Modelling the ISM in Star Forming Galaxies Evolution of Large and Small Scale Structures

Dieter Breitschwerdt

Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin

http://homepage.univie.ac.at/dieter.breitschwerdt/

13.06.2009

<u>In collaboration with:</u>

Miguel A. de Avillez (University of Évora, Portugal) Christian Dettbarn (University of Heidelberg) Jenny Feige (University of Vienna) Burkhard Fuchs (University of Heidelberg)

Overview

- Introduction
- High Resolution Simulations of ISM: HD and MHD
 - Large Scale Structure: Fountain Flow
 - Small Scale Structure: Filaments and SCL's
- Results
 - Comparison to observations:
 - Volume filling factors, OVI column densities,
 - Chandrasekhar-Fermi law, Stability of gas phases
 - Some Characteristics of ISM Turbulence
 - Local ISM (Local Bubble)
- Summary & Conclusions

13.06.2009

Introduction

Spitzer image of LMC (Credit: NASA/JPL)
10⁶ objects in the IR
Difference for the IR

• Diffuse emission from dust

• Low resolution: ISM appears smooth and distributed into distinct phases: molecular (MM), cold (CNM), warm (WNM + WIM: neutral + ionized), hot (HIM)

• High resolution: ISM is frothy, filamentary, fractal, not in pressure equilibrium, turbulent (supersonic, superalfvénic)

Models like 3-phase (McKee & Ostriker 1977) and "chimney" model (Norman & Ikeuchi 1989) capture some structure but not the essential physics

Standard ISM picture:

FIG. 1.—Cross section of a characteristic small cloud. The crosshatched region shows the cold core, which gives the usual optical absorption lines. Next is the warm neutral medium (WNM) with ionization produced by soft X-ray background. The outer layer (WIM) is gas largely ionized by stellar UV background. Typical values of hydrogen density *n*, temperature *T*, and ionization $x = n_e/n$ are shown for each component, except that a higher than average value of the soft X-ray flux has been assumed in order to produce a significant amount of WNM at this pressure.

Fig. 2.—Small-scale structure of the interstellar medium. A cross section of a representative region $30 \text{ pc} \times 40 \text{ pc}$ in extent is shown, with the area of the features being approximately proportional to their filling factors. A supernova blast wave is expanding into the region from the upper right. The radius of the neutral cores of the clouds (represented by crosshatching) ranges from about 0.4 to 1 pc in this small region; all the clouds with cores have warm envelopes (*dotted regions*) of radius $a_w \sim 2.1$ pc. A few clouds are too small to have cores. The envelopes of clouds inside the SNR are compressed and distorted.

~50% of WNM is unstable (Heiles 2001, Heiles & Troland 2003)
global pressure equilibrium does not exist: 500 < P/k < 4000 K cm-3 (Jenkins & Tripp 2006)

3-phase ISM (MO77)

overall pervasive HIM: (n,T) = (10^{-2.5} cm⁻³, 10^{5.7} K) regulated by SNe: f_V ~ 0.5-0.7
HIM interspersed with clouds
clouds consist of envelopes of CNM, WNM, WIM

Problems:

- SNe occur partly in clusters
- $f_v \sim 0.2 0.3$
- DIG not predicted
- more WNM than predicted
- CNM is mostly in filaments not in clouds

Improvements:

FIG. 5.—A sketch of some of the obvious qualitative aspects of the halo structure in the chimney model. The observational characteristics and effects on galaxy evolution of these disk-halo connections are discussed in §§ IV and V.

SB blow-/break-out into halo

"clustered" fountain

13.06.2009

Chimney Model (NI 89)

- superbubble expansion is dominating random SNRs
- disk-halo interaction is taken into account ("break-out")
- localized galactic fountain established
- $f_V(HIM) \sim 0.3 0.4$

Problems:

- constant ambient density unrealistic for SB evolution
- SB break-out dynamics fishy
- stability of phases?(e.g. 50% of WNM unstable)

• Reynolds Number is high: $\operatorname{Re} = \frac{uL}{v} \approx 3 \times 10^3 M L [pc]n[cm^{-3}]$ i.e. $10^5 - 10^7$ (Elmegreen & Scalo 2004); M=u/c ... Mach number

ISM is highly turbulent and compressible! (predicted already by C.F. v. Weizsäcker, 1951)

- Possible driving sources:
 - stellar: HII regions, stellar winds, supernovae (SNe), superbubbles (SBs)
 - galactic rotation
 - self-gravity
 - fluid instabilities: RT-, KH-, Parker instability, MRI etc.
 - MHD: streaming instability (cosmic rays)

SNe dominate energy input in spirals (Mac Low & Klessen 2004):

 $\frac{dE}{dt} \approx -\frac{1}{2} \rho \frac{v_{rms}^3}{L_0} \approx 3 \times 10^{-26} \left(\frac{\eta_{SN}}{0.1}\right) \left(\frac{\sigma_{SN}}{1\text{SNu}}\right) \left(\frac{H_c}{100\text{pc}}\right)^{-1} \left(\frac{R_{SF}}{15\text{kpc}}\right)^{-2} \left(\frac{E_{SN}}{10^{51}\text{erg}}\right) \text{ erg cm}^{-3} \text{ s}^{-1}$

13.06.2009

Modeling a SN driven ISM

Things to remember:

- choose a "representative" patch of the ISM
 - large enough to be not severely influenced by BC's
 - small enough to put on a grid with sufficient resolution
- choose a sufficiently large extension perpendicular to the disk to capture disk-halo-disk circulation flows
- Evolution time: results should not depend on initial set-up: erase "memory effects"

Philosophy: "bottom-up" model

- include physical processes step by step
- focus on the most important ones:
 - \rightarrow heating and cooling
 - \rightarrow gravitational potential by stars (self-gravity in some sims.)
 - \rightarrow galactic magnetic field and its evolution

High Resolution Simulations

- Solve full-blown HD/MHD equations on a large grid: 1 kpc × 1kpc × ± 10 kpc (Δx=0.625 pc)
- Type Ia,b/II SNe: random + clustered (~60%), IMF
- Background heating due to diffuse UV photon field
- SFR ∝ local density/temp.: n >10 cm⁻³/T≤100 K
 → formation and motion of OB associations (v_{rms} ~ 5 km/s)
- Evolution of computational volume for $\tau \sim 400 \text{ Myr}$

sufficiently long to erase memory of initial conditions

- Galactic gravitational field by stars (Kuijken & Gilmore, 1989)
- 3D calculations on parallel processors with AMR

<u>Equations</u>

• HD/MHD system

 $\frac{\partial \rho}{\partial t} + \nabla(\rho \,\vec{u}) = q$ Mass conservation $\frac{\partial(\rho \,\vec{\mathbf{u}})}{\partial t} + \nabla(\vec{\mathbf{T}}) = \rho \,\vec{\mathbf{F}} + \vec{\mathbf{m}}$ Momentum conservation $\frac{\partial W}{\partial t} + \nabla \vec{S} = \rho \vec{u} (\vec{F} + \vec{m}) + \dot{W}_0$ Energy conservation $\vec{E} = -\frac{1}{2} (\vec{u} \times \vec{B})$ Maxwell Eqs. $\frac{\partial \vec{B}}{\partial t} = -c (\nabla \times \vec{E}) \text{ (with } \nabla \vec{B} = 0 \text{ as initial condition!)}$ (ideal MHD)

with

$$\ddot{\mathbf{T}} = \rho \, \vec{\mathbf{u}} \otimes \vec{\mathbf{u}} + \begin{bmatrix} \mathbf{P}_{g} + \frac{\mathbf{B}^{2}}{8\pi} \end{bmatrix} \bullet \vec{\mathbf{I}} - \frac{\vec{\mathbf{B}} \otimes \vec{\mathbf{B}}}{4\pi} & \text{Momentum flux} \\ \text{density tensor} \\ \mathbf{W} = \frac{1}{2}\rho \, \mathbf{u}^{2} + \frac{\mathbf{P}_{g}}{\gamma_{g} - 1} + \frac{\mathbf{B}^{2}}{8\pi} & \text{Total energy density} \\ \vec{\mathbf{S}} = \left(\frac{1}{2} \, \mathbf{u}^{2} + \frac{\gamma_{g}}{\gamma_{g} - 1} \frac{\mathbf{P}_{g}}{\rho}\right) \rho \, \vec{\mathbf{u}} + \frac{\vec{\mathbf{E}} \times \vec{\mathbf{B}}}{4\pi} & \text{Energy flux density} \end{cases}$$

Boundary conditions: mass, momentum and energy input from SNRs/SBs: Source terms: $q=M_{ej}/(V_{ej} t_0)$, $m=qu_{ej}$, $dW_0/dt=(W_{k0}+W_{th})/t_0$ gravitational force: $F=-\nabla\Phi$; background heating (Wolfire et al. 1995)

13.06.2009

HD Evolution of large/small scale structures of the ISM

 \mathbf{Z}

2D cuts through 3d data cube (disk cut)

13.06.2009

σ

D. Breitschwerdt - Sakharov

Results

- P/k far from uniform: spatial structure even for high SN rate ($\sigma/\sigma_{gal} = 4$)
- <P/k> ~ 3000 for Milky Way, i.e. much less than canonical values of > 10,000
 Reason: due to fountain flow, average disk pressure can be lowered
- lots of small scale structure: filaments, shock compressed layers → cloud formation

Volume filling factors:

σ/σ_g	\mathbf{f}_{cold}	$\mathbf{f}_{\mathrm{cool}}$	\mathbf{f}_{warm}	f _{hot}
1	0.19	0.39	0.25	0.17
2	0.16	0.34	0.31	0.19
4	0.05	0.3	0.37	0.28
8	0.01	0.12	0.52	0.35
16	0	0.02	0.54	0.44

cold: T<10³ K; cool: $10^3 <$ T< 10^4 K warm: $10^4 <$ T< $10^{5.5}$ K; hot: T>10^{5.5} K

Vff of hot gas is fairly low! (in agreement with HI holes in ext. gal.)

 f_V fairly const. with time for t > 200 Myr! Reason: break-out of SBs and fountain flow acts as pressure release value!

Can we believe numerical simulations?

➡ Necessary Condition: results should be resolution independent! Look at smallest scales, i.e. T_{min} and n_{max}

MHD ISM Simulations

- → field lines pushed away
 - loop structure

Presence of B-field

- cannot prevent outflow from disk,
- because in 3D field lines can be pushed aside
 - due to "open" field lines ("coronal holes")
- turbulent dynamo possible
 - → pressure release "valves"
- generates large loop structures flow oriented preferentially parallel to B-field
 Density field
- halo flow not smooth (clumpy)

Which ISM component controls large scale dynamics?

 P_{th} , P_{mag} or P_{ram} ??? \longrightarrow calculate average pressures (t=400 Myr)

cold gas dynamics determined by frozen-in magnetic field (T<200 K)
hot gas (T>10^{5.5} K) controlled by thermal pressure

BUT:

- disk gas is ram pressure dominated over a wide range of temperatures: (10² K < T < 10⁶ K)
- $P_{mag} \approx const.$ for $10^2 < T < 10^6 K$

Does the field follow the Chandrasekhar-Fermi law?

Chandrasekhar & Fermi (1953) derived a relation between B and ρ Idea:

Deviation *a* of plane of polarization of starlight from spiral arm direction due to random motions of B-field induced by gas turbulence

$$\Rightarrow B = \sqrt{(4/3)\pi\rho} \, \frac{v_{turb}}{a} \Rightarrow V_A = \frac{v_{turb}}{\sqrt{3}a}$$

Result: CF law meaningless: in ISM very broad distribution for all temperatures in the (B-n) scatter plot Why?

- flow is ram pressure dominated
- supersonic/superalfvenic turbulence

<u>Stability of "gas phases"</u>

- Heiles (2001) reports that > 47% of WNM is in a classically unstable phase between 500 5000 K
- Our simulations show that in total 40% of ISM mass is unstable
 - 500 < T < 5000 K: ~ 55% of the gas is unstable
 - T > $10^{5.5}$ K: ~10% is unstable

Does this contradict classical thermal stability theory? Not necessarily, because

- stability of "phases" was derived in a time-asymptotic limit: instability means that cooling time << dynamical time scale
- stable points determined by properties of interstellar cooling curve However, in a time-dependent dynamical picture things can be different (e.g. Kritsuk & Norman 2002, Gazol et al. 2001)
- shock waves can induce strong heating
- SN increased turbulence can work against condensation (eddy crossing time << cooling time)

13.06.2009

Thermal Instability

Classical Theory due to Field (1965)
criterion can be directly derived from 2nd law of thermodynamics

 $T\frac{dS}{dt} = -(\gamma - 1)L \quad \text{L...net energy loss function (L=0 thermal equ.)}$

• perturb the entropy S \rightarrow S + δ S and linearize: $\frac{d \ln |\delta S|}{dt} = -(\gamma - 1) \left[\frac{\partial (L/T)}{\partial S} \right]_{A}$

• Stability, if δS decreases with time, i.e.

$$\cdot \quad \left[\frac{\partial(L/T)}{\partial S}\right]_A > 0$$

• Perturb around equilibrium at constant pressure, i.e mechanical equilibrium ($dS=C_p dT$) for local condensational modes ($C_p>0$):

 $\left(\frac{\partial L}{\partial T}\right)_P > 0$

easily violated for standard interstellar cooling functions

- Field criterion does not take into account dynamical processes, e.g. turbulence
- Turbulent diffusion can stabilize, inhibiting local condensation modes (cf. solar chromosphere): $v_{turb} \sim \text{Re } v_{mol}$
- Thermal instability inhibited, if fluctuations occur on time scales less than the cooling time: $\tau_{eddy} \ll \tau_{cool}$

$$\frac{\lambda}{\Delta u} \sim \left(\frac{\rho}{\varepsilon}\right)^{1/3} \lambda^{2/3} < \frac{k_B T}{n\Lambda(T)} \quad (Kolmogorov)$$
$$\Rightarrow \lambda < \left(\frac{k_B \overline{m}}{\Lambda_0}\right)^{3/2} \frac{\varepsilon^{1/2}}{\rho^2} T^{3/4}, \quad \Lambda(T) \sim \Lambda_0 T^{1/2}$$

incompressible turbulence strictly not true
for WNM, ε~10⁻²⁶ erg cm⁻³ s⁻¹, n~0.3cm⁻³, T~1000 K: λ < 10¹⁹ cm

Points F and H are stable Stability if:

$$\left(\frac{\partial L}{\partial T}\right)_{P} > 0$$
$$L = n^{2} \Lambda(T) - n\Gamma$$

Distribution of WNM in the Galaxy

WNM in the unstable regime $10^{2.8} \le T \le 10^{3.2}$ K has filamentary structure \rightarrow opposite to MO model \rightarrow in agreement with observations (Heiles 2001, Heiles & Troland 2003)

The OVI test: Comparison with FUSE & Copernicus

- OVI traces (cooling down) HIM, not soft X-ray emitting gas!
- OVI produced in conduction fronts? efficiency rather high!
- our simulations show: OVI in turbulent mixing layers!

OVI Column densities

- Crucial test for LB models (Cox 2003)
- Reason: previous SNR and SB models generate 10–100 times too much OVI in absorption towards background stars
 - Possible solution:
- LB is old and has complex temperature structure
- Hot gas highly turbulent

Ambient medium inhomogneous

N(OVI) through LB sight lines

- Temperature map at t=14.4 Myr
- Sampling OVI in absorption

• <N(OVI)> at l=200 pc: $\sim 2 \times 10^{13}$ cm⁻² • Copernicus data: $\sim 1.6 \times 10^{13} \text{cm}^{-2}$ (Shelton & Cox 1994)

... and OVII and OVIII

• OVII traces hot gas during ongoing SN activity

OVIII is post-supernova tracerLoop I higer activity: more OVIII

13.06.2009

- FUSE & Copernicus data of OVI absorption lines towards background stars
- comparison with simulations (run for t = 393 Myr): spatially averaged (red triangles, blue squares) and single LOS N(OVI)
- ISM has a pattern, repeating on scales of a few 100 pc!
- Note: simulations were done before data of Oegerle et al. (2004) were published! No "tuning" of results!

Some Characteristics of Turbulence

- huge Reynolds numbers $\text{Re} = \frac{uL}{m} \approx 10^6$
- sources: SNe, shear flows \rightarrow vorticity ω

$$\frac{\partial \vec{\omega}}{\partial t} = \left(\vec{\omega} \nabla\right) \vec{u} + \nu \Delta \vec{\omega}, \quad \vec{\omega} = \nabla \times \vec{u}$$

(from Navier-Stokes equ.)

• structure functions:

$$S_p(l) = \left\langle \left(\delta v_l \right)^p \right\rangle, \ \delta v_l = \left| v(x+l) - v(x) \right|$$

2nd order structure function S₂ flattens at 75 pc → turbulent energy injection scale! But: smaller scales are possible

- ongoing star formation in late-type galaxies sustains turbulence
- integral (outer) scale: ~ 75 pc
 (due to SNR's/SB's → "forcing")
- turbulence is 3D and compressible!

What causes turbulence in clouds?

- HI observations show turbulence in starless clouds
- •1.25 pc resolution MHD simulation at t=350 Myr
 - \rightarrow running for 20 Myr
- high level of ISM turbulence due to ongoing star formation
- possibility of driving turbulence for long time
 → external "forcing"
- clouds are <u>transient</u> objects
 - → filamentary structure
 - \rightarrow partly disrupting cloud

When and where did the closest Supernova near Earth explode?

• Measurement of ⁶⁰Fe/Fe concentration in oceanic ferromanganese crust (Knie et al. 2004)

- dominant source of ⁶⁰Fe: explosive nucleosynthesis in Type II SNe
- Peak bei t = -2.8 Myr
- Note: also non-zero flux left and right to the peak!

→ peak and off-peak data points consistent with discovery of a moving group (Fuchs, Breitschwerdt et al. 2006)

Young stars in the solar neighbourhood

- Positions of 610 stars (400pc vol.) from Hipparcos and ARIVEL catalogues
- 73 stars selected \rightarrow trajectory calculated 13.06.2009

3D AMR Simulations

- Density
- Cut through galactic plane
- LB originates at (x,y) = (200 pc, 400 pc)
- Loop I at (x,y) =
 (500 pc, 400 pc)

Results

Bubbles collided ~ 3 Myr ago Interaction shell fragments in ~3Myrs Bubbles dissolve in ~ 10 Myrs

34

13.06.2009

Supernova Explosions in Moving Group of Stars

Follow stars, calculate mass according to IMF → main seq. life time
Determine ⁶⁰Fe yield from stellar evol. Models → natural fit of data!

Summary & Conclusions

• Numerical ISM studies reveal many new features, meaningful if:

- computational box and evolution times are large enough (i.e. memory effects of initial conditions have disappeared)
- results are not resolution dependent if $\Delta x \le 1$ pc (HD)
- most important phys. processes are included \Longrightarrow selfgravity, CRs...
- SN driven ISM contains structure on all scales \rightarrow inhomogeneous!
 - \succ shock compressed layers due to converging flows \rightarrow clouds
 - Flows are ram pressure dominated and mass loaded
 - high level of turbulence maintained by SN/SB shock waves
 - Iarge fraction of mass in thermally unstable temperature regimes, presumably due to strong turbulence
 - > CF law bad description in fast magnetosonic flows
 - ➢ B-field is dynamically less important except for cold gas
 - \succ turbulence decay law: \rightarrow conservation of linear momentum?

- FUSE & Copernicus data of N(OVI) reproduced
- Highly turbulent fountain/wind type ISM should favour
 - magnetic dynamo
 - \succ reacceleration of CRs in the disk by 2nd order Fermi
 - reacceleration of CRs in the fountain/galactic wind flow by shocks propagating in the halo (Dorfi & Breitschwerdt 2006)

It is time for a change in paradigm in ISM Theory!

- The End -

