4th International Sakharov Conference Moscow, 22 May 2009

Towards the exact spectrum of the $A d S_{5} \times S^{5}$ superstring. II

Sergey Frolov

School of Mathematics
Trinity College Dublin

with Gleb Arutyunov: arXiv:0710.1568, 0901.1417, 0903.0141
with Ryo Suzuki: work in progress

Exact spectrum of
$A d S_{5} \times S^{5}$ superstring and

$$
\mathcal{N}=4 \mathrm{SYM}
$$ is NOT

known

Exact spectrum of
 $\operatorname{Ad} S_{5} \times S^{5}$ superstring
 and
 $\mathcal{N}=4$ SYM is NOT
 known

This year there has been important progress towards finding a solution of this problem

In my talk l'll discuss what have been done and what remains to be understood (a lot!)

String hypothesis for the mirror model

The Bethe-Yang equations for the mirror theory

$$
\begin{aligned}
& 1=e^{i \widetilde{p}_{k} R} \prod_{\substack{l=1 \\
l \neq k}}^{K^{\mathrm{I}}} S_{\mathfrak{s l}(2)}^{Q_{k} Q_{l}}\left(x_{k}, x_{l}\right) \prod_{\alpha=1}^{2} \prod_{l=1}^{K_{(\alpha)}^{\mathrm{II}}} \frac{x_{k}^{-}-y_{l}^{(\alpha)}}{x_{k}^{+}-y_{l}^{(\alpha)}} \sqrt{\frac{x_{k}^{+}}{x_{k}^{-}}} \\
& -1=\prod_{l=1}^{K^{\mathrm{I}}} \frac{y_{k}^{(\alpha)}-x_{l}^{-}}{y_{k}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}} \prod_{l=1}^{K_{(\alpha)}^{\mathrm{III}}} \frac{v_{k}^{(\alpha)}-w_{l}^{(\alpha)}-\frac{i}{g}}{v_{k}^{(\alpha)}-w_{l}^{(\alpha)}+\frac{i}{g}}} \\
& 1=\prod_{l=1}^{K_{(\alpha)}^{\mathrm{II}}} \frac{w_{k}^{(\alpha)}-v_{l}^{(\alpha)}+\frac{i}{g}}{w_{k}^{(\alpha)}-v_{l}^{(\alpha)}-\frac{i}{g}} \prod_{\substack{l=1 \\
l \neq k}}^{K_{(\alpha)}^{\mathrm{III}}} \frac{w_{k}^{(\alpha)}-w_{l}^{(\alpha)}-\frac{2 i}{g}}{w_{k}^{(\alpha)}-w_{l}^{(\alpha)}+\frac{2 i}{g}} .
\end{aligned}
$$

- Here \widetilde{p}_{k} is the real momentum of a physical Q-particle
- $K^{\mathrm{I}}, K_{(\alpha)}^{\mathrm{II}}$ and $K_{(\alpha)}^{\mathrm{III}}$ are the numbers of Q-particles, and auxiliary roots $y_{k}^{(\alpha)}$ and $w_{k}^{(\alpha)}$, and $\alpha=1,2$. The parameters v are related to y as $v=y+\frac{1}{y}$.
- $S_{\mathfrak{s l}(2)}^{Q_{k} Q_{l}}\left(x_{k}, x_{l}\right)$ is the S -matrix in the $\mathfrak{s l}(2)$ sector of the mirror theory which describes the scattering of a Q_{k}-particle and a Q_{l}-particle with momenta \widetilde{p}_{k} and \widetilde{p}_{l}

String hypothesis

In thermodynamic limit $R, K^{\mathrm{I}}, K_{(\alpha)}^{\mathrm{II}}, K_{(\alpha)}^{\mathrm{III}} \rightarrow \infty$ with K^{I} / R and so on fixed solutions of BYE are composed of four different classes of Bethe strings

1. A single Q-particle with real momentum \widetilde{p}_{k} or, equivalently, rapidity u_{k}
2. A single $y^{(\alpha)}$-particle (an auxiliary root $y^{(\alpha)}$) with $\left|y^{(\alpha)}\right|=1$
3. $2 M$ roots $y^{(\alpha)}$ and M roots $w^{(\alpha)}$ combining into a single $M \mid v w^{(\alpha)}$-string

$$
\begin{aligned}
& v_{j}^{(\alpha)}=v^{(\alpha)}+(M+2-2 j) \frac{i}{g}, \quad v_{-j}^{(\alpha)}=v^{(\alpha)}-(M+2-2 j) \frac{i}{g}, \quad j=1, \ldots, M \\
& w_{j}^{(\alpha)}=v^{(\alpha)}+(M+1-2 j) \frac{i}{g}, \quad j=1, \ldots, M, \quad v \in \mathbf{R} .
\end{aligned}
$$

4. N roots $w^{(\alpha)}$ combining into a single $N \mid w^{(\alpha)}$-string

$$
w_{j}^{(\alpha)}=w^{(\alpha)}+\frac{i}{g}(N+1-2 j), \quad j=1, \ldots, N, \quad w \in \mathbf{R}
$$

This includes $N=1$ which has a single real root $w^{(\alpha)}$.

Thermodynamic limit

Introduce densities $\rho(u)$ of particles, and $\bar{\rho}(u)$ of holes; $u \in \mathbf{R}, \alpha=1,2$.

1. $\rho_{Q}(u)$ of Q-particles, $-\infty \leq u \leq \infty, Q=1, \ldots, \infty$
2. $\rho_{y^{-}}^{(\alpha)}(u)$ of y-particles with $\operatorname{Im}(y)<0,-2 \leq u \leq 2$. The y-coordinate is expressed in terms of u as $y=x(u)$

$$
x(u)=\frac{1}{2}\left(u-i \sqrt{4-u^{2}}\right), \quad \operatorname{Im}(x(u))<0 \text { for any } u \in \mathbb{C},
$$

the cuts in the u-plane run from $\pm \infty$ to ± 2 along the real lines.
3. $\rho_{y^{+}}^{(\alpha)}(u)$ of y-particles with $\operatorname{Im}(y)>0,-2 \leq u \leq 2$. The y-coordinate is expressed in terms of u as $y=\frac{1}{x(u)}$
4. $\rho_{M \mid v w}^{(\alpha)}(u)$ of $M \mid v w$-strings, $-\infty \leq u \leq \infty, M=1, \ldots, \infty$
5. $\rho_{N \mid w}^{(\alpha)}(u)$ of $N \mid w$-strings, $-\infty \leq u \leq \infty, N=1, \ldots, \infty$,
and the corresponding densities of holes.

Thermodynamic limit

Let i, j, k run over all the densities. Integral eqs in the thermodynamic limit

$$
\rho_{i}(u)+\bar{\rho}_{i}(u)=\frac{R}{2 \pi} \frac{d \widetilde{p}_{i}}{d u}+K_{i j} \star \rho_{j}(u)
$$

where \widetilde{p}_{i} does not vanish only for Q-particles.
Left action of $K^{\prime} s$ on ρ_{j} (the star product) is defined as

$$
K_{i j} \star \rho_{j}(u)=\int \mathrm{d} u^{\prime} K_{i j}\left(u, u^{\prime}\right) \rho_{j}\left(u^{\prime}\right)
$$

Integration is taken over the corresponding range of u.
$K^{\prime} s$ are expressed through the corresponding S-matrices as

$$
K_{i j}(u, v)=\frac{1}{2 \pi i} \frac{d}{d u} \log S_{i j}(u, v)
$$

We will need the right action which is defined as

$$
\rho_{j} \star K_{j i}(u)=\int \mathrm{d} u^{\prime} \rho_{j}\left(u^{\prime}\right) K_{j i}\left(u^{\prime}, u\right) .
$$

Free energy and equations for pseudo-energies

Integral eqs for minimum of
free energy per unit length for
mirror theory at temperature $T=\frac{1}{L}$

The ground state energy of I.c.
$\Longrightarrow \quad$ string theory on the cylinder with

Light-cone string theory has two different sectors

- Even winding number string states and periodic fermions \Longrightarrow ground state energy is determined by Witten's index of the mirror theory.

The ground state is BPS \Longrightarrow no quantum corrections to its energy

- Anti-periodic fermions and non-BPS ground state

Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy

$$
\mathcal{F}_{\gamma}(L)=\mathcal{E}-\frac{1}{L} S+\frac{i \gamma}{L}\left(N_{F}^{(1)}-N_{F}^{(2)}\right),
$$

- \mathcal{E} is the energy per unit length carried by Q-particles

$$
\mathcal{E}=\int \mathrm{d} u \sum_{Q=1}^{\infty} \widetilde{\mathcal{E}}^{Q}(u) \rho_{Q}(u), \quad \widetilde{\mathcal{E}}^{Q}(u) \text { is } Q \text {-particle energy }
$$

- S is the total entropy
- $i \gamma / L$ plays the role of a chemical potential
- $N_{F}^{(\alpha)}$ is the fermion number which counts the number of $y^{(\alpha)}$-particles

$$
N_{F}^{(1)}-N_{F}^{(2)}=\int \mathrm{d} u\left(\rho_{y^{-}}^{(1)}(u)+\rho_{y^{+}}^{(1)}(u)-\rho_{y^{-}}^{(2)}(u)-\rho_{y^{+}}^{(2)}(u)\right)
$$

- Minus sign between $N_{F}^{(1)}$ and $N_{F}^{(2)}$ is needed for the reality of $\mathcal{F}_{\gamma}(L)$
- $\gamma=\pi \Longrightarrow$ Witten's index. $\gamma=0 \Longrightarrow$ the usual free energy.

Free energy and equations for pseudo-energies

Free energy: $\quad \mathcal{F}_{\gamma}(L)=\int \mathrm{d} u \sum_{k}\left[\widetilde{\mathcal{E}}_{k} \rho_{k}-\frac{i \gamma_{k}}{L} \rho_{k}-\frac{1}{L} \mathfrak{s}\left(\rho_{k}\right)\right]$,
Variations of the densities of particles and holes are subject to

$$
\delta \rho_{k}(u)+\delta \bar{\rho}_{k}(u)=K_{k j} \star \delta \rho_{j} .
$$

Using the extremum condition $\delta \mathcal{F}_{\gamma}(L)=0$, one derives the TBA eqs

$$
\epsilon_{k}=L \widetilde{\mathcal{E}}_{k}-\log \left(1+e^{i \gamma_{j}-\epsilon_{j}}\right) \star K_{j k},
$$

where the pseudo-energies ϵ_{k} are

$$
e^{i \gamma_{k}-\epsilon_{k}}=\frac{\rho_{k}}{\bar{\rho}_{k}},
$$

and the right action of $K_{j k}$ is used: $\rho_{j} \star K_{j i}(u)=\int \mathrm{d} u^{\prime} \rho_{j}\left(u^{\prime}\right) K_{j i}\left(u^{\prime}, u\right)$
At the extremum $\quad \mathcal{F}_{\gamma}(L)=-\frac{R}{L} \int \mathrm{~d} u \sum_{k} \frac{1}{2 \pi} \frac{d \widetilde{p}_{k}}{d u} \log \left(1+e^{i \gamma_{k}-\epsilon_{k}}\right)$
Finally, one gets the energy of the ground state of the l.c. string theory

$$
E_{\gamma}(L)=\lim _{R \rightarrow \infty} \frac{L}{R} \mathcal{F}_{\gamma}(L)=-\int \mathrm{d} u \sum_{Q=1}^{\infty} \frac{1}{2 \pi} \frac{d \widetilde{p}^{Q}}{d u} \log \left(1+e^{-\epsilon_{Q}}\right)
$$

TBA equations

- Q-particles $\left(\gamma=\pi+h, h_{\alpha}=(-1)^{\alpha} h\right)$
- y-particles

$$
\begin{aligned}
& \epsilon_{Q}=L \widetilde{\mathcal{E}}_{Q}-\log \left(1+e^{-\epsilon_{Q^{\prime}}}\right) \star K_{\mathfrak{s l}(2)}^{Q^{\prime} Q}-\log \left(1+e^{-\epsilon_{M^{\prime} \mid v w}^{(\alpha)}}\right) \star K_{v w x}^{M^{\prime} Q} \\
&-\log \left(1-e^{i h_{\alpha}-\epsilon_{y}^{(\alpha)}}\right) \star K_{-}^{y Q}-\log \left(1-e^{i h_{\alpha}-\epsilon_{y}^{(\alpha)}}\right) \star K_{+}^{y Q}
\end{aligned}
$$

$$
\epsilon_{y \pm}^{(\alpha)}=-\log \left(1+e^{-\epsilon_{Q}}\right) \star K_{ \pm}^{Q y}+\log \frac{1+e^{-\epsilon_{M \mid v w}^{(\alpha)}}}{1+e^{-\epsilon_{M \mid w}^{(\alpha)}}} \star K_{M}
$$

- $M \mid v w$-strings

$$
\begin{aligned}
& \epsilon_{M \mid v w}^{(\alpha)}=-\log \left(1+e^{-\epsilon}{Q^{\prime}}^{\prime}\right) \star K_{x v}^{Q^{\prime} M} \\
& \quad+\log \left(1+e^{-\epsilon_{M^{\prime} \mid v w}^{(\alpha)}}\right) \star K_{M^{\prime} M}-\log \frac{1-e^{i h_{\alpha}-\epsilon_{y}^{(\alpha)}}}{1-e^{i h_{\alpha}-\epsilon_{y}^{(\alpha)}}} \star K_{M}
\end{aligned}
$$

$$
\epsilon_{M \mid w}^{(\alpha)}=\log \left(1+e^{-\epsilon_{M^{\prime} \mid w}^{(\alpha)}}\right) \star K_{M^{\prime} M}-\log \frac{1-e^{i h_{\alpha}-\epsilon_{y}^{(\alpha)}}}{1-e^{i h_{\alpha}-\epsilon^{(\alpha)}} y^{-}} \star K_{M}
$$

See also

Simplifying the TBA equations

We introduce the Y -functions

$$
Y_{Q}=e^{-\epsilon_{Q}}, \quad Y_{M \mid v w}^{(\alpha)}=e^{\epsilon_{M \mid v w}^{(\alpha)}}, \quad Y_{M \mid w}^{(\alpha)}=e^{\epsilon_{M \mid w}^{(\alpha)}}, \quad Y_{ \pm}^{(\alpha)}=e^{\epsilon_{y \pm}^{(\alpha)}}
$$

and use the universal kernel

$$
\begin{aligned}
& (K+1)_{M N}^{-1}=\delta_{M N}-s\left(\delta_{M+1, N}+\delta_{M-1, N}\right), \quad s(u)=\frac{g}{4 \cosh \frac{g \pi u}{2}} \\
& \text { inverse to } K_{N Q}+\delta_{N Q}: \quad \sum_{N=1}^{\infty}(K+1)_{M N}^{-1} \star\left(K_{N Q}+\delta_{N Q}\right)=\delta_{M Q}
\end{aligned}
$$

$$
\text { where } K_{M N}(u)=K_{M+N}(u)+K_{N-M}(u)+2 \sum_{j=1}^{M-1} K_{N-M+2 j}(u),
$$

$$
K_{M}(u)=\frac{1}{2 \pi i} \frac{d}{d u} \log \left(\frac{u-i \frac{M}{g}}{u+i \frac{M}{g}}\right)=\frac{1}{\pi} \frac{g M}{M^{2}+g^{2} u^{2}}, \quad-\infty \leq M \leq \infty
$$

We often use the following identity

$$
\sum_{N=1}^{\infty}(K+1)_{M N}^{-1} \star K_{N}=s \delta_{M 1}
$$

TBA and Y -equations for w-strings

$$
\log Y_{M \mid w}^{(\alpha)}=\log \left(1+\frac{1}{Y_{M^{\prime} \mid w}^{(\alpha)}}\right) \star K_{M^{\prime} M}-\log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star K_{M}
$$

We apply the inverse kernel, and get the following equation

$$
\log Y_{M \mid w}^{(\alpha)}=I_{M N} \log \left(1+Y_{N \mid w}^{(\alpha)}\right) \star s+\delta_{M 1} \log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star s
$$

where $I_{M N}$ is the incidence matrix

$$
I_{M N}=\delta_{M+1, N}+\delta_{M-1, N}
$$

Since the functions $Y_{ \pm}^{\alpha}$ are defined on the interval $-2<u<2$, the integral in the last term is taken from -2 to 2 .

Y-system ???

TBA and Y -equations for w-strings

$$
\log Y_{M \mid w}^{(\alpha)}=I_{M N} \log \left(1+Y_{N \mid w}^{(\alpha)}\right) \star s+\delta_{M 1} \log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star s
$$

Define $\left(f \star s^{-1}\right)(u)=\lim _{\epsilon \rightarrow 0^{+}}\left[f\left(u+\frac{i}{g}-i \epsilon\right)+f\left(u-\frac{i}{g}+i \epsilon\right)\right]$,
It satisfies the identity $\left(s \star s^{-1}\right)(u)=\delta(u)$. In general $f \star s^{-1} \star s \neq f$.
Introduce the notation $Y_{M \mid w}^{(\alpha) \pm}(u) \equiv Y_{M \mid w}^{(\alpha)}\left(u \pm \frac{i}{g} \mp i 0\right)$, and get the Y-equations

$$
\begin{array}{ll}
Y_{M \mid w}^{(\alpha)+} Y_{M \mid w}^{(\alpha)-} & =\left(1+Y_{M-1 \mid w}^{(\alpha)}\right)\left(1+Y_{M+1 \mid w}^{(\alpha)}\right) \quad \text { if } M \geq 2 \\
Y_{1 \mid w}^{(\alpha)+} Y_{1 \mid w}^{(\alpha)-}=\left(1+Y_{2 \mid w}^{(\alpha)}\right) \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}}, \quad|u| \leq 2 \\
Y_{1 \mid w}^{(\alpha)+} Y_{1 \mid w}^{(\alpha)-}=1+Y_{2 \mid w}^{(\alpha)}, & |u|>2
\end{array}
$$

Y-system does NOT work for $|u|>2$

Ground state energy: any L, small h

Naively, for $h=0$ the TBA equations are solved by

$$
Y_{Q}=0, \quad Y_{+}^{(\alpha)}=Y_{-}^{(\alpha)}=1, \quad Y_{M \mid v w}^{(\alpha)}=Y_{M \mid w}^{(\alpha)} \neq 0, \quad e^{i h_{\alpha}}=1
$$

A subtle point is that the TBA equation for Q-particles is singular at $Y_{Q}=0$

$$
\begin{aligned}
-\log Y_{Q}= & L \widetilde{\mathcal{E}}_{Q}-\log \left(1+Y_{Q^{\prime}}\right) \star K_{\mathfrak{s l}(2)}^{Q^{\prime} Q}-\log \left(1+\frac{1}{Y_{M \mid v w}^{(\alpha)}}\right) \star K_{v w x}^{M Q} \\
& -\frac{1}{2} \log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star K_{Q}-\frac{1}{2} \log \left(1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}\right)\left(1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}\right) \star K_{y Q} .
\end{aligned}
$$

Consider $h \neq 0$ and take $h \rightarrow 0$. For small h, the functions $Y_{ \pm}^{(\alpha)}$ have expansion

$$
Y_{ \pm}^{(\alpha)}=1+h A_{ \pm}^{(\alpha)}+\cdots
$$

The last term behaves as $\log h$, and we get

$$
-\log Y_{Q}=-2 \log h \star K_{y Q}+\text { finite terms } .
$$

Ground state energy: any L, small h

$$
-\log Y_{Q}=-2 \log h \star K_{y Q}+\text { finite terms }
$$

Taking into account that $1 \star K_{y Q}=1$, we conclude

$$
Y_{Q}=h^{2} B_{Q}+\cdots,
$$

and the ground state energy expands as

$$
E_{h}(L)=-h^{2} \int \frac{d u}{2 \pi} \sum_{Q=1}^{\infty} \frac{d \widetilde{p}^{Q}}{d u} B_{Q}+\cdots
$$

Expanding all the Y-functions around the naive solution up to quadratic order in h

$$
\begin{aligned}
Y_{Q} & \approx h^{2} B_{Q}, & Y_{ \pm}^{(\alpha)} & \approx 1+h A_{ \pm}^{(\alpha)}+h^{2} B_{ \pm}^{(\alpha)} \\
Y_{M \mid v w}^{(\alpha)} & \approx A_{M}^{(\alpha)}+h B_{M \mid v w}^{(\alpha)}+h^{2} C_{M \mid v w}^{(\alpha)}, & Y_{M \mid w}^{(\alpha)} & \approx A_{M}^{(\alpha)}+h B_{M \mid w}^{(\alpha)}+h^{2} C_{M \mid w}^{(\alpha)}
\end{aligned}
$$

one can derive equations for the coefficients A 's and B 's.
Up to the quadratic order the expansion in h is consistent with the conditions

$$
B_{M \mid w}^{(\alpha)}=B_{M \mid v w}^{(\alpha)} \quad \Leftrightarrow \quad A_{-}^{(a)}=A_{+}^{(\alpha)}=0
$$

Ground state energy: any L, small h

TBA eqs for Q-particles, and w-strings decouple from the eqs for $B_{M \mid w}^{(\alpha)}$ and $B_{ \pm}^{(\alpha)}$
$-\log B_{Q}=L \widetilde{\mathcal{E}}_{Q}-\log \left(1+\frac{1}{A_{M}^{(\alpha)}}\right) \star K_{v w x}^{M Q}, \quad \log A_{M}^{(\alpha)}=I_{M N} \log \left(1+A_{N}^{(\alpha)}\right) \star s$
If $A_{M}^{(\alpha)}$ is constant then since $1 \star s=\frac{1}{2}$

$$
\left(A_{M}^{(\alpha)}\right)^{2}=\left(1+A_{M-1}^{(\alpha)}\right)\left(1+A_{M+1}^{(\alpha)}\right) \quad \Rightarrow \quad A_{M-1}^{(\alpha)}=M^{2}-1
$$

B_{Q} is computed by using $1 \star K_{v w x}^{M Q}=n_{v w x}^{M, Q}$

$$
B_{Q}=4 Q^{2} e^{-L \widetilde{\mathcal{E}}_{Q}}
$$

L is quantized!!! if Y_{Q} is analytic on z-torus.
Thus, the ground state energy at the leading order in h and arbitrary L is given by

$$
E_{h}(L)=-h^{2} \int \frac{d u}{2 \pi} \sum_{Q=1}^{\infty} \frac{d \widetilde{p}^{Q}}{d u} 4 Q^{2} e^{-L \widetilde{\mathcal{E}}_{Q}}=-h^{2} \sum_{Q=1}^{\infty} \int \frac{d \widetilde{p}^{Q}}{2 \pi} 4 Q^{2} e^{-L \widetilde{\mathcal{E}}_{Q}}
$$

For $L=2$ the series in Q diverges?! as $\frac{1}{Q}$

Ground state energy: any h, large L

Generalized Lüscher formula

$$
E_{\mathrm{gL}}(L)=-\int \frac{d u}{2 \pi} \sum_{Q=1}^{\infty} \frac{d \widetilde{p}^{Q}}{d u} e^{-L \widetilde{\mathcal{E}}_{Q}} \operatorname{tr}_{Q} e^{i(\pi+h) F}+\cdots
$$

The trace runs through all $16 Q^{2}$ polarizations of a Q-particle state. We obtain

$$
E_{\mathrm{gL}}(L)=-\int \frac{d u}{2 \pi} \sum_{Q=1}^{\infty} \frac{d \widetilde{p}^{Q}}{d u} 16 Q^{2} \sin ^{2} \frac{h}{2} e^{-L \tilde{\varepsilon}_{Q}}+\cdots .
$$

At small values of h it agrees with the previous one.
Expansion of Y -functions in terms of $e^{-L \widetilde{\varepsilon}_{Q}}$ is similar to the small h one

$$
Y_{Q} \approx 16 Q^{2} \sin ^{2} \frac{h}{2} e^{-L \widetilde{\mathcal{E}}_{Q}}, \quad Y_{ \pm}^{(\alpha)} \approx 1, \quad Y_{M \mid w}^{(\alpha)} \approx Y_{M \mid v w}^{(\alpha)} \approx M(M+2)
$$

and the energy of the ground state agrees with the Lüscher formula.
For $h=\pi$ it should give the energy of the non-BPS ground state in the sector with anti-periodic fermions.

Y-system test

It is of interest to compute the contribution Δ

$$
\begin{aligned}
\Delta & =\log \left(1-\frac{e^{i h_{1}}}{Y_{-}^{(1)}}\right)\left(1-\frac{e^{i h_{2}}}{Y_{-}^{(2)}}\right)(\theta(-u-2)+\theta(u-2)) \\
& +L \check{\mathcal{E}}-\log \left(1-\frac{e^{i h_{1}}}{Y_{-}^{(1)}}\right)\left(1-\frac{e^{i h_{2}}}{Y_{-}^{(2)}}\right)\left(1-\frac{e^{i h_{1}}}{Y_{+}^{(1)}}\right)\left(1-\frac{e^{i h_{2}}}{Y_{+}^{(2)}}\right) \star \check{K} \\
& -\log \left(1+\frac{1}{Y_{M \mid v w}^{(1)}}\right)\left(1+\frac{1}{Y_{M \mid v w}^{(2)}}\right) \star \check{K}_{M}+2 \log \left(1+Y_{Q}\right) \star \check{K}_{Q}^{\Sigma},
\end{aligned}
$$

appearing in the simplified set of TBA equations.
TBA eqs may lead to a Y-system only if Δ vanishes on any solution. We get

$$
\Delta=L \check{\mathcal{E}} .
$$

- Since Δ does not vanish, the TBA eqs. do NOT lead to an analytic Y-system.
- That means that Y-functions are NOT analytic in the complex u-plane, and have infinitely many cuts.
- This is in contrast to rel. models, and even if the Y -system exists, is it useful?

TBA equations for excited states

TBA equations for excited states

Naive TBA eqs for excited (nonbound) states in the $\mathfrak{s u}(2)$ (or $\mathfrak{s l}(2)$?) sector

- Assume that the string theory spectrum is characterized by a set of N real numbers z_{k} corresponding to momenta of N particles in the large L limit.
- These numbers are determined from the conditions
P. Dorey, Tateo '96

$$
Y_{1}\left(z_{k}-\frac{\omega_{2}}{2}\right)=Y_{1}\left(z_{* k}\right)=-1, \quad k=1, \ldots, N,
$$

where $Y_{1}=e^{-\epsilon_{1}}$ is the Y-function of the fundamental mirror particles, and it is supposed to be a holomorphic function in a region which contains all $z_{* k}$ and the real mirror momentum line in the z-torus.

- Take the TBA equations for the ground state energy, and deform the integration contour in any integral of the form $f \star K(z)=\int d z^{\prime} f\left(z^{\prime}\right) K\left(z^{\prime}, z\right)$ in such a way that all the points $z_{* k}$ lie between the real mirror momentum z line and the integration contour.
- Taking the integration contour back to the real z line, one picks up N extra contributions of the form $-\log S\left(z_{*}, z\right)$ from any term $\log \left(1+Y_{1}\right) \star K$, where $S(w, z)$ is the S -matrix corresponding to the kernel K : $K(w, z)=\frac{1}{2 \pi i} \frac{d}{d w} \log S(w, z)$.

TBA equations for excited states in the $\mathfrak{s u}(2)$-sector

- Q-particles

$$
\begin{array}{r}
-\ln Y_{Q}=L \widetilde{\mathcal{E}}_{Q}+\sum_{*} \log S_{\mathfrak{s l}(2)}^{1_{*}^{*} Q}-\log \left(1+Y_{Q^{\prime}}\right) \star K_{\mathfrak{s t}(2)}^{Q^{\prime} Q}-\log \left(1+\frac{1}{Y_{M^{\prime} \mid v w}^{(\alpha)}}\right) \star K_{v w x}^{M^{\prime} Q} \\
-\log \left(1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}\right) \star K_{-}^{y Q}-\log \left(1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}\right) \star K_{+}^{y Q}
\end{array}
$$

- y-particles

$$
\frac{1+\frac{1}{Y_{M \mid v w}^{(\alpha)}}}{1+\frac{1}{Y_{M \mid w}^{(\alpha)}}} \star K_{M} .
$$

- $M \mid v w$-strings

$$
\ln Y_{M \mid v w}^{(\alpha)}=\sum_{*} \log S_{x v}^{1 * M}-\log \left(1+Y_{Q^{\prime}}\right) \star K_{x v}^{Q^{\prime} M}
$$

$$
+\log \left(1+\frac{1}{Y_{M^{\prime} \mid v w}^{(\alpha)}}\right) \star K_{M^{\prime} M}+\log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star K_{M} .
$$

- $M \mid w$-strings

$$
\ln Y_{M \mid w}^{(\alpha)}=\log \left(1+\frac{1}{Y_{M^{\prime} \mid w}^{(\alpha)}}\right) \star K_{M^{\prime} M}+\log \frac{1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}}{1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}} \star K_{M}
$$

TBA equations for excited states in the $\mathfrak{s u}(2)$-sector

- Summation over repeated indices and the index α in the equation for Q-particles is assumed
- The sums in the formulae run over the set of N particles
- All Y-functions depend on the real z (or u) variable of the mirror region
- All integrals are also taken over the real u line or the interval $-2<u<2$
- $S_{\mathfrak{s l}(2)}^{1_{*} Q} \equiv S_{\mathfrak{s l}(2)}^{1 Q}\left(z_{*}, z\right)$ is a shorthand notation for the S-matrix with the first and second arguments in the string and mirror regions, respectively
- Finally, both arguments of the kernels in these formulae are in the mirror region

TBA equations for excited states in the $\mathfrak{s u}(2)$-sector

Now we take the logarithm of $Y_{1}\left(z_{* k}\right)=-1$, and analytically continue the variable z of $Y_{1}(z)$ in the TBA eq for Y_{1} to the point $z_{* k}$. This leads to the following exact Bethe equations for the string theory particles momenta p_{k}

$$
\begin{gathered}
\pi i\left(2 n_{k}+1\right)=-\log Y_{1}\left(z_{* k}\right)=-i L p_{k}+\sum_{j=1}^{N} \log S_{\mathfrak{s l}(2)}^{11}\left(z_{* j}, z_{* k}\right) \\
-\log \left(1+Y_{Q}\right) \star K_{\mathfrak{s l}(2)}^{Q 1}-\log \left(1+\frac{1}{Y_{M \mid v w}^{(\alpha)}}\right) \star K_{v w x}^{M 1} \\
-\log \left(1-\frac{e^{i h_{\alpha}}}{Y_{-}^{(\alpha)}}\right) \star K_{-}^{y 1}-\log \left(1-\frac{e^{i h_{\alpha}}}{Y_{+}^{(\alpha)}}\right) \star K_{+}^{y 1},
\end{gathered}
$$

- $p_{k}=i \widetilde{\mathcal{E}}_{Q}\left(z_{* k}\right)$ is the momentum of the k-th particle
- the second argument in all the kernels in this equation is equal to $z_{* k}$
- the first argument we integrate with respect to is the original one in the mirror region

TBA equations for excited states in the $\mathfrak{s u}(2)$-sector

The energy of the multiparticle state is given by

$$
\begin{aligned}
E_{\left\{n_{k}\right\}}(L) & =\sum_{k=1}^{N} i \widetilde{p}^{1}\left(z_{* k}\right)-\int \mathrm{d} u \sum_{Q=1}^{\infty} \frac{1}{2 \pi} \frac{d \widetilde{p}^{Q}}{d u} \log \left(1+Y_{Q}\right) \\
& =\sum_{k=1}^{N} \mathcal{E}_{k}-\int \mathrm{d} u \sum_{Q=1}^{\infty} \frac{1}{2 \pi} \frac{d \widetilde{p}^{Q}}{d u} \log \left(1+Y_{Q}\right)
\end{aligned}
$$

where

$$
\mathcal{E}_{k}=i g x_{k}^{-}-i g x_{k}^{+}-1,
$$

is the energy of a fundamental particle in the string theory.
For practical computations the analytic continuation from the mirror region to the string one is done by introducing the u_{*}-variable in the string region

$$
x_{s}\left(u_{*}\right)=\frac{u_{*}}{2}\left(1+\sqrt{1-\frac{4}{u_{*}^{2}}}\right),
$$

with the cut running from -2 to 2 . Then, the analytic continuation of all the kernels and S-matrices reduces to the substitution $x^{Q \pm}(u) \rightarrow x^{Q \pm}\left(u_{*}\right) \equiv x_{s}\left(u_{*} \pm \frac{i}{g} Q\right)$.

Conclusions

- The $A d S_{5} \times S^{5}$ string sigma-model can be naturally embedded in the general framework of massive integrable systems.
- Mirror theory is continuum 2-dim quantum field theory, and is closer to usual relativistic models. On the contrary, quantum I.c. string sigma model is rather a lattice theory
- Formulated the string hypothesis for the mirror theory

Arutyunov, Frolov '09(a)

- Derived TBA equations for the ground state energy (and excited states)

Arutyunov, Frolov '09(b)
Bombardelli, Fioravanti, Tateo '09

- Different TBA eqs were proposed by

A different string hypothesis has been apparently used there.

- Simplified the TBA equations
- They lead to the Y -system but only for u in the interval $-2<u<2$, and there it agrees with the one conjectured by

Gromov, Kazakov, Vieira '09

- The analyticity of Y_{Q} on the z-torus implies the quantization of the I.c. momentum or, equivalently, the temperature quantization of the mirror model.

Open problems

- Dressing phase in the mirror theory.
- Find a proper analytic continuation of the TBA eqs to analyze the excited state energies. The naive continuation does not take into account μ-terms.
- Reproduce known string and field theory results by using the TBA eqs
- Compute numerically anomalous dimension of Konishi for any λ
- Compute analytically anomalous dimension of Konishi up to 12 loops.
- Prove $\operatorname{PSU}(2,2 \mid 4)$ invariance of the string spectrum
- Prove the gauge independence of the string spectrum

