On unconstrained higher spins

of any symmetry

Dario Francia
Université Paris VII - APC
4th International Sakharov Conference - Moscow, May 22, 2009

"Problems with higher spins are not problems with free theory"

σ
True!
but still

Free theory not a closed subject
"Canonical" description of free, symmetric higher-spin gauge fields via (Fang-) Fronsdal equations (1978):
\rightarrow Bosons $\left(\sim \operatorname{spin} 2 \rightarrow R_{\mu \nu}=0\right):$

$$
\mathcal{F}_{\mu_{1} \ldots \mu_{s}} \equiv \square \varphi_{\mu_{1} \ldots \mu_{s}}-\partial_{\mu_{1}} \partial^{\alpha} \varphi_{\alpha \mu_{2} \ldots \mu_{s}}+\ldots+\partial_{\mu_{1}} \partial_{\mu_{2}} \varphi_{\alpha \mu_{3} \ldots \mu_{s}}^{\alpha}+\ldots=0
$$

${ }^{\infty}$ gauge invariant under $\delta \varphi=\partial \wedge$ iff $\quad \wedge^{\prime}\left(\equiv \wedge^{\alpha}{ }_{\alpha}\right) \quad \equiv 0$;
co Lagrangian description iff $\quad \varphi^{\prime \prime}\left(\equiv \varphi_{\alpha \beta}^{\alpha \beta}\right) \equiv 0$.
$\rightarrow \underline{\text { Fermions }}\left(\sim \operatorname{spin} \frac{3}{2} \rightarrow \not \partial \psi_{\mu}-\gamma_{\mu} \psi=0\right)$:

$$
\mathcal{S}_{\mu_{1} \ldots \mu_{s}} \equiv i\left\{\gamma^{\alpha} \partial_{\alpha} \psi_{\mu_{1} \ldots \mu_{s}}-\left(\partial_{\mu_{1}} \gamma^{\alpha} \psi_{\alpha \mu_{2} \ldots \mu_{s}}+\ldots\right)\right\}=0
$$

c gauge invariant under $\delta \psi=\partial \epsilon \quad$ iff $\quad \notin \equiv 0$;
cos Lagrangian description
iff $\quad \psi^{\prime}\left(\equiv \psi^{\alpha}{ }_{\alpha}\right) \equiv 0$.

Generalisation to (spinor -) tensors of any symmetry type in Labastida equations (1986-1989):
\leadsto Bosons (2-families: $\varphi_{\mu_{1} \cdots \mu_{s}, \nu_{1} \cdots \nu_{r}} \equiv \varphi_{\mu_{s}, \nu_{r}}$):

$$
\mathcal{F}_{\mu_{s}, \nu_{r}} \equiv \square \varphi_{\mu_{s}, \nu_{r}}-\partial_{\mu} \partial^{\alpha} \varphi_{\alpha \mu_{s-1}, \nu_{r}}-\partial_{\nu} \partial^{\alpha} \varphi_{\mu_{s}, \alpha \nu_{r-1}}+\partial^{2}{ }_{\mu} \cdots+\partial^{2}{ }_{\nu} \cdots+\partial_{\mu} \partial_{\nu} \cdots=0
$$

co gauge invariant under

$$
\delta \varphi_{\mu_{s}, \nu_{r}}=\partial_{\mu} \Lambda^{(1)}{ }_{\mu_{s-1}, \nu_{r}}+\partial_{\nu} \Lambda^{(2)}{ }_{\mu_{s}, \nu_{r-1}}
$$

iff suitable combinations of traces of $\wedge^{(1)}$ and $\wedge^{(2)}$ vanish;
${ }^{\infty}$ Lagrangian description iff suitable combinations of double traces of $\varphi_{\mu_{s}, \nu_{r}}$ vanish.
\leadsto Fermions (2-families: $\psi^{a}{ }_{\mu_{1} \cdots \mu_{s}, \nu_{1} \cdots \nu_{r}} \equiv \psi_{\mu_{s}, \nu_{r}}$):

$$
\left.\mathcal{S}_{\mu_{s}, \nu_{r}} \equiv i\left\{\gamma^{\alpha} \partial_{\alpha} \psi_{\mu_{s}, \nu_{r}}-\partial_{\mu} \gamma^{\alpha} \psi_{\alpha \mu_{s-1}, \nu_{r}}-\partial_{\nu} \gamma^{\alpha} \psi_{\mu_{s}, \alpha \nu_{r-1}}\right)\right\}=0
$$

cosimilar constraints, but no Lagrangian description available for the general case!
keep to a minimum the number of off-shell components
\rightarrow Consider the equations of motion for open String Field Theory

$$
\mathcal{Q}|\Phi\rangle=0
$$

where \mathcal{Q} is the BRST charge, and evaluate the limit $\alpha^{\prime} \rightarrow \infty$;
[Bengtsson, Henneaux-Teitelboim, Lindström, Sundborg, D.F.-Sagnotti, Sagnotti-Tsulaia, Lindström-Zabzine, Bonelli, Savvidy, Buchbinder-Fotopoulos-Tsulaia-Petkou, ...]
\Rightarrow Actually, by restricting the attention e. g. to totally symmetric tensors it is possible to show that this equation splits into a series of triplet equations:

$$
\begin{array}{rlrl}
\square \varphi=\partial C, & \delta \varphi & =\partial \wedge \\
\square C=\partial \cdot \varphi-\partial D, & \delta C & =\square \wedge \\
\square D & =\partial \cdot C, & \delta D & =\partial \cdot \wedge
\end{array}
$$

where φ is the spin-s field, describing the propagation of spins $s, s-2, s-4, \ldots$

$$
\text { with more off-shell components than } \sim \sum \text { (Fronsdal). }
$$

[Extension of triplets to irreducible spin $s \rightarrow$ Buchbinder-Galajinski-Krykhtin 2007; frame-like analysis for reducible \& irreducible cases \rightarrow Sorokin-Vasiliev 2008]

For Maxwell, Yang-Mills (spin 1) and Einstein (spin 2) theories

$$
\text { the curvature : }\left\{\begin{array}{l}
A_{\mu} \rightarrow F_{\mu \nu} \sim \partial A \\
h_{\mu \nu} \rightarrow \mathcal{R}_{\mu \nu, \rho \sigma} \sim \partial^{2} h
\end{array}\right.
$$

central to provide a geometrical understanding of the dynamics

Do they exist analogous tensors for hsp?
Yes, at least at the linear level.

$$
\begin{gathered}
\text { [de Wit-Freedman'80] } \\
\varphi_{\mu_{1} \ldots \mu_{s}} \rightarrow \quad \mathcal{R}_{\mu_{1} \ldots \mu_{s} ; \nu_{1} \ldots \nu_{s}} \sim \partial^{s} \varphi \\
\text { s.t. } \\
\text { under } \quad \delta \mathcal{R}_{\mu_{1} \ldots \mu_{s} \ldots \nu_{1} \ldots \nu_{s}}=0 \\
=\partial_{\mu_{1}} \wedge_{\mu_{2} \mu_{3} \ldots \mu_{s}}+\partial_{\mu_{2}} \wedge_{\mu_{1} \mu_{3} \ldots \mu_{s}}+\ldots
\end{gathered}
$$

for unconstrained gauge fields and gauge parameters

Three questions

I. Lagrangian description for fermions of mixed symmetry?
II. Unconstrained Lagrangians for bosons and fermions?
III.

Any role for curvatures in the dynamics?

Appendix: unconstrained Lagrangians \& Stueckelberg symmetries
(Unconstrained) Lagrangians for bosons \& fermions of any symmetry

Fronsdal

$$
\left.\begin{array}{crl}
\mathcal{F} \text { s.t. } \delta \mathcal{F}=3 \partial^{3} \Lambda^{\prime} & \mathcal{A} \equiv \mathcal{F}-3 \partial^{3} \alpha & \rightarrow\left\{\begin{array}{l}
\delta \alpha=\wedge^{\prime}, \\
\delta \mathcal{A}=0
\end{array}\right. \\
\mathcal{F}=0 & \mathcal{A} & =0
\end{array}\right\}
$$

Unconstrained

Basic ingredient: the Bianchi identity:

$$
\partial \cdot \mathcal{A}-\frac{1}{2} \partial \mathcal{A}^{\prime} \equiv-\frac{3}{2} \partial^{3} \underbrace{\left(\varphi^{\prime \prime}-\partial \cdot \alpha-\partial \alpha^{\prime}\right)}_{\equiv \mathcal{C}}
$$

compare with gravity

$$
\partial^{\alpha} \mathcal{R}_{\alpha \mu}-\frac{1}{2} \partial_{\mu} \mathcal{R} \equiv 0
$$

$$
\mathcal{L}(\varphi, \alpha, \beta)=\frac{1}{2} \varphi\left(\mathcal{A}-\frac{1}{2} \eta \mathcal{A}^{\prime}\right)-\frac{3}{4}\binom{s}{3} \alpha \partial \cdot \mathcal{A}^{\prime}-3\binom{s}{4} \beta \mathcal{C},
$$

unconstrained Lagrangians for any spin s
[D. F. - A. Sagnotti 2005, 2006]
Generalisation to (A)dS: [A. Sagnotti - M. Tsulaia '03; D. F. - J. Mourad - A. Sagnotti, '07]

$$
\begin{gathered}
\text { [A. Campoleoni-D. F. - J. Mourad - A. Sagnotti, 2008] } \\
\text { Here: Two-family fields } \varphi_{\mu_{1} \ldots \mu_{s_{1}} ; \nu_{1} \ldots \nu_{s_{2}}} \\
\text { Notation: } \begin{cases}\varphi_{\mu_{1} \ldots \mu_{s_{1}} ; \nu_{1} \ldots \nu_{s_{2}}} & \rightarrow \varphi, \\
\left.\partial_{\left(\mu_{1}^{i} \mid\right.} \varphi_{\ldots} \ldots \mid \mu_{2}^{i} \ldots \mu_{s_{i}+1}^{i}\right) ; \ldots & \rightarrow \partial^{i} \varphi, \quad \text { upper indices } \leftrightarrow \text { added indices } \\
\partial^{\lambda} \varphi_{\ldots ; \lambda \mu_{2}^{i} \ldots \mu_{s_{i}}^{i} ; \ldots} & \rightarrow \partial_{i} \varphi, \\
\varphi_{\ldots ;}{ }_{\mu_{2}} \ldots \mu_{s_{i}}^{i} ; \ldots ; \lambda \mu_{2}^{j} \ldots \mu_{s_{j}}^{j} ; \ldots & \rightarrow T_{i j} \varphi . \quad \text { lower indices } \leftrightarrow \text { removed indices }\end{cases}
\end{gathered}
$$

Families of symmetric indices \longrightarrow reducible $g l(D)$ tensors

Basic constrained theory: [Labastida 1986, 1989]

$$
\mathcal{F}=\square \varphi-\partial^{i} \partial_{i} \varphi+\frac{1}{2} \partial^{i} \partial^{j} T_{i j} \varphi=0,
$$

\rightarrow not all traces vanish;
\rightarrow the constraints are not independent.

Basic unconstrained kinetic tensor:

$$
\mathcal{A}=\mathcal{F}-\frac{1}{2} \partial^{i} \partial^{j} \partial^{k} \alpha_{i j k},
$$

But, due to linear dependence of constraints

$$
\left\{\begin{array}{l}
\alpha_{i j k} \equiv \alpha_{i j k}(\Phi)=\frac{1}{3} T_{(i j} \Phi_{k)} \\
\delta \Phi_{k}=\Lambda_{k}
\end{array}\right.
$$

To construct the Lagrangian \rightarrow resort to Bianchi identity:

$$
\begin{gathered}
\partial_{i} \mathcal{A}-\frac{1}{2} \partial^{j} T_{i j} \mathcal{A}=-\frac{1}{4} \partial^{j} \partial^{k} \partial^{l} \mathcal{C}_{i j k l} \\
\mathcal{C}_{i j k l}=T_{(i j} T_{k l)} \varphi+\mathcal{C}_{i j k l}(\alpha)
\end{gathered}
$$

As for symm case, take care of terms in $\propto \mathcal{C}_{i j k l}$ via a Lagrange multiplier β :

$$
\mathcal{L}=\frac{1}{2}\left\langle\varphi, E_{\varphi}\right\rangle+\frac{1}{2}\left\langle\Phi_{i},\left(E_{\Phi}\right)_{i}\right\rangle+\frac{1}{2}\left\langle\beta_{i j k l},\left(E_{\beta}\right)_{i j k l}\right\rangle
$$

where in particular the e.o.m. for φ, gauge fixing $\alpha_{i j k}=\frac{1}{3} T_{(i j} \Phi_{k)}$ to zero, is

$$
\begin{gathered}
E_{\varphi}=\mathcal{E}_{\varphi}+\frac{1}{2} \eta^{i j} \eta^{k l} \mathcal{B}_{i j k l}=0, \\
\mathcal{E}_{\varphi}=\mathcal{F}-\frac{1}{2} \eta^{i j} T_{i j} \mathcal{F}+\frac{1}{36} \eta^{i j} \eta^{k l}\left(2 T_{i j} T_{k l}-T_{i(k} T_{l) j}\right) \mathcal{F} .
\end{gathered}
$$

```
[A. Campoleoni - D. F. - J. Mourad - A. Sagnotti, 2009]
```

The basic kinematical setting of Labastida [1987]

$$
\left\{\begin{array}{l}
\mathcal{S}=i\left(\not \partial \psi-\partial^{i} \psi_{i}\right)=0 \\
\delta \psi=\partial^{i} \epsilon_{i} \\
T_{(i j} \psi_{k)}=0 ; \gamma_{(i} \epsilon_{j)}=0
\end{array}\right.
$$

can be easily turned to its unconstrained counterpart:

$$
\left\{\begin{array}{l}
\mathcal{W}=\mathcal{S}+i \partial^{i} \partial^{j} \xi_{i j}=0 \\
\delta \psi=\partial^{i} \epsilon_{i} \\
\xi_{i j}(\Psi)=\frac{1}{2} \gamma_{(i} \Psi_{j)} \\
\delta \Psi_{i}=\epsilon_{i}
\end{array}\right.
$$

$B \cup T$, in the constrained setting, no Lagrangian available for fermions;

* Using the Bianchi identity (here constrained theory, for simplicity)

$$
\partial_{i} \mathcal{S}-\frac{1}{2} \not \partial \gamma_{i} \mathcal{S}-\frac{1}{2} \partial^{j} T_{i j} \mathcal{S}-\frac{1}{6} \partial^{j} \gamma_{i j} \mathcal{S}=\frac{i}{2} \partial^{j} \partial^{k} T_{(i j} \gamma_{k)} \psi
$$

it is possible to find the complete Lagrangian, for N-family fields, in the form

$$
\left\{\begin{array}{l}
\mathcal{L}=\frac{1}{2}\left\langle\bar{\psi}, \sum_{p, q=0}^{N} k_{p, q} \eta^{p} \gamma^{q}\left(\gamma^{[q]} \mathcal{S}^{[p]}\right)\right\rangle+\text { h.c. } \\
k_{p, q}=\frac{(-1)^{p+\frac{q(q+1)}{2}}}{p!q!(p+q+1)!}
\end{array}\right.
$$

Unconstrained higher spins \& geometry

Generalisation of geometric equations for spin 1 et spin 2:
[D.F. - A. Sagnotti, 2002, D.F. - J. Mourad - A. Sagnotti, 2007]
$\operatorname{spin} 1$ (Maxwell): $\partial^{\alpha} F_{\alpha, \mu}=0$

$$
\operatorname{spin} 2 \text { (Einstein): } \quad \eta^{\alpha \beta} \mathcal{R}_{\alpha \mu, \beta \nu}=0
$$

$$
\operatorname{spin} 3: \mathcal{A}_{\varphi} \equiv \frac{1}{\square} \partial^{\alpha} \mathcal{R}_{\beta \alpha, \mu \nu \rho}^{\beta}=0
$$

\rightarrow (Consistency :) the equation $\mathcal{A}_{\varphi}=0$ always implies the compensator equation

$$
\mathcal{A}_{\varphi}=0 \rightarrow \mathcal{F}-3 \partial^{3} \alpha_{\varphi}=0, \quad \text { with } \quad \delta \alpha_{\varphi}=\Lambda^{\prime}
$$

\leadsto (Lagrangian :) \forall "Ricci tensor" $\mathcal{A}_{\varphi}\left(\left\{a_{k}\right\}\right)$ identically divergenceless Einstein tensors $\mathcal{E}_{\varphi}\left(\left\{a_{k}\right\}\right)$ s.t.

$$
\mathcal{L}=\frac{1}{2} \varphi \mathcal{E}_{\varphi}\left(\left\{a_{k}\right\}\right) \quad \longrightarrow \quad \mathcal{E}_{\varphi}\left(\left\{a_{k}\right\}\right)=0 \quad \longrightarrow \quad \mathcal{A}_{\varphi}\left(\left\{a_{k}\right\}\right)=0
$$

Spin 2: massive theory as
quadratic deformation of the geometric theory:
\rightarrow Spin 2 [Fierz-Pauli]

$$
\begin{aligned}
\mathcal{L}(m=0)=\frac{1}{2} h_{\mu \nu}\left(\mathcal{R}^{\mu \nu}-\frac{1}{2} \eta^{\mu \nu} \mathcal{R}\right) \\
\mathcal{L}(m)=\frac{1}{2} h_{\mu \nu}\{\underbrace{\left(\mathcal{R}^{\mu \nu}-\frac{1}{2} \eta^{\mu \nu} \mathcal{R}\right)}_{\partial \cdot \mathcal{E}_{s=2} \equiv 0}-m^{2} \underbrace{\left(h^{\mu \nu}-\eta^{\mu \nu} h^{\alpha}\right)}_{\text {Fierz-Pauli mass term }}\}
\end{aligned}
$$

\leadsto Spin s : General idea: higher traces should appear in the mass term, s.t.

$$
\mathcal{L}=\frac{1}{2} \varphi\left\{\mathcal{E}_{\varphi}\left(a_{1}, \ldots a_{k}, \ldots\right)-m^{2} M_{\varphi}\right\} \quad \text { where } \quad \underbrace{M_{\varphi}=\sum \lambda_{k} \eta^{k} \varphi^{[k]}}_{\text {generalised } F P \text { mass term }},
$$

\rightarrow Fronsdal : $\partial \cdot\left\{\mathcal{F}-\frac{1}{2} \eta \mathcal{F}^{\prime}\right\} \neq 0 \Rightarrow$ need for auxiliary fields;
\rightarrow Differently, for all geometric Einstein tensors \mathcal{E}_{φ} we have $\partial \cdot \mathcal{E}_{\varphi} \equiv 0$!
\rightarrow Indeed it is possible to define a consistent massive theory with

$$
M_{\varphi}=\varphi-\eta \varphi^{\prime}-\eta^{2} \varphi^{\prime \prime}-\frac{1}{3} \eta^{3} \varphi^{\prime \prime \prime}-\cdots-\frac{1}{(2 n-3)!!} \eta^{n} \varphi^{[n]} .
$$

We found consistent formulations for unconstrained hsp
σ
on the other hand:

* Using curvatures \rightarrow non-localities;
\rightarrow Minimal local Lagrangians \rightarrow higher-derivatives: $\sim \alpha \square^{2} \alpha$
\leadsto BRST approach ${ }^{(*)}$: to describe spin $s \rightarrow \mathcal{O}(s)$ auxiliary fields
intrinsic complication of the unconstrained approach?
${ }^{(*)}$ [Pashnev - Tsulaia - Buchbinder et al. 1997, ...]

There is a simple, alternative interpretation of the minimal local Lagrangians:
\Rightarrow Consider the Fronsdal Lagrangian, together with a multiplier for $\phi^{\prime \prime}$:

$$
\mathcal{L}=\phi\left(\mathcal{F}-\frac{1}{2} \eta \mathcal{F}^{\prime}\right)+\beta \phi^{\prime \prime}
$$

\mathcal{L} is gauge-invariant under $\delta \varphi=\partial \lambda, \delta \beta=\partial \cdot \partial \cdot \partial \cdot \lambda$, with $\lambda^{\prime}=0$
\Rightarrow Perform the Stueckelberg substitution

$$
\phi \quad \rightarrow \quad \varphi-\partial \theta
$$

obtaining an unconstrained Lagrangian, gauge invariant under

$$
\delta \varphi=\partial \wedge ; \quad \delta \theta=\wedge
$$

with an unconstrained parameter \wedge.
\rightarrow Only the trace of θ appears in \mathcal{L} (after a redefinition of β)so that, defining $\theta^{\prime} \equiv \alpha$ we recover the minimal Lagrangian

$$
\mathcal{L}(\varphi, \alpha, \beta)=\frac{1}{2} \varphi\left(\mathcal{A}-\frac{1}{2} \eta \mathcal{A}^{\prime}\right)-\frac{3}{4}\binom{s}{3} \alpha \partial \cdot \mathcal{A}^{\prime}-3\binom{s}{4} \beta \mathcal{C}
$$

Two basic observations:

』 higher-derivative terms are simply due to the different dimensions of θ w.r.t. φ in $\phi \rightarrow \varphi-\partial \theta$;
\leadsto Under this substitution any function of ϕ would be (trivially) gauge-invariant.
This is too much!
What we want is to extend to the unconstrained level
a constrained gauge symmetry already present in the Lagrangian

In this sense, maybe it is possible to improve the Stueckelberg idea.
\rightarrow In $\delta \phi=\partial \wedge$ separate traceless and trace parts of the parameter \wedge :

$$
\begin{aligned}
& \wedge=\Lambda^{t}+\eta \wedge^{p} \\
& \wedge^{p}: \wedge^{\prime}=\left(\eta \wedge^{p}\right)^{\prime}
\end{aligned}
$$

\rightarrow introduce a new compensator θ_{p}, s.t. $\delta \theta_{p}=\partial \wedge^{p}$ (so θ_{p} is not pure gauge)
\rightarrow perform in \mathcal{L} the substitution

$$
\phi \rightarrow \varphi-\eta \theta_{p}
$$

where $\varphi-\eta \theta_{p}$ transforms as the 'old' Fronsdal field.
\rightarrow The corresponding "Ricci tensor" (and generalisations thereof)

$$
\mathcal{A}_{\varphi, \theta}=\mathcal{F}-(D+2 s-6) \partial^{2} \theta-\eta \mathcal{F}_{\theta}
$$

is the building-block of unconstrained Lagrangians, with a minimal content of auxiliary fields and no higher-derivatives
for bosons and fermions of any symmetry type
[D. F. 2007; A. Campoleoni - D. F. - J. Mourad - A. Sagnotti; 2008; 2009]

Still open issues on the free theory:

- hsp supersymmetry multiplets;
- Dualities;
- Quantization;
whether or not allowing for a wider gauge symmetry might prove to be truly important, only a deeper insight into interactions will tell
still, unconstrained formulation is technically simpler (no need to project), and more flexible (more gauge fixings allowed)

To go beyond Quartic interactions :

- For spin 1 (YM) and spin 2 (EH) cubic vertex implies full Lagrangian;
- for higher spins nothing known about quartic couplings; but "proper" hsp features from quartic coupling onwards:
maybe worth the effort to try and overcome the "cubic" barrier

Are all the geometrical Einstein tensors really equivalent?
\rightarrow Propagator from Lagrangian equation with an external current:

$$
\mathcal{E}_{\varphi}\left(a_{1}, \ldots a_{k} \ldots\right)=\mathcal{J} \quad \Rightarrow \quad \varphi=\mathcal{G}\left(a_{1}, \ldots a_{k} \ldots\right) \cdot \mathcal{J}
$$

\Rightarrow Current exchange $\mathcal{J} \cdot \varphi=\mathcal{J} \cdot \mathcal{G} \cdot \mathcal{J} \rightarrow$ consistency conditions on the polarisations flowing:

```
almost all geometric theories give the wrong result, but one.
```

The correct theory has a simple structure:
\Rightarrow The 'Ricci' tensor has the compensator form $\mathcal{A}_{\varphi}=\mathcal{F}-3 \partial^{3} \gamma_{\varphi}$;
\rightarrow It satisfies the identities : $\left\{\begin{array}{l}\partial \cdot \mathcal{A}_{\varphi}-\frac{1}{2} \partial \mathcal{A}_{\varphi}^{\prime} \equiv 0 \\ \mathcal{A}_{\varphi}^{\prime \prime} \equiv 0\end{array}\right.$, and the Lagrangian is

$$
\mathcal{L}=\frac{1}{2} \varphi\left(\mathcal{A}_{\varphi}-\frac{1}{2} \eta \mathcal{A}_{\varphi}^{\prime}+\eta^{2} \mathcal{B}_{\varphi}\right)-\varphi \cdot \mathcal{J}
$$

[D.F. - J. Mourad - A. Sagnotti, 2007]
\Rightarrow Consider the family of Lagrangians, for spin 4:

$$
\mathcal{L}(m)=\frac{1}{2} \varphi\left\{\mathcal{E}_{\varphi}\left(a_{1}, a_{2}\right)-m^{2} M_{\varphi}\right\}-\varphi \cdot \mathcal{J}
$$

where \mathcal{J} is a conserved current: $\partial \cdot \mathcal{J}=0$.

* The divergence of the eom

$$
\partial \cdot\left\{\mathcal{E}_{\varphi}\left(a_{1}, a_{2}\right)-m^{2}\left(\varphi-\eta \varphi^{\prime}-\eta^{2} \varphi^{\prime \prime}\right)\right\}=\partial \cdot \mathcal{J}=0
$$

implies the same consequences as in the absence of \mathcal{J}.
\rightarrow Actually, $\forall a_{1}, a_{2}$ the eom reduce to

$$
\square \varphi-\frac{\partial^{2}}{\square} \varphi^{\prime}-3 \frac{\partial^{4}}{\square^{2}} \varphi^{\prime \prime}-m^{2}\left(\varphi-\eta \varphi^{\prime}-\eta^{2} \varphi^{\prime \prime}\right)=\mathcal{J}
$$

\leadsto where a_{1}, a_{2} disappeared; computing the product $\mathcal{J} \cdot \mathcal{J}$:
(1) only surviving contribution from the family of Einstein tensors is $\square \varphi$
(2) full structure of the propagator encoded in the coefficients of M_{φ}
\Rightarrow Inverting the equation of motion we find the correct result

$$
\mathcal{J} \cdot \varphi=\frac{1}{p^{2}-m^{2}}\left\{\mathcal{J} \cdot \mathcal{J}-\frac{6}{D+3} J^{\prime} \cdot J^{\prime}+\frac{3}{(D+1)(D+3)} J^{\prime \prime} \cdot J^{\prime \prime}\right\}
$$

The same mass term M_{φ} generates infinitely many consistent massive theories.

issue of uniqueness

I. \leadsto Origin of the Fierz-Pauli mass-term, for $s=2$: KK reduction $\left(\square \rightarrow \square-m^{2}\right.$):

$$
\begin{gathered}
\mathcal{R}_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \mathcal{R} \sim \square\left(h-\eta h^{\prime}\right)+\ldots, \\
\underline{\text { A similar mechanism for } M_{\varphi} ?}
\end{gathered}
$$

\rightarrow For each Einstein tensor $\mathcal{E}_{\varphi}\left(a_{1}, \ldots, a_{k}\right)$ it is unambiguously defined the "pure massive" contribution of the reduction, neglecting singularities from $\frac{1}{\square} \rightarrow \frac{1}{\square-m^{2}}$:

$$
\mathcal{E}_{\varphi}\left(a_{1}, \ldots, a_{k}\right) \sim \square\left(\varphi+k_{1} \eta \varphi^{\prime}+k_{2} \eta^{2} \varphi^{\prime \prime}+\ldots\right)+\ldots,
$$

where $k_{i}=k_{i}\left(a_{1}, \ldots, a_{k}\right)$.
\rightarrow Is it possible to find a geometric theory whose "box" term encodes the coefficients of the generalised FP mass term M_{φ} ?

Yes! Up to spin 11 (at least) it is just the unique theory with the correct current exchange.
II. \rightarrow Why the mass term works well with all geometric Einstein tensors? Not too strange, also true for spin 2: the non-local (wrong!) theory defined by the eom

$$
\mathcal{R}_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \mathcal{R}+\lambda\left(\eta-\frac{\partial^{2}}{\square}\right) \mathcal{R}-m^{2}\left(h-\eta h^{\prime}\right)=T_{\mu \nu}
$$

with $T_{\mu \nu}$ conserved, reduces to the Fierz system, and gives the correct current exchange!

* Massive Lagrangians from massless ones $\rightarrow \mathbf{K}-\mathrm{K}$ reduction from $D+1$ to D

桼 Response of the theory to the presence of an external source \mathcal{J}; unitarity : only transverse, on-shell polarisations mediate the interaction between distant sources:

tantamount to computing the propagator
\Rightarrow Straightforward in flat bkg;

$$
s=3: \begin{cases}p^{2} \mathcal{J} \cdot \varphi=\mathcal{J} \cdot \mathcal{J}-\frac{3}{D} \mathcal{J}^{\prime} \cdot \mathcal{J}^{\prime} & m=0 \\ \left(p^{2}-m^{2}\right) \mathcal{J} \cdot \varphi=\mathcal{J} \cdot \mathcal{J}-\frac{3}{D+1} \mathcal{J}^{\prime} \cdot \mathcal{J}^{\prime} & m \neq 0\end{cases}
$$

(generalisation to hsp of the vDVZ discontinuity)
\rightarrow Less direct to describe (partially) massive (A)dS fields(*);

$$
s=3: \begin{cases}P_{L}^{2} \mathcal{J} \cdot \varphi=\mathcal{J} \cdot \mathcal{J}-\frac{3}{D} \mathcal{J}^{\prime} \cdot \mathcal{J}^{\prime} & m=0 \\ \left(P_{L}^{2}-m^{2}\right) \mathcal{J} \cdot \varphi=\mathcal{J} \cdot \mathcal{J}-3 \frac{m^{2} L^{2}+D+1}{(D+1)\left(m^{2} L^{2}+D\right)} \mathcal{J}^{\prime} \cdot \mathcal{J}^{\prime} & m \neq 0\end{cases}
$$

(no vDVZ discontinuity for hsp on (A)dS)
${ }^{(*)} P_{L}^{2}=\square_{L}-4 \frac{D}{L^{2}}$
[D.F. - J. Mourad - A. Sagnotti, '07, '08]

