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Introduction and tree MHV amplitudes
MHV amplitudes (++——) are the simplest objects to discuss
within the gauge/string duality
Simplification at large N - MHV amplitudes are described by the
single function of the kinematical variables
Properties of the tree amplitudes

I Holomorphy - it depends only on the ”‘half”’ of the
momentum variables pα,α̇ = λαλ̄α̇

I Fermionic representation (Nair,88) - tree amplitudes are the
correlators of the chiral fermions of the sphere
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I Tree amplitudes admit the twistor representation(Witten,04).
Tree MHV amplitudes are localized on the curves in the
twistor space. Twistor space - CP(3‖4)

I Twistor space emerges if we make a Fourier transform with
respect to the ”half” of the momentum variables∫

dλe iµλf (λλ̄). Point in the Minkowski space corresponds to
the plane in the twistor space

I Localization follows from the holomorphic property of the tree
MHV amplitude. Possible link to integrability via fermionic
representation

I Stringy interpretation - auxiliary fermions are the degrees of
freedom on the D1-D5 open strings ended on the Euclidean
D1 instanton.
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I The tree MHV amplitude has very simple form

A(1−, 2−, 3+ . . . , n+) = gn−2 < 12 >4

< 12 >< 23 > · · · < n1 >

I The on-shell momenta of massless particle in the standard
spinor notations read as paȧ = λaλ̃ȧ, λa and λ̃ȧ are positive
and negative helicity spinors.

I Inner products in spinor notations
< λ1, λ2 >= εabλ

a
1λ

b
2 and [λ̃1λ̃2] = εȧḃλ̃

ȧ
1λ̃

ḃ
2.

Alexander Gorsky MHV amplitudes in N=4 SUSY Yang-Mills theory and geometry of the momentum space



Properties of the loop MHV amplitudes

I Exponentiation of the ratio
Mall−loop

Mtree
which contains the IR

divergent and finite parts.

I BDS conjecture for the all loop answer

log
Mall−loop

Mtree
= (IRdiv + Γcusp(λ)Mone−loop)

I It involves only two main ingredients - one-loop amplitude and
all-loop Γcusp(λ)

I Γcusp(λ) obeys the integral equation
(Beisert-Eden-Staudacher) and can be derived recursively

I The conjecture fails starting from six external legs at two
loops (Bern -Dixon-Kosower,
Drummond-Henn-Korchemsky-Sokachev) and at large number
of legs at strong coupling(Alday-Maldacena)
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I One more all-loop conjecture -
Mall−loop

Mtree
coincides with the

Wilson polygon built from the external light-like momenta pi .

I The conjecture was formulated at strong coupling
(Alday-Maldacena, 06) upon the T-duality at the worldsheet
of the string in the AdS5 geometry

I Checked at weak coupling (one and two loops) as well
(Drummond- Henn- Korchemsky- Sokachev,
Bern-Dixon-Kosover, Brandhuber-Heslop-Travagnini 07).

I Important role of Ward identities with respect to the special
conformal transformation in determination of the Wilson
polygon (Drummond-Henn-Korchemsky-Sokachev). It fixes
the form of the amplitudes at small number of legs
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I There is no satisfactory stringy explanation of the loop MHV
amplitudes and Wilson polygon-amplitude duality. Suspicion -
closed string modes contribute (Cachazo-Swrchek-Witten)that
is perturbative diagrams in YM theory are sensitive to the
gravity degrees of freedom.

I The T-duality in the radial AdS direction supplemented by the
fermionic T-duality is the symmetry of the sigma model
(Berkovits- Maldacena, Beisert, Tseytlin, Wolf) hence it
restricts the amplitudes
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Main Questions

I Is there fermionic representation of the loop MHV amplitudes
similar to the tree case?

I Is there link with integrability at generic kinematics ? The
integrability behind the amplitudes is known at low-loop
Regge limit (Lipatov 93, Faddeev-Korchemsky 94) only

I Is there trace of the weak-strong coupling S-suality of N=4
SYM in the amplitudes?

I What is the stringy geometrical origin of the BDS conjecture,
if any?

I What is the physical origin of MHV amplitude-Wilson polygon
duality?
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MHV amplitude - Wilson loop correspondence

I It is possible to derive the correspondence at one-loop level
(A.Zhiboedov, A.G.)

I Since one-loop answer is expressed it terms of 2 mass easy
diagrams it is sufficient to get it for 2me box

I Start with D=4 2me box → introduce Feynman
parametrization → integrate over momentum in the loop →
make a change of variables→ Wilson polygon in D=6

I The second ingredient of derivation - relation between D=6
and D=4 integrals (Tarasov, Bern-Dixon, Nizic)
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I The change of variables is quite simple

x1 = σ1(1− τ1) (1)

x2 = σ1τ1

x3 = σ2τ2

x4 = σ2(1− τ2)

| ∂(xi )

∂(σi , τi )
| = σ1σ2

I IR divergence in the amplitude explicitly get mapped into UV
divergence of the Wilson polygons

dUV + dIR = 10 (2)

εIR = −εUV

(µ2
UV π)εUV = (µ2

IR)εIR
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I Integrals over σ get factorized and two integrals over τ yield
the integration in the one-loop Wilson polygon

I It is possible to get the duality between three-point function
and Wilson triangle

dUV + dIR = 8 (3)

εIR = −εUV

(µ2
UV π)εUV = (µ2

IR)εIR

I In this case we have analogue of 2mass hard diagram and on
the Wilson polygon side we have insertion of the particular
vertex operator

< TrPqµAµ(xb) exp[ig

∮

C
dτ ẋµ(τ)Aµ(x(τ))] > (4)

where qµ can be chosen as be arbitrary vector which is not
orthogonal to p3 in Minkowski sense, (p3q) 6= 0.
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BDS anzatz and fermionic representation of amplitudes

I Important observation-one-loop box can be identified with the
volume of the ideal hyperbolic tetrahedron in the space of
Feynman parameters(Davydychev-Delbourgo,98). Good
starting point for all-loop generalization

I Natural framework -topological strings and effective gravity in
the target space description. Effective target space description
- fermions on the Riemann surface.

I The ”fermions” represent the proper branes. Lagrangian
branes in the Kahler gravity description of A-model.
Noncompact branes in the Kodaira-Spencer description of
B-model.
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I The generating function for the amplitude is expected to have
the structure

τ(tk) =< 0|exp(
∑

tkVk)exp

∫
(ψ̄Aψ)exp(

∑
t−kV−k)|0 >

(5)

I That is scattering amplitudes can be described in terms of the
fermionic currents on the Fermi surface

I Riemann Fermi surface reflects the hidden moduli space of the
theory (chiral ring) and it gets quantized. Equation of the
Riemann surface becomes the operator acting on the wave
function(the analogue of the secondary quantization). The
following commutation relation is implied

[x , y ] = i~
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I This procedure of the quantization of the Riemann surface is
familiar in the theory of integrable systems. Quantum
Riemann surface =so-called Baxter eqution

I Degrees of freedom on the Riemann surface - Kodaira-Spencer
gravity reduced to two dimensions (Dijkgraaf-Vafa,07)

I Solution to the Baxter equation - wave function of the single
separated variable - Lagrangian brane or Lagrangian branes
intersection (Nekrasov-Rubtsov-A.G. 2000)

I Polynomial solution to the Baxter equation - Bethe equations
for the roots
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I Why moduli space? Naively we have set of external momenta
which yield a set of points in the momentum space. These set
of points provides the moduli space of the complex structures.
More carefully - the marked points in the rapidity space yield
the desired moduli space i the B model. Kahler modulus of
the ideal tetrahedron-A model

I From the Feynman diagrams - integration over the loop
Schwinger parameters in the first quantized language amounts
to the integration over M0,n (Gopakumar. Aharony et.al)

I At strong coupling. To have the proper interpretation of the
Wilson loop as the wave function the integration over the
diffeomorphisms F (s) of the contour is necessary (Polyakov).
In the amplitude case infinite dimensional integral over F is
reduced to finite dimensional integration at the vertexes.
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I The moduli space and more precisely Teichmuller space is
closely related to the Liouville theory. Classically the universal
Teichmueller space is the coadjoint Virasoro orbit. On the
other hand Liouville Lagrangian is nothing but free PdQ
system on this manifold.

I The discrete Liouville system is related to the Teichmueller
space of the disc like surface with n-points at the boundary.
The mapping class group generator is identified with the
Hamiltonian of the discrete Liouville system
(Faddeev-Kashaev).

I Hence we can claim that the transition from the tree to loop
amplitude involves the proper dressing by the discrete Liouville
modes
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I Consider the moduli space of the complex structures for genus
zero surface with n marked points,M0,n. Inequivalent
triangulations of the surface can be mapped into set of
geodesics on the upper half-plane

I This manifold has the Poisson structure and can be quantized
in the different coordinates (Kashaev-Fock-Chekhov, 97-01).
The generating function of the special canonical
transformations (flip) on this symplectic manifold is provided
by Li2(z) where z- is so-called shear coordinate related to the
conformal cross-ratio of four points on the real axe

exp(z) =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
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I The natural objects geodesics can be determined in terms of
shear variables za

I The symplectic structure in terms of these variables is simple∑
a dza ∧ dzb where a corresponds to oriented edge and b is

edge next to the right

I Upon quantization

[Za, Zb] = 2π~{za, zb}
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I Quantum mechanically there is operator of the ”‘duality”’ K
acting on this phase space with the property K̂ 5 = 1. It is the
analogue of the Q-operator in the theory of the integrable
systems since it is build from the eigenfunction of the
”‘quantum spectral curve operator”’ Classically this curve
looks as

eu + ev + 1 = 0

and gets transformed quantum mechanically into the Baxter
equation

(e i~∂v + ev + 1)Q(v) = 0

I The pair of Baxter equations for the discrete Liouville reads as
(Kashaev)

Q(x + ib±/2) + (1− e4πxb±)NQ(x − ib±/2) = t(x)Q(x)
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I Let us use the representation for the finite part of the
one-loop amplitude as the sum of the following dilogariphms.
The whole amplitude is expressed in terms of the sums of the
so-called two easy-mass box functions

∑

i

∑
r

Li2(1−
x2
i ,i+rx

2
i+1,i+r+1

x2
i ,i+r+1x

2
i−1,i+r

)

xi ,k = pi − pk

where pi are the external on-shell momenta of gluons
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I One-loop amplitude with n-gluons is described in terms of the
”fermions” living on the spectral curve=Fermi surface which
is embedded into the four dimensional complex space! MHV
loop amplitude - fermionic current correlator on the spectral
curve. Fermi surface lives in the space T ∗M0,4

I BDS conjecture for all-loop answer=quasiclassics of the
fermionic correlator with the identification

~−1 = Γcusp(λ)
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I Is any ground behind this identification?

I In the limit describing the operators with large Lorentz spin
the ground state energy of the corresponding string
O(6)(Alday-Maldacena) behaves as

E ∝ Γcusp logS ∝ TL

that is Γcusp plays the role of the effective tension when the
boundary of the string worldsheet is light-like

I For the Wilson loop with cusps and without self-intersections
the loop equations reads as

∆W (c) =
∑

i

Γcusp(λ, θi )W (c)

that is Γcusp plays the same role
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I ”Fermions” on Fermi surface represent the noncompact
branes (IR regulator) in the B model . In the mirror dual A
model geometry fermions represent Lagrangian branes.
Arguments of the brane wave-functions are the points on the
moduli space of the complex structures. Fermions are
transformed nontrivially on the Fermi surface because of its
quantum nature

I Geometry: The spectral curve is embedded as the holomorphic
surface in the internal 4-dimensional complex space

xy = eu + ev + 1

I Two branes in C 4 have the geometry

x = 0 eu + ev + 1 = 0

and
y = 0 eu + ev + 1 = 0

They can be identified with D3 branes in B model. There are
also D1 (regulator=instanton) branes which are classically
localized on the Riemann surface.
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I Classically we have degrees of freedom on the intersection of
the Lagrangian branes. There are also open strings,
representing gluons with the disk geometry ending on the
noncompact branes. These strings correspond to the external
gluons.

I The tree amplitudes are localized at the points in the
Minkowski space. Is there similar ”localization” of the loop
amplitudes? The suggestive relation - Gr(2, 4)//T = M̄0,4

where T-maximal torus. The complexified Minkowski space
Mc is Gr(2, 4) that is localization at points in M0,4 can be
considered as a kind of localization at the submanifold in Mc .

I The space where the string propagates is essentially
noncommutative because of the conventional Planck
constant. This is essential when the loop effects in the gauge
theory are calculated.
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I The origin of the Riemann surface. It corresponds to the
summation of all anomalous relations in the gauge theory.
Nontrivial effect of regulator degrees of freedom.

I Similar emergence of the Riemann surfaces. N=2 SYM
theory-surface follows from the summation of the infinite
number of the instantons. N=1 SYM- the surface is the result
of the account of all generalized Konishi anomalies under the
transformations Φ → F (Φ).
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I Quantization of the Fermi surface involves the YM coupling
constant

1

g2
YM

=

∫
BNS−NS

gs

Usually it is assumed that gs yields the ”Planck constant” for
the quantization of the moduli space of the complex
structures in the Kodaira-Spenser gravity. However equally
some function of Yang-Mills coupling can be considered as the
quantization parameter.

I The YM coupling constant yields the quantization of the
gravity degrees of freedom in the box diagram (light-on-light
scattering)
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I Quasiclassics for the solution to the equation of the quantized
Fermi surface

Ψ(z , ~) =

∫
e ipz

p × sinh(πp)sinh(π~p)
dp

reduces to
Ψ(x) → exp(~−1Li2(x) + ...)

I Arguments of the Li2 in the expression for the amplitudes
correspond to the shear coordinates on the moduli space.

I The quantum dilogariphm has the dual-symmetric form

Ψ(z , ~) =
eq(ω)

eq̃(ω̃)

where eq(z) =
∏

(1− zqn)

I It can be vizualized as two ”left” and ”right” lattices
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I The one-loop MHV amplitude can be presented in the
following form

Mone−loop ∝< 0|J(z1)...J(zn)exp(ψkAnkψn)|0 >

I The variables ψk are the modes of the fermion on the spectral
curve and J(z) is the fermionic current. The matrix An,k for
the corresponding spectral curve is known
(Aganagic-Vafa-Klemm-Marino 03)
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Towards the Regge limit

I From the worldsheet viewpoint one considers the discretization
of the Liuville mode and the Faddeev-Volkov model yields the
good candidate for the correct S-matrix. In the target space
the natural integrable system is described by the model with
the universal R-matrix based on the modular double

D = Uq(SL(2, R))⊗ Uq̃(SL(2, R))
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I Candidates for reggeons - open strings between the IR
regulator branes. These states have momenta depending
masses

I Possible link with the Reggeon field theory

Lint = − 1

g
∂+Pexp(−g

2

∫ x+

−∞
A+dx−)∂2V−

− 1

g
∂−Pexp(−g

2

∫ x−

−∞
A−dx+)∂2V+

where x+, x− are the light-cone coordinates and A is the
conventional gluon field. Reggeons are the sources for the
Wilson lines in accordance with holographic approach.
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Conclusion

I The representation of the loop MHV amplitude as the
correlator of the fermionic currents representing regulator
degrees of freedom on the quantized Fermi surface is
suggested. Nontrivial effect of closed string degrees of
freedom(Kodaira-Spencer gravity) in the box diagram

I Link to the integrability behind generic MHV amplitudes via
fermionic= IR brane representation. Particular solutions to
3-KP integrable system which correspond to the
Faddeev-Volkov model of the discrete conformal mappings
(discrete Lioville) with the good S-duality properties. The
corresponding statistical model with the positive weights is
Bazhanov-Mangazeev-Segreev one (2007)
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I BDS conjecture can be reformulated in terms of the quantum
geometry of the momentum space with Γcusp(λ) as the
quantization parameter. Way to improve-take into account
the cubic vertex (screening operator) on the world-sheet in the
Kodaira-Spencer gravity and loops in the 2d theory. Hopefully
this improves the matching with the Regge limit of the
amplitudes lost in BDS anzatz
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I The degrees of freedom responsible for the dual description of
the gluon amplitudes - IR branes=hypersurfaces in the
”momentum” space. They are analogue of the D1-instantons
(Witten) or IR branes of (Alday-Maldacena)

I Positions of the branes are fixed by the Bethe anzatz
equations. Similarly extremization of the superpotential in the
brane worldvolume theory yields their positions in the
embedding space

I There are some candidates for the ”reggeon” degrees of
freedom - open strings between two regulator branes. They
are analogue of ”W-bosons” with masses depending on the
momenta. This could explain the same universality class of
the N=2 SQCD at Nf = 2Nc and Reggeon Hamiltonian. The
brane geometry is similar.
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