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BH Thermodynamics

Area increasing law: (Hawking, 1971)

δA ≥ 0

which analogous to the 2nd law for entropy (δS ≥ 0) in
thermodynamics.

1st law: (Bekenstein, Smarr, 1972)

δM =
κ

2π
δ
A

4
(δE = TδS)

Surface gravity: for Schwarzschild κ = 1
4M

.
It is a constant (0th law).
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BH Thermodynamics

Hawking Temperature:

T =
κ

2π
→ T =

~c3

8πkGM
,

Entropy:

S =
A

4
→ S =

kc3A

4~G

The non-vanishing temperature indicates that the black
hole is unstable, emitting thermal radiation (quantum
effect).
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Charged Black Holes

The Einstein-Maxwell theory

S =

∫

d4x
√
−g

(

R − F 2
[2]

)

.

The Reissner-Nordström (RN) spacetime is

ds2
RN = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2

2,

F[2] =
Q

r2
dt ∧ dr,

f(r) = 1 − 2M
r

+ Q2

r2 , M : mass, Q: charge.

Dilatonic Black Holes in Gauss-Bonnet Gravity – p. 5/28



Charged Black Holes

Essential Properties:

Coordinate singularities (event/Cauchy horizons) at
f(r) = 0, (r± = M ±

√

M 2 − Q2).

Spacetime singularity at r = 0.

There are three types:

M > |Q|: black hole with two horizons,

M = |Q|: extreme limit with degenerated horizon at
r = M ,

M < |Q|: naked singularity.
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Charged Black Holes

For the extremal limit (M 2 = Q2, r+ = r−), the horizons
degenerate.

The Hawking temperature is vanishing
(κ = (r+ − r−)/2r2

+), but the entropy (area of horizon)
is non-vanishing (rH = M ).

The non-vanishing entropy indicates the quantum
degrees of freedom (maybe consequence of stringy
effect — microscopic interpretation).
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New Ingredients

Scalar fields: Brans-Dicke, dilaton

Extra dimensions: Kaluza-Klein

Higher-rank form fields: holes → branes

Those new ingredients are all essential in the low
energy effective string theory.

Extremal black holes are generally corresponding to
the SUSY configurations and the symmetry of solution
is enhanced.
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Dilatonic black holes

The 4-dim low-energy Lagrangian of string theory

S =

∫

d4x
√−g

(

R−2(∂φ)2 − e2aφ F 2
[2]

)

.

Dilatonic black holes (for a = −1): Gibbons-Maeda ’88,
Garfinkle-Horowitz-Strominger ’91

ds2 = −f(r)dt2 + f(r)−1dr2 + R2(r) dΩ2
2,

f(r) = (1 − r+/r), R2(r) = r2(1 − r−/r)

M = r+/2, Q2 = r+r−/2
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Dilatonic black holes

Outer horizon: r = r+, (r+ = 2M, r− = Q2/M),
Extreme case: r+ = r−, (Q2 = 2M 2).

The dilaton charge is a secondary type parameter,
namely it is not free but determined by mass and
charge (D ≃ −Q2/2M ).

The Hawking temperature is T ≃ 1/8πM .

R(r+ = r−) = 0 ⇒ The entropy vanishes for the
extreme case.
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Higher curvature correction

Puzzles:

Zero entropy: one degree of freedom, (with
non-zero temperature for a2 = 1).

Singularity and horizon are coincident.

Expectation: higher curvature correction, in particular
to include Gauss-Bonnet term.
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Gauss-Bonnet Gravity

The 4D Gauss-Bonnet gravity

L = R − 2(∂φ)2 − e2aφ
(

F 2
[2] − αLGB

)

.

where LGB = R2 − 4RµνR
µν + RαβµνR

αβµν

Field equations are second order in the metric, linear
in second derivative.

It does not contain new propagating degrees of
freedom besides the graviton.

It appears in the low-energy expansions of string
theory.
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Entropy function

Entropy for higher curvature theories: Wald’s Noether
charge approach

S = 4π

∫

r=r+

∂L
∂Rrtrt

For the BHs with near horizon geometry of
AdS2 × SD−2, the entropy can be calculated from the
near horizon data via entropy function

I =

∫

f dtdr
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Entropy Calculation

The entropy (calculated by Sen’s entropy function) is
twice the Bekenstein-Hawking entropy:

S = 2πρ2
0 = 2

(

A

4

)

.

This S-A relation has also been observed in
Dabholkar, Kallosh, Maloney, ’04;

Hubeny, Maloney, Rangamani, ’05;
Bak, Kim, Rey, ’05

How general is this relation?
Cai, CMC, Maeda, Ohta, Pang, Phys Rev D ’08 arXiv:0712.4212 [hep-th]
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Extremal BH in 4D GB Gravity

Ansatz: metric and Maxwell field

ds2 = −w(r)dt2 +
dr2

w(r)
+ ρ2(r)dΩ2

2,

A = −f(r) dt − qm cos θ dϕ.

The Maxwell field can be directly solved

f ′(r) = qeρ
−2e−2aφ.

The GB term breaks the discrete S-duality (electric ↔
magnetic).
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Near Horizon Expansion

Consider the series expansions around some point
r = rH (supposed to be a horizon) in powers of
x = r − rH : (P (r) := e2aφ(r))

w(r) =
∞

∑

k=2

wkx
k, ρ(r) =

∞
∑

k=0

ρkx
k, P (r) =

∞
∑

k=0

Pkx
k.

The function w starts from the quadratic term
(vanishing of w0 means that r = rH is a horizon,
vanishing of w1 means that the horizon is degenerate).
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Near Horizon Expansion

Electric charge:

qe =

√

4α + q2
m

2α + q2
m

ρ0
2

2
.

Any solution with finite horizon radius ρ0 must have
non-zero electric charge.

With fixed ρ0, qe decreases with increasing qm and
approaches zero in the limit qm → ∞.

For simplicity, lets firstly focus on purely electric
charged black holes.

CMC, Gal’tsov, Orlov, Phys Rev D ’07 [hep-th/0701004]
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Near Horizon Expansion

Near horizon expansion for electric solution

w(r) ≃
1

ρ2
0

[

x2
−

2(5a2
− 3)

3

(

αP1

a2ρ2
0

)

x3

]

+ O(x4),

ρ(r) ≃ ρ0

[

1 + (a2
− 1)

(

αP1

a2ρ2
0

)

x −
2a2(a4

− 6)

(5a2 − 3)

(

αP1

a2ρ2
0

)2

x2

]

+ O(x3),

P (r) ≃
ρ2
0

α

[

1

4
+ a2

(

αP1

a2ρ2
0

)

x +
a2(a4

− 5a2
− 3)

(5a2 − 3)

(

αP1

a2ρ2
0

)2

x2

]

+ O(x3).

There are two parameters: ρ0 and P1.

The near horizon geometry is AdS2 × S2

ds2 = −x2

ρ2
0

dt2 +
ρ2

0

x2
dx2 + ρ2

0dΩ2
2.
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Asymptotic Expansion

Asymptotic expansion: (asymptotically flat)

w(r) = 1 − 2M

r
+

αQ2
e

r2
+ O(r−3),

ρ(r) = r − D2

2r
− D(2MD − αaQ2

e)

3r2
+ O(r−3),

φ(r) = φ∞ +
D

r
+

2DM − αaQ2
e

2r2
+ O(r−3),

where

Qe = qee
−aφ∞.
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Numerical Result

The value of P1 is fixed (depending on a, α) in order to
get asymptotic flat solution.

Mass M , dilaton charge D and asymptotic value of
dilaton φ∞ are determined by the value of only
parameter ρ0 (i.e. charge).
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Critical Point

The global solution exist only when a less than a
critical value

acr ≃ 0.488219703.

If a > acr singularity appears outside horizon.
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Extremal dyonic black holes

Einstein-Maxwell-dilaton (EMD) theory

The horizon does not shrink to a point.

The extremal dyon solutions exist only for discrete
values of the dilaton coupling constant a

a2
i = 1 + 2 + · · · + i =

i(i + 1)

2
.

Poletti, Twamley, Wiltshire, CQG ’95 [hep-th/9502054]
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Extremal dyonic black holes

EMD theory with Gauss-Bonnet correction (EMDGB)
CMC, Gal’tsov, Orlov, Phys Rev D ’08 arXiv:0809:1720 [hep-th]

There are two classes of solution:

Asymptotic Flat: The Gauss-Bonnet term acts as a
dyon hair tonic enlarging the allowed values of a to
continuous domains in the plane (a, qm).

Asymptotic Linear Dilaton Background: black holes
(magnetic) on the linear dilaton background
(electric).
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Extremal dyonic black holes

The domains of existence of EDGB dyons

qm

a
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Black circles: asymptotical flat;
Red squares: black holes on the linear dilaton
background
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Extremal dyonic black holes

The entropy-area relation

S = 2πqe

√

q2
m + 4α = πρ2

0 +
2παρ2

0

2α + q2
m

.

The Bekenstein-Hawking entropy-area relation,
S = A/4, A = 4πρ2

0, is recovered when α = 0 or
qm → ∞.

The magnetic charge parameter qm vanishing, the
entropy has double Bekenstein-Hawking value.

For a generic extremal dyonic solution, the black
hole entropy can not be completely expressed in
terms of its horizon area.
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Higher dimensional BHs

The solutions in D = 5, 6 are similar with solutions in
D = 4.

However, for D ≥ 7 the property of extremal black
holes is drastically different.

The turning points appear in pair and the singularity
does not appear after turning point.
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Conclusion

Black hole thermodynamics:

Extremal Charged BHs: T = 0, S > 0,

Extremal Dilatonic Charged BHs: S = 0.

Higher curvature corrections are essential.

4D GB gravity admits black hole solutions with the
horizons of AdS2 × S2.

The extremal dilaton BH (electric) with higher curvature
correction consists: stretching its horizon and fixing the
value of φ∞.
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Conclusion

A purely local analysis is insufficient to fully understand
the entropy of the curvature corrected black holes.

The existence of the threshold value of the dilaton
coupling constant under which the global solutions
cease to exist is an interesting new phenomenon
which may be related to the string-black hole transition.
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