Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Guy F. de Téramond
University of Costa Rica

In Collaboration with Stan Brodsky

$4^{\text {th }}$ International Sakharov Conference on Physics
Lebedev Physics Institute
Moscow, May 18-23, 2009
GdT and Brodsky, PRL 102, 081601 (2009)

Outline

1. Introduction
2. Light-Front Dynamics

Light-Front Fock Representation
3. Semiclassical Approximation to QCD

Hard-Wall Model
Holographic Mapping
4. Higher-Spin Bosonic Modes

Hard-Wall Model
Soft-Wall Model
5. Higher-Spin Fermionic Modes

Hard-Wall Model
Soft-Wall Model

1 Introduction

- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom
- Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between string states in AdS space and conformal field theories in physical space-time have led to analytical insights into the confining dynamics of QCD
- Description of strongly coupled gauge theory using a dual gravity description!
- Strings describe spin- J extended objects (no quarks). QCD degrees of freedom are pointlike particles and hadrons have orbital angular momentum: how can they be related?
- Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents ...
- Frame-independent LF Hamiltonian equation $P_{\mu} P^{\mu}|P\rangle=\mathcal{M}^{2}|P\rangle$ similar structure of AdS EOM
- First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to equations of motion in AdS and can be systematically improved

2 Light Front Dynamics

- Different possibilities to parametrize space-time [Dirac (1949)]
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- Instant form: hypersurface defined by $t=0$, the familiar one
- Front form: hypersurface is tangent to the light cone at $\tau=t+z / c=0$

$$
\begin{array}{ll}
x^{+}=x^{0}+x^{3} & \text { light-front time } \\
x^{-}=x^{0}-x^{3} & \text { longitudinal space variable } \\
k^{+}=k^{0}+k^{3} & \text { longitudinal momentum } \quad\left(k^{+}>0\right) \\
k^{-}=k^{0}-k^{3} & \text { light-front energy } \\
k \cdot x=\frac{1}{2}\left(k^{+} x^{-}+k^{-} x^{+}\right)-\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}
\end{array}
$$

On shell relation $k^{2}=m^{2}$ leads to dispersion relation $k^{-}=\frac{\mathbf{k}_{\perp}^{2}+m^{2}}{k^{+}}$

- QCD Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4 g^{2}} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+i \bar{\psi} D_{\mu} \gamma^{\mu} \psi+m \bar{\psi} \psi
$$

- LF Momentum Generators $P=\left(P^{+}, P^{-}, \mathbf{P}_{\perp}\right)$ in terms of dynamical fields ψ, \mathbf{A}_{\perp}

$$
\begin{aligned}
P^{-} & =\frac{1}{2} \int d x^{-} d^{2} \mathbf{x}_{\perp} \bar{\psi} \gamma^{+} \frac{\left(i \nabla_{\perp}\right)^{2}+m^{2}}{i \partial^{+}} \psi+\text { interactions } \\
P^{+} & =\int d x^{-} d^{2} \mathbf{x}_{\perp} \bar{\psi} \gamma^{+} i \partial^{+} \psi \\
\mathbf{P}_{\perp} & =\frac{1}{2} \int d x^{-} d^{2} \mathbf{x}_{\perp} \bar{\psi} \gamma^{+} i \nabla_{\perp} \psi
\end{aligned}
$$

- LF energy P^{-}generates LF time translations

$$
\left[\psi(x), P^{-}\right]=i \frac{\partial}{\partial x^{+}} \psi(x)
$$

and the generators P^{+}and \mathbf{P}_{\perp} are kinematical

- Dirac field ψ, expanded in terms of ladder operators on the initial surface $x^{+}=x^{0}+x^{3}$

$$
P^{-}=\sum_{\lambda} \int \frac{d q^{+} d^{2} \mathbf{q}_{\perp}}{(2 \pi)^{3}}\left(\frac{\mathbf{q}_{\perp}^{2}+m^{2}}{q^{+}}\right) b_{\lambda}^{\dagger}(q) b_{\lambda}(q)+\text { interactions }
$$

Sum over free quanta $q^{-}=\frac{\mathbf{q}_{\perp}^{2}+m^{2}}{q^{+}}$plus interactions ($m^{2}=0$ for gluons)

- Construct light-front invariant Hamiltonian for the composite system: $H_{L F}=P_{\mu} P^{\mu}=P^{-} P^{+}{ }_{-} \mathbf{P}_{\perp}^{2}$

$$
H_{L C}\left|\psi_{H}\right\rangle=\mathcal{M}_{H}^{2}\left|\psi_{H}\right\rangle
$$

- State $\left|\psi_{H}(P)\right\rangle=\left|\psi_{H}\left(P^{+}, \mathbf{P}_{\perp}, J_{z}\right)\right\rangle$ is an expansion in multi-particle Fock eigenstates $|n\rangle$ of the free LF Hamiltonian:

$$
\left|\psi_{H}\right\rangle=\sum_{n} \psi_{n / H}|n\rangle
$$

- Fock components $\psi_{n / H}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}^{z}\right)$ are independent of P^{+}and \mathbf{P}_{\perp} and depend only on relative partonic coordinates: momentum fraction $x_{i}=k_{i}^{+} / P^{+}$, transverse momentum $\mathbf{k}_{\perp i}$ and spin λ_{i}^{z}

$$
\sum_{i=1}^{n} x_{i}=1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i}=0
$$

- Compute \mathcal{M}^{2} from hadronic matrix element

$$
\left\langle\psi_{H}\left(P^{\prime}\right)\right| H_{L F}\left|\psi_{H}(P)\right\rangle=\mathcal{M}_{H}^{2}\left\langle\psi_{H}\left(P^{\prime}\right) \mid \psi_{H}(P)\right\rangle
$$

- Find

$$
\mathcal{M}_{H}^{2}=\sum_{n} \int\left[d x_{i}\right]\left[d^{2} \mathbf{k}_{\perp i}\right] \sum_{\ell}\left(\frac{\mathbf{k}_{\perp \ell}^{2}+m_{\ell}^{2}}{x_{q}}\right)\left|\psi_{n / H}\left(x_{i}, \mathbf{k}_{\perp i}\right)\right|^{2}+\text { interactions }
$$

- Phase space normalization of LFWFs

$$
\sum_{n} \int\left[d x_{i}\right]\left[d^{2} \mathbf{k}_{\perp i}\right]\left|\psi_{n / h}\left(x_{i}, \mathbf{k}_{\perp i}\right)\right|^{2}=1
$$

- In terms of $n-1$ independent transverse impact coordinates $\mathbf{b}_{\perp j}, j=1,2, \ldots, n-1$,

$$
\mathcal{M}_{H}^{2}=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \mathbf{b}_{\perp j} \psi_{n / H}^{*}\left(x_{i}, \mathbf{b}_{\perp i}\right) \sum_{\ell}\left(\frac{-\nabla_{\mathbf{b}_{\perp \ell}}^{2}+m_{\ell}^{2}}{x_{q}}\right) \psi_{n / H}\left(x_{i}, \mathbf{b}_{\perp i}\right)+\text { interactions }
$$

- Normalization

$$
\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \mathbf{b}_{\perp j}\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2}=1
$$

3 Semiclassical Approximation to QCD

- Consider a two-parton hadronic bound state in transverse impact space in the limit $m_{q} \rightarrow 0$

$$
\mathcal{M}^{2}=\int_{0}^{1} \frac{d x}{1-x} \int d^{2} \mathbf{b}_{\perp} \psi^{*}\left(x, \mathbf{b}_{\perp}\right)\left(-\nabla_{\mathbf{b}_{\perp}}^{2}\right) \psi\left(x, \mathbf{b}_{\perp}\right)+\text { interactions }
$$

- Separate angular, transverse and longitudinal modes in terms of boost invariant transverse variable: $\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \quad\left(\ln \mathbf{k}_{\perp}\right.$ space key variable is the LF KE $\left.\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}\right)$

$$
\psi(x, \zeta, \varphi)=\frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}} e^{i M \varphi} f(x)
$$

- $\operatorname{Find}(L=|M|)$

$$
\mathcal{M}^{2}=\int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}}+\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta)
$$

where the confining forces from the interaction terms is summed up in the effective potential $U(\zeta)$

- Ultra relativistic limit $m_{q} \rightarrow 0$ longitudinal modes decouple and LF eigenvalue equation $H_{L F}|\phi\rangle=\mathcal{M}^{2}|\phi\rangle$ is a LF wave equation for ϕ

$$
(\underbrace{-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}}_{\text {kinetic energy of partons }}+\underbrace{U(\zeta)}_{\text {confinement }}) \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Eigenmodes $\phi(\zeta)$ determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time
- LF modes $\phi(\zeta)=\langle\zeta \mid \phi\rangle$ are normalized by

$$
\langle\phi \mid \phi\rangle=\int d \zeta|\langle\zeta \mid \phi\rangle|^{2}=1
$$

- Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM

Hard-Wall Model

- Consider the potential (hard wall)

$$
U(\zeta)=\left\{\begin{array}{lcc}
0 & \text { if } \quad \zeta \leq \frac{1}{\Lambda_{\mathrm{QCD}}} \\
\infty & \text { if } \quad \zeta>\frac{1}{\Lambda_{\mathrm{QCD}}}
\end{array}\right.
$$

- If $L^{2} \geq 0$ the Hamiltonian is positive definite $\langle\phi| H_{L F}^{L}|\phi\rangle \geq 0$ and thus $\mathcal{M}^{2} \geq 0$
- If $L^{2}<0$ the Hamiltonian is not bounded from below ("Fall-to-the-center" problem in Q.M.)
- Critical value of the potential corresponds to $L=0$, the lowest possible stable state
- Solutions:

$$
\phi_{L}(\zeta)=C_{L} \sqrt{\zeta} J_{L}(\zeta \mathcal{M})
$$

- Mode spectrum from boundary conditions

$$
\phi\left(\zeta=\frac{1}{\Lambda_{\mathrm{QCD}}}\right)=0
$$

Thus

$$
\mathcal{M}^{2}=\beta_{L k} \Lambda_{\mathrm{QCD}}
$$

- Excitation spectrum hard-wall model: $\mathcal{M}_{n, L} \sim L+2 n$

Light-meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$

Holographic Mapping

- Holographic mapping found originally by matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT $(2006,2008)]$
- Substitute $\Phi(\zeta) \sim \zeta^{3 / 2} \phi(\zeta), \quad \zeta \rightarrow z$ in the conformal LFWE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}\right) \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

- Find:

$$
\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0
$$

with $(\mu R)^{2}=-4+L^{2}$, the wave equation of string mode in AdS_{5} !

- Isomorphism of $S O(4,2)$ group of conformal QCD with generators $P^{\mu}, M^{\mu \nu}, D, K^{\mu}$ with the group of isometries of AdS $_{5}$ space: $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

- AdS Breitenlohner-Freedman bound $(\mu R)^{2} \geq-4$ equivalent to LF QM stability condition $L^{2} \geq 0$
- Conformal dimension Δ of AdS mode Φ given in terms of 5-dim mass by $(\mu R)^{2}=\Delta(\Delta-4)$. Thus $\Delta=2+L$ in agreement with the twist scaling dimension of a two parton object in QCD
- AdS_{5} metric:

$$
\underbrace{d s^{2}}_{L_{\mathrm{AdS}}}=\frac{R^{2}}{z^{2}}(\underbrace{\eta_{\mu \nu} d x^{\mu} d x^{\nu}}_{L_{\text {Minkowski }}}-d z^{2})
$$

- A distance $L_{\text {AdS }}$ shrinks by a warp factor as observed in Minkowski space $(d z=0)$:

$$
L_{\mathrm{Minkowski}} \sim \frac{z}{R} L_{\mathrm{AdS}}
$$

- Different values of z correspond to different scales at which the hadron is examined
- Since $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, short distances $x_{\mu} x^{\mu} \rightarrow 0$ maps to UV conformal AdS 5 boundary $z \rightarrow 0$, which corresponds to the $Q \rightarrow \infty$ UV zero separation limit
- Large confinement dimensions $x_{\mu} x^{\mu} \sim 1 / \Lambda_{\mathrm{QCD}}^{2}$ maps to large IR region of $\mathrm{AdS}_{5}, z \sim 1 / \Lambda_{\mathrm{QCD}}$, thus there is a maximum separation of quarks and a maximum value of z at the IR boundary
- Local operators like \mathcal{O} and $\mathcal{L}_{\mathrm{QCD}}$ defined in terms of quark and gluon fields at the AdS_{5} boundary
- Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS

4 Higher-Spin Bosonic Modes

Hard-Wall Model

- AdS_{d+1} metric $x^{\ell}=\left(x^{\mu}, z\right)$:

$$
d s^{2}=g_{\ell m} d x^{\ell} d x^{m}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

- Action for gravity coupled to scalar field in AdS_{d+1}

$$
S=\int d^{d+1} x \sqrt{g}(\underbrace{\frac{1}{\kappa^{2}}(\mathcal{R}-2 \Lambda)}_{S_{G}}+\underbrace{\frac{1}{2}\left(g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right)}_{S_{M}})
$$

- Equations of motion for S_{M}

$$
z^{3} \partial_{z}\left(\frac{1}{z^{3}} \partial_{z} \Phi\right)-\partial_{\rho} \partial^{\rho} \Phi-\left(\frac{\mu R}{z}\right)^{2} \Phi=0
$$

- Physical AdS modes $\Phi_{P}(x, z) \sim e^{-i P \cdot x} \Phi(z)$ are plane waves along the Poincaré coordinates with four-momentum P^{μ} and hadronic invariant mass states $P_{\mu} P^{\mu}=\mathcal{M}^{2}$
- Factoring out dependence of string mode $\Phi_{P}(x, z)$ along x^{μ}-coordinates

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0
$$

- Spin J-field on AdS represented by rank- J totally symmetric tensor field $\Phi(x, z)_{\ell_{1} \cdots \ell_{J}}$ [Fronsdal; Fradkin and Vasiliev]
- Action in AdS_{d+1} for spin- J field

$$
S_{M}=\frac{1}{2} \int d^{d+1} x \sqrt{g}\left(\partial_{\ell} \Phi_{\ell_{1} \cdots \ell_{J}} \partial^{\ell} \Phi^{\ell_{1} \cdots \ell_{J}}-\mu^{2} \Phi_{\ell_{1} \cdots \ell_{J}} \Phi^{\ell_{1} \cdots \ell_{J}}+\ldots\right)
$$

- Each hadronic state of total spin J is dual to a normalizable string mode

$$
\Phi_{P}(x, z)_{\mu_{1} \cdots \mu_{J}}=e^{-i P \cdot x} \Phi(z)_{\mu_{1} \cdots \mu_{J}}
$$

with four-momentum P_{μ}, spin polarization indices along the $3+1$ physical coordinates and hadronic invariant mass $P_{\mu} P^{\mu}=\mathcal{M}^{2}$

- For string modes with all indices along Poincaré coordinates, $\Phi_{z \mu_{2} \cdots \mu_{J}}=\Phi_{\mu_{1} z \cdots \mu_{J}}=\cdots=0$ and appropriate subsidiary conditions system of coupled differential equations from S_{M} reduce to a homogeneous wave equation for $\Phi(z)_{\mu_{1} \cdots \mu_{J}}$
- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

- Normalization [Hong, Yoon and Strassler (2006)]

$$
R^{d-2 J-1} \int_{0}^{z_{\max }} \frac{d z}{z^{d-2 J-1}} \Phi_{J}^{2}(z)=1
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-(d-1-2 J) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

upon fifth-dimensional mass rescaling $(\mu R)^{2} \rightarrow(\mu R)^{2}-J(d-J)$

- Conformal dimension of J-mode

$$
\Delta=\frac{1}{2}\left(d+\sqrt{(d-2 J)^{2}+4 \mu^{2} R^{2}}\right)
$$

and thus $(\mu R)^{2}=(\Delta-J)(\Delta-d+J)$

- Upon substitution $z \rightarrow \zeta$ and

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} \Phi_{J}(\zeta)
$$

we recover the QCD LF wave equation $(d=4)$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

- J-decoupling in the HW model
- For $L^{2} \geq 0$ the LF Hamiltonian is positive definite $\left\langle\phi_{J}\right| H_{L F}\left|\phi_{J}\right\rangle \geq 0$ and we find the stability bound $(\mu R)^{2} \geq-(2-J)^{2}$
- The scaling dimensions are $\Delta=2+L$ independent of J in agreement with the twist scaling dimension of a two parton bound state in QCD

Note: p-forms

- In tensor notation EOM for a p-form in AdS_{d+1} are $p+1$ coupled differential equations ['YYi (1998)]

$$
\begin{gathered}
{\left[z^{2} \partial_{z}^{2}-(d+1-2 p) z \partial_{z}-z^{2} \mathcal{M}^{2}-(\mu R)^{2}+d+1-2 p\right] \Phi_{z \alpha_{2} \cdots \alpha_{p}}=0} \\
\cdots \\
{\left[z^{2} \partial_{z}^{2}-(d-1-2 p) z \partial_{z}-z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{\alpha_{1} \alpha_{2} \cdots \alpha_{p}}} \\
=2 z\left(\partial_{\alpha_{1}} \Phi_{z \alpha_{2} \cdots \alpha_{p}}+\partial_{\alpha_{2}} \Phi_{\alpha_{1} z \cdots \alpha_{p}}+\cdots\right)
\end{gathered}
$$

- For modes with all indices along the Poincaré coordinates $\Phi_{z \alpha_{2} \cdots \alpha_{p}}=\Phi_{\alpha_{1} z \cdots \alpha_{p}}=\cdots=0$

$$
\left[z^{2} \partial_{z}^{2}-(d-1-2 p) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{\alpha_{1} \cdots \alpha_{p}}=0
$$

with $(\mu R)^{2}=(\Delta-p)(\Delta-d+p)$

- Identical with spin-J solution from shifting dimensions

Note: Algebraic Construction

- If $L^{2}>0$ the LF Hamiltonian, $H_{L F}$, is written as a bilinear form [Bargmann (1949)]

$$
H_{L F}^{L}(\zeta)=\Pi_{L}^{\dagger}(\zeta) \Pi_{L}(\zeta)
$$

in terms of the operator

$$
\Pi_{L}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{L+\frac{1}{2}}{\zeta}\right)
$$

and its adjoint

$$
\Pi_{L}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{L+\frac{1}{2}}{\zeta}\right)
$$

with commutation relations

$$
\left[\Pi_{L}(\zeta), \Pi_{L}^{\dagger}(\zeta)\right]=\frac{2 L+1}{\zeta^{2}}
$$

- If $L^{2} \geq 0$ the LF Hamiltonian is positive definite

$$
\langle\phi| H_{L F}^{L}|\phi\rangle=\int d \zeta\left|\Pi_{L} \phi(z)\right|^{2} \geq 0
$$

- Higher-spin fields in AdS [Metsaev (1998) and (1999)]

- Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce smooth cutoff wich depends on the profile of a dilaton background field $\varphi(z)= \pm \kappa^{2} z^{2}$

$$
S=\int d^{d} x d z \sqrt{g} e^{\varphi(z)} \mathcal{L}
$$

- Equation of motion for scalar field $\mathcal{L}=\frac{1}{2}\left(g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right)$

$$
\left[z^{2} \partial_{z}^{2}-\left(d-1 \mp 2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0
$$

with $(\mu R)^{2} \geq-4$. See also [Metsaev (2002), Andreev (2006)]

- LH holography requires 'plus dilaton' $\varphi=+\kappa^{2} z^{2}$. Lowest possible state $(\mu R)^{2}=-4$

$$
\mathcal{M}^{2}=4 \kappa^{2} n, \quad \Phi_{n}(z) \sim z^{2} e^{-\kappa^{2} z^{2}} L_{n}\left(\kappa^{2} z^{2}\right)
$$

$\Phi_{0}(z)$ a chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion

- Action in AdS_{d+1} for spin J-field

$$
S_{M}=\frac{1}{2} \int d^{d} x d z \sqrt{g} e^{\kappa^{2} z^{2}}\left(\partial_{\ell} \Phi_{\ell_{1} \cdots \ell_{J}} \partial^{\ell} \Phi^{\ell_{1} \cdots \ell_{J}}-\mu^{2} \Phi_{\ell_{1} \cdots \ell_{J}} \Phi^{\ell_{1} \cdots \ell_{J}}+\ldots\right)
$$

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along $3+1$ coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

- Normalization

$$
R^{d-2 J-1} \int_{0}^{\infty} \frac{d z}{z^{d-2 J-1}} e^{\kappa^{2} z^{2}} \Phi_{J}^{2}(z)=1
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(d-1-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

upon mass rescaling $(\mu R)^{2} \rightarrow(\mu R)^{2}-J(d-J)$ and $\mathcal{M}^{2} \rightarrow \mathcal{M}^{2}-2 J \kappa^{2}$

- Upon substitution $z \rightarrow \zeta\left(J_{z}=L_{z}+S_{z}\right)$ we find for $d=4$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta), \quad(\mu R)^{2}=-(2-J)^{2}+L^{2}
$$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

- Eigenfunctions

$$
\phi_{n L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\begin{aligned}
& \mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}\left(n+L+\frac{S}{2}\right) \\
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

Orbital and radial states: $\langle\zeta\rangle$ increase with L and n

Parent and daughter Regge trajectories for the $I=1 \rho$-meson family (red) and the $I=0 \omega$-meson family (black) for $\kappa=0.54 \mathrm{GeV}$

Note: Algebraic Construction

- Write the LF Hamiltonian, $H_{L F}$

$$
H_{L F}^{L}(\zeta)=\Pi_{L}^{\dagger}(\zeta) \Pi_{L}(\zeta)+C
$$

in terms of the operator

$$
\Pi_{L}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{L+\frac{1}{2}}{\zeta}-\kappa^{2} \zeta\right)
$$

and its adjoint

$$
\Pi_{L}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{L+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta\right)
$$

with commutation relations

$$
\left[\Pi_{L}(\zeta), \Pi_{L}^{\dagger}(\zeta)\right]=\frac{2 L+1}{\zeta^{2}}-2 \kappa^{2}
$$

- The LF Hamiltonian is positive definite, $\langle\phi| H_{L F}^{L}|\phi\rangle \geq 0$, for $L^{2} \geq 0$ and $C \geq-4 \kappa^{2}$

5 Higher-Spin Fermionic Modes

Hard-Wall Model

- Action for massive fermionic modes on AdS_{d+1} :

$$
S[\bar{\Psi}, \Psi]=\int d^{d} x d z \sqrt{g} \bar{\Psi}(x, z)\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z)
$$

- Equation of motion: $\quad\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z)=0$

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+\frac{d}{2} \Gamma_{z}\right)+\mu R\right] \Psi\left(x^{\ell}\right)=0
$$

- Solution $(\mu R=\nu+1 / 2, d=4)$

$$
\Psi(z)=C z^{5 / 2}\left[J_{\nu}(z \mathcal{M}) u_{+}+J_{\nu+1}(z \mathcal{M}) u_{-}\right]
$$

- Hadronic mass spectrum determined from IR boundary conditions $\psi_{ \pm}\left(z=1 / \Lambda_{\mathrm{QCD}}\right)=0$

$$
\mathcal{M}^{+}=\beta_{\nu, k} \Lambda_{\mathrm{QCD}}, \quad \mathcal{M}^{-}=\beta_{\nu+1, k} \Lambda_{\mathrm{QCD}}
$$

with scale independent mass ratio

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}, J>\frac{1}{2}$, with all indices along $3+1$ from Ψ by shifting dimensions

SU(6)	S	L	Baryon State
56	$\frac{1}{2}$	0	$N \frac{1}{2}^{+}(939)$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N \frac{1}{2}^{-}(1535) N \frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N \frac{1}{2}^{-}(1650) N \frac{3}{2}^{-}(1700) N \frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N \frac{3}{2}^{+}(1720) N \frac{5}{2}^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^{+}(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \frac{7}{2}^{+}(1950)$
70	$\frac{1}{2}$	3	$N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N \frac{3}{2}^{-} \quad N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}(2190) N \frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N \frac{7}{2}^{+} \quad N \frac{9}{2}^{+}(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}^{+} \quad \Delta \frac{9}{2}^{+} \quad \Delta \frac{11}{2}^{+}(2420)$
70	$\frac{1}{2}$	5	$N \frac{1}{2}^{-} \quad N \frac{11}{2}^{-}(2600)$
	$\frac{3}{2}$	5	$N \frac{7}{2}^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-} \quad N \frac{13}{2}^{-}$

- Excitation spectrum for baryons in the hard-wall model: $\mathcal{M} \sim L+2 n$

Light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$ in the HW model. The 56 trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states: (a) $I=1 / 2$ and (b) $I=3 / 2$

Note: Algebraic Construction

- Fermionic modes are solutions of the light-front Dirac equation for $\psi(\zeta) \sim \zeta^{-2} \Psi(\zeta)$

$$
\alpha \Pi(\zeta) \psi(\zeta)=\mathcal{M} \psi(\zeta)
$$

where $\alpha^{\dagger}=\alpha, \alpha^{2}=1,\left\{\alpha, \gamma_{5}\right\}=0$

- The operator

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}\right)
$$

and its adjoint

$$
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}\right)
$$

satisfy the commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\frac{2 \nu+1}{\zeta^{2}} \gamma_{5}
$$

Soft-Wall Model

- Equivalent to Dirac equation in presence of a holographic linear confining potential

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+\frac{d}{2} \Gamma_{z}\right)+\mu R+\kappa^{2} z\right] \Psi\left(x^{\ell}\right)=0 .
$$

- Solution $(\mu R=\nu+1 / 2, d=4)$

$$
\begin{aligned}
& \Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} z^{2}\right) \\
& \Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} z^{2}\right)
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)
$$

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}, J>\frac{1}{2}$, with all indices along $3+1$ from Ψ by shifting dimensions

Glazek and Schaden [Phys. Lett. B 198, 42 (1987)]: $\left(\omega_{B} / \omega_{M}\right)^{2}=5 / 8$

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

$$
\mathcal{M}^{2}
$$

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5 \mathrm{GeV}$

Note: Algebraic Construction

- Fermionic modes are solutions of the light-front Dirac equation for $\psi(\zeta) \sim \zeta^{-2} \Psi(\zeta)$

$$
\alpha \Pi(\zeta) \psi(\zeta)=\mathcal{M} \psi(\zeta)
$$

where $\alpha^{\dagger}=\alpha, \alpha^{2}=1,\left\{\alpha, \gamma_{5}\right\}=0$

- The operator

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

and its adjoint

$$
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

satisfy the commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}\right) \gamma_{5}
$$

- Supersymmetric QM at equal LF time?

Other Applications of Light-Front Holography

- Nucleon form-factors: space-like region
- Pion form-factors: space and time-like regions
- Gravitational form-factors of composite hadrons Future Applications
- Pauli Form Factor
- Introduction of massive quarks
- Systematic improvement (QCD Coulomb forces ...)

> SJB and GdT, PLB 582, 211 (2004)
> GdT and SJB, PRL 94, 201601 (2005)
> SJB and GdT, PRL 96, 201601 (2006)
> SJB and GdT, PRD 77, 056007 (2008)
> SJB and GdT, PRD 78, 025032 (2008)
> GdT and SJB, PRL 102, 081601 (2009)
> GdT and SJB, arXiv:0809.489

