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(Local) BRST cohomology:

Batalin-Vilkovisky formalism:
Given equations Ta, gauge symmetries Riα, reducibility relations,....
the BRST differential:

s = δ + γ + . . . , s2 = 0 , gh(s) = 1

δ = Ta
∂

∂Pa
+ . . . , γ = cαRiα

∂

∂φi
+ . . . .

φi – fields, cα – ghosts, Pa – ghost momenta/antifields, . . .
δ – (Koszule-Tate) restriction to the stationary surface
γ – implements gauge invariance condition

H0 – observables (gauge invariant functions on the stationary sur-
face)

Other cohomology groups (including those in the the space of ten-
sor fields) encode physically interesting quantities – anomalies, con-
sistent deformations, etc.



In the context of local gauge field theory:
Physically interesting – cohomology groups in local functionals

Local functions – functions in x, zα, ∂µzα, ∂µ∂νzα . . .
Total derivative:

∂µ = ∂

∂xµ
+ zα;µ

∂

∂zα
+ zα;µν

∂

∂zα;ν
+ . . .

BRST differential is an evolutionary vector field:

[∂µ, s] = 0 , szα = sA[z]

Local functionals:

Quotient space: f [z] ∼ f [z] + ∂µj
µ[z]

More invariant way: Hn(d = dxµ∂µ, local forms)

sωn + dωn−1 = 0 , ωnk ∼ ωnk + dχn−1
k + sχnk−1

In the local field theory – local BRST cohomology encode physically
interesting quantities.



Lagrangian Batalin–Vilkovisky formalism
In addition to s there is a natural odd symplectic structure:

s = {S, · } , 1

2
{S, S} = 0 , S = S0[φ] + cαRiαPi + . . .

BV master action and the BV master equation.
{ · , · } – Lie superalgebra structure on local functionals.

In the Lagrangian case:

H0(s)− 1st order consistent deformations ,

H1(s)− anomalies ,

H−1(s)− conserved currents (inequivalent global symmetries) ,
. . . − . . .



In the non-Lagrangian case (i.e. if only s is given)
The cohomology of the adjoined action sE = [s, ·] in the space of
evolutionary vector fields

H1(sE)− 1st order consistent deformations ,

H0(s)− inequivalent global symmetries ,
. . . − . . .

In the same way one can extend sE to functional multivectors.
The respective local BRST cohomology groups are also relevant.



Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ)
type sigma models

Instead of constructing s from the initial data (equations, gauge
generators, reducibility relations, . . . ) in some interesting cases it
can be extremely useful to define theory in terms of the BRST differ-
ential.

For instance, if Ω̂ is a BRST operator of a constrained system then

S = 1

2
〈Ψ, Ω̂Ψ〉 - BV master action

Here Ψ = . . .+ Ψ−1 + Ψ0 + Ψ1 + . . ..
Ψ0 – physical fields, Ψ−1-ghosts, Ψ1-antifields, . . .

Well known example – open SFT:

S = 1

2
〈Ψ, Ω̂Ψ〉+ 1

6
〈Ψ,Ψ ∗Ψ〉

∗ – Witten star-product



Another example: higher spin field Lagrangians can be repre-
sented in the form 〈Ψ, Ω̂Ψ〉 for some first-quantized “higher spin par-
ticle model” Ouvry, Stern (1986) , Bengtsson (1986)



AKSZ sigma model:
Consider two Q-manifolds: A.Schwartz
Target space M, degree ghM, nilpotent vector field Q

Q2 = 0 , ghM(Q) = 1

Space-time X, degree ghX, d, ghX(d) = 1, d2 = 0,
d-invariant volume form dµ

Typical example: X = ΠTX0, coordinates xµ, θµ, n = dim X0

d = θµ
∂

∂xµ
, dµ = dx0 . . . dxn−1dθn−1 . . . dθ0 ≡ dnxdnθ

Supermanifold of maps (M-valued fields on X): BRST differential:

s =
∫

X

dnxdnθ
[
dΨA(x, θ) +QA(Ψ(x, θ))

] δ

δΨA(x, θ)

total ghost degree: gh(A) = ghM(A) + ghX(A)

Because s2 = 0, gh(s) = 1 =⇒
Nonlagrangian local gauge theory



If in addition (odd) symplectic structure is defined on M such that

Q = {S, · }M ,
1

2
{S, S}M = 0

{ · , · }M – respective (odd) Poisson bracket on M.
Then

s = {S, · } , 1

2
{S,S} = 0 ,

with

S[Ψ] =
∫
dnxdnθ

[(
dΨA(x, θ)

)
VA(Ψ(x, θ)) + S

(
Ψ(x, θ)

)]

{F ,G} = ±
∫
dnxdnθ

δRF

δΨA(x, θ)

{
ΨA,ΨB

}
M

(Ψ(x, θ)) δG

δΨB(x, θ)

Note that {, }M and {, } have different parities for odd n.
For S even and gh(S) = 0 – Lagrangian AKSZ sigma model



Comments:

• If gh(ΨA) > 0 then equations of motion for physical fields en-
coded in s defined the Free Differential Algebra
Sullivan (1977), d’Auria, P. Fre (1982)

• A closely related approach is the nonlinear unfolded formal-
ism developed in the context of higher spin gauge theories by
M.Vasiliev. The nonlinear theory of higher spins is naturally
formulated in terms of this approach Vasiliev (1990).

• Non-Lagrangan AKSZ approach can be seen as a BRST exten-
sion of the nonlinear unfolded formalism Barnich, M.G. (2005)



Examples:
Chern-Simons theory
M = ΠG with coordinates ca, gh(ca) = 1, G-Lie algebra

Q = 1

2
cacbU cab

∂

∂cc
Lie algebra differential

Fields Ψa = ca + θµAaµ + . . ., equations of motion and gauge sym-
metries

dA+ 1

2
[A,A] = 0 . δAλ = dλ

If in addition G is equipped with invariant metric gab and dim X0 = 3
then {

ca, cb
}

M
= gab , Q =

{
1

6
Uabcc

acbcc, ·
}

The action and the BV action

S0 =
∫

X

1

2
AdA+ 1

6
〈A, [A,A]〉 , S =

∫
X

1

2
ΨdΨ + 1

6
〈Ψ, [Ψ,Ψ]〉

Note: S0 and S have the same structure



Hamiltonian BFV systems with vanishing Hamiltonian

M – extended phase space of the Hamiltonian BFV formulation

Ω – BRST charge , { · , · } – Extended Poisson bracket

So that

Q = {Ω, · } , gh(·) –usual BFV ghost degree

The associated BV formulation
Fisch, Henneaux (1989), Batalin, Fradkin (1988), Siegel (1989)
can be represented as AKSZ sigma model M.G., Damgaard (1999)

S =
∫

dtdθ
[(

dΨA(t, θ)
)
VA(Ψ(t, θ)) + Ω

(
Ψ(t, θ)

)]
,

d = θ ∂∂t ; BV antibracket
(
·, ·
)

=
∫
dtdθ { · , · }M

A general AKSZ sigma model appears as a multi-dimensional gener-
alization of Hamiltonian description for reparametrization invariant
systems



The isomorphism

For a general AKSZ model:

I : C∞(M) → local functionals

f(Ψ) 7→ F [Ψ] =
∫
dnxdnθf(Ψ(x, θ)

One has
sI = IQ – map of complexes

Moreover, M.G., Damgaard (1999)

I({f, g}M) = {I(f), I(g)} – Lie algebra homomorphism

Main statement:

Proposition 0.1. Locally in X and M map I is an isomorphism in
cohomology (local BRST cohomology of AKSZ sigma model is iso-
morphic to the target space Q-cohomology).



Comments:
– for the particular case of Chern-Simons the statement is known
from Delduc, Blasi, Lucchesi, Piguet, Sorella, (1990)
– that Q-cohomology determines physically relevant invariants like
actions and conserved charges was stressed in Vasiliev, (2005)
– in the case of the 1-dimensional AKSZ sigma models associated
with Hamiltonian BFV systems with vanishing Hamiltonian, propo-
sition states that the Poisson algebra of Hamiltonian BRST cohomol-
ogy and the antibracket algebra of Lagrangian BV cohomology in the
space of local functionals are locally isomorphic. This was originally
derived in Barnich, Henneaux (1996)
Idea of the proof:

First compute cohomology for s0 defined by s0Ψ = dΨ. All
variables are contractible pairs except for 0-forms ΨA Piguet, Sorella
(1992) and Henneaux, Knaepen (1998)

Then compute local BRST cohomology of s0 using the descent
equation.

Finally, obtain local s-cohomology by a suitable spectral sequence.



Cohomology for functional multivectors
The usual way to describe (functional) multivectors is to introduce

momenta πα for each filed zα

graded symmetric
functional k-vector −→

local functional of homogeneity
k in π and π;µ...

For instance, for the BRST differential

Ω0 = −
∫
dnx sα[z]πα, gh(Ω0) = 1 , szα = sα[z]

A map from local functionals to evolutionary vector fields:

{F [z, π], · }E

gives a functional Poisson bracket for local functionals.
Defines BRST differential for functional multivectors:

sE = {Ω0, · } ,
1

2

{
Ω0,Ω0

}
E

= 0

Functionals in z, π with sE – extended complex



For AKSZ model the extended complex is again of AKSZ type
Indeed, introduce target space variables ΠA with

gh(ΠA) = −gh(ΨA) + n , ,
{

ΠB ,ΨA
}

ME
= −δAB

Then

Ω0 = −
∫
dnx sα[z]πα = −

∫
dnxdnθ sΨAΠA =

−
∫
dnxdnθ

[
dΨAΠA +QA(Ψ)ΠA

]
.

Again AKSZ type sigma model with

ME = (Π)T ∗M , QE =
{
QAΠA, ·

}
ME

Because QE defines the Q-cohomology in the target-space multivec-
tors

Proposition 0.2. Local BRST cohomology in the space of functional
multivectors is isomorphic to Q-cohomology in the space of target-
space multivectors



Example:
If { · , · }M is an (odd) bracket in M, ω = ωABΠAΠB associated
bivector then

IEω =
∫
dnxdnθω

determines familiar functional bracket:

{F ,G} = ±
∫
dnxdnθ

( δRF

δΨA(x, θ)
ωAB(Ψ(x, θ)) δG

δΨB(x, θ)

)
.

Corolary: nontrivial sE-invariant brackets originates from the target
space brackets

Applying this to the 1-dimensional AKSZ model associated to
the Hamiltonian constrained system one gets the “Isomorphisms be-
tween the Batalin-Vilkovisky antibracket and the Poisson bracket”
Barnich, Henneaux (1996)



Inverse problem of the calculus of variation

General setting:
Standard: given equations of motion Ti[φ] the problem is whether

they derive from a Lagrangian i.e. Ti = δL

δφi
for some L[φ].

In this form it is too restrictive as one can e.g. allow for integrating
multipliers i.e. Ti → T ′i = λji [φ]Tj .
Usually, one is also allowed to add/eliminate auxiliary fields. More-
over, add/eliminate pure gauge variables. For instance: spin-s La-
grangians Fierz, Pauli (1939), Singh, Hagen (1974), Fronsdal (1978)
General point of view: being Lagrangian or not is a property of equiv-
alence classes of equations of motion under addition/elimination of
generalized auxiliary fields
Barnich, M.G., Semikhatov, Tipunin (2004)
Generalized auxiliary fields at the level of equations of motion :

φA = (φi, wa, va) swa|w=0 = 0⇔ va = V a[φi]

Lagrangian version – auxiliary fields for BV master action
Henneaux (1990)



A natural framework to study existence of a Lagrangian
– Lagrange structure Kazinski, Lyakhovich, Sharapov (2005)

This can be seen as a Lagrangian counterpart of a possibly weak and
degenerate Poisson structure of the Hamiltonian formalism.
In the context of local field theory: Lagrange structure can be defined
as a deformation

Ω = Ω0 + Ω1 + Ω2 + . . . , Ω0 = −
∫
dnxsαπα , gh(Ω) = 1

(Ωk – local functional homogeneous of degree k+1 in πα) satisfying
the compatibility condition

1

2
{Ω,Ω}E = 0⇐⇒


sE Ω1 = 0 ,

1
2 {Ω1,Ω1}E + sE Ω2 = 0 ,
{Ω1,Ω2}E + sE Ω3 = 0 ,

...

(1)

Two such deformations Ω and Ω′ are considered equivalent if there
exists a local functional Ξ =

∑
k> 1 Ξk such that Ω′ = exp {Ω0, · }E Ξ,

where Ξk is homogeneous of degree k + 1 in πα.



If defined in this way the Lagrange structure is invariant under elim-
ination of the generalized auxiliary fields
Indeed: the deformation theory is controled by the local BRST coho-
mology that are invariant Barnich, M.G., Semikhatov, Tipunin (2004)

Conclusion: local BRST cohomology in the space of functional
bivectors and higher multivectors control the inverse variational prob-
lem for gauge theories.

For AKSZ sigma model
Usual deformation theory arguments imply that any Lagrange struc-
ture is equivalent to

Ω = Ω0 + IE(ω) = Ω0 +
∫

X

dnxdnθ (ω1 + ω2 + . . .) .

Can be studied in the target space. Substantial simplification.
In other words – the brackets can be assumed not to contain space-

time derivatives



Example: Lagrange structure for Chern-Simons theory

Extended model: variables ca, gh(ca) = 1 and πa, gh(πa) = 2,{
πa, c

b
}

ME
= −δba , QE = −

{
1

2
cacbf cabπc, ·

}
ME

In the target space gh(ωk) = 4 so that ω = ω1 = gabπaπb.

For G simple gab is unique and invertible leading to the standard La-
grangian.

For G simple:

Whitehead Lemma =⇒ cohomology in vector fields trivial

=⇒ Theory is rigid and no nontrivial global symmetries

at the level of equations of motion as well.



Thanks!


