is a
projector defined by

P(p+ 1, p′ + 1)X :=

(
δ {N(p′ + 1, p′ + 2), N(p′ + 2, p′ + 3), . . . , N(p, p+ 1)}Xp′ (p > p)′

Xp (p = p′)
,

where δ{λ1, . . . , λk} := δλ1,0 · · · δλk,0 for λi ∈ Z, i = 1, . . . , k.
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Step-by-step procedure. 1

1) Skvortsov’s equations in M̂D+1 with signature (2, D − 1) read

bT :=
“b∇+ bσ−0 ”cW ≈ 0 , bσ−0 := −i

X
p>p′

bE(p′+1) · · · bE(p+1)
bP(p+ 1, p′ + 1) ,

with b∇ := d− i
2
bΩABcMAB , bE(i) := bEA bβA,(i) and cW ∈ bR =

L
p>0 Ωp

(bU)⊗ cSD+1 , where Û is a region of M̂D+1 that admits a foliation with

AdSD leaves.

2) Decompose the variables and generalized curvatures into components

parallel and transverse to the radial vector field

Ê(i) = ê(i) +Nξ̂(i) , ∇̂ê(i) = λNê(i) , ∇̂ξ̂(i) = λê(i) ,

∇̂λ = −λ2N , Ŵp := X̂p +N Ŷp−1 , T̂ = R̂ +N Ŝ
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Step-by-step procedure. 2

3) Constrain the radial derivatives in terms of a massive parameter f :

(Lξ + λ∆[p])X̂p ≈ 0 , (Lξ + λΥ[p])Ŷp−1 ≈ 0 ,

where ∆[p] = ∆[p]({N̂ i
i }νi=1) idem Υ[p] , the reduced curvatures R̂ and Ŝ

form a closed subsystem with variables X̂ and Ŷ . Cartan integrability

(on M̂ : ∇̂R̂p+1 ≈ 0) fixes the scaling dimensions

∆[p] = ∆f
[p] := N̂p+1

p+1 + f[p]({N̂ i
i }νi=1,i6=p+1) ,

f[p] = −p+ f
(
N̂1

1 + 1, . . . , N̂p
p + 1, N̂p+2

p+2 , . . . , N̂
ν
ν

)
4) Show that a generic value µ for C2 [gλ]| cS (Λ;f ;bΘ)

corresponds to two dual

values f± s.t. f+ + f− = D − 1 that turn out to be f+ = e0 , the lowest

energy of the lowest-weight space D(e0,Θ) : [ε0 := 1
2 (D − 3)]

f±[0],µ := ε0 + 1±
√

(N̂1
1 + ε0 + 1)2 + µ− C2 [m̂] ≡ f±µ (N̂2

2 , N̂
3
3 , . . .) .
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4) Examine the critical limit where f+ approaches Metsaev’s massless values

eI
0

= s
I

+D − 2− p
I

, for which f−
I

admits a projection of the radially

reduced Weyl zero -form : ξ̂(p
I
+1)X̂

0 ≈ 0 . Cartan integrability of the

above constraint amounts to(
λ ê(p

I
+1) + i[ξ̂(p

I
+1), ê(1)]

)
X̂0 ≡ 0 modulo

(
λ∆f

[0] + iξ̂(1)

)
X̂0 ≈ 0 .

This equation indeed has the unique solution

f− = f−p
I

:= p
I

+ 1− N̂p
I
+1

p
I
+1 .
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5) Show the smoothness of the flat limit of the projected massless system,

and how the BMV conjecture is realized in an enlarged setting with extra

topological fields arising in the flat limit. The latter represent the

unfolded “frozen” Stückelberg fields of the Ith block whose Weyl zero

form is set to zero in the aforementioned projection of the zero -form.

6) Show the appearance of contractible cycle in the potential sector, except

for I = 1 where we identify the dynamical h1-form potential as the

Alkalaev–Shaynkman–Vasiliev potential and obtain its full unfolded

equations

R̂h1+1
ASV := (∇̂ − iNξ̂(h1+1))Ûh1 − i ê(1) · · · ê(h1+1)P̂(h1 + 1, 1)X̂0 ≈ 0 .
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