A Fibre Approach to Harmonic Analysis Of Higher-Spin Field Equations

Carlo IAZEOLLA

Scuola Normale Superiore, Pisa

(C. I., Per Sundell, JHEP, 0810:022, 2008)

Why Higher Spins?

1. Crucial problem in Field Theory
2. Key role in String Theory

- Strings beyond low-energy SUGRA
- HSGT as symmetric phase of String Theory?

3. Positive results from $\mathrm{AdS} / \mathrm{CFT}$

Summary

- Field Theory: Unfolded formulation
- Group Theory: (U)IRs of $\$ \mathbf{s o}(\mathrm{D}-1,2)$
- Link: 1) Lorentz-covariant \leftrightarrow Compact slicings 2) Operator \leftrightarrow state correspondence

Harmonic analysis in fibre due to unfolding's Dynamics/Fibre "duality"

- Conclusions \& Outlook

Unfolded Formulation

- Unfolding $=$ formulating dynamics via consistent $\left(\mathrm{d}^{2}=0\right) 1^{\text {st }}$-order eqs. involving only \wedge and d of p_{α}-forms (no metric!):

$$
R^{\alpha}:=d X^{\alpha}+Q^{\alpha}(X) \approx 0, \quad Q^{\beta} \frac{\partial Q^{\alpha}}{\partial X^{\beta}} \equiv 0
$$

define a free differentiable algebra $(\mathrm{FDA})(\Re, \mathrm{Q}), \mathfrak{R}=\left\{\mathrm{X}^{\alpha}=\mathrm{X}^{\mathrm{p} \alpha}(\mathrm{x})\right\}$.

Gauge invariance of $\left\{\mathrm{R}^{\alpha} \approx 0\right\}: G^{\alpha}:=\delta_{\epsilon} X^{\alpha}=d \epsilon^{\alpha}-\epsilon^{\beta} \partial_{\beta} Q^{\alpha}$

- Gauge symmetry $\forall X^{\mathbf{p}_{\alpha}>0} \Rightarrow$ all local dof in the 0 -forms X^{0} !

Non-topological if the 0 -form module is ∞-dimensional.

- 1-form sector: $\mathrm{d} \Omega+\Omega^{2}=0 \Rightarrow \Omega=\Omega^{\mathrm{a}} \mathrm{T}_{\mathrm{a}} \in \mathfrak{X}$, Lie algebra

$$
\left.Q^{\alpha}(X)\right|_{\Omega}=f^{\alpha}{ }_{\beta \gamma} \Omega^{\beta} \wedge \Omega^{\gamma} \quad \Rightarrow \quad f^{\beta}{ }_{[\gamma \delta} f^{\alpha}{ }_{\eta] \beta}=0
$$

- Linearize around $\Omega, \mathrm{X}^{\alpha}=\Omega+\delta \mathrm{X}^{\alpha}$: fluctuation p -form eqs:

$$
\mathcal{D}\left|X^{\mathbf{P}}(x)\right\rangle=\left(d+\Omega^{a} t_{a}\right)\left|X^{\mathbf{P}}(x)\right\rangle, \quad Q^{2}=0 \Rightarrow\left[t_{a}, t_{b}\right]=f_{a b}^{c} t_{c}
$$

\Rightarrow Fluctuation p -forms arranged in $\mathbf{\Omega}$-modules!

HS algebra (totally sym bosonic fields)

HS gauge theories: $\mathfrak{a}=(\mathrm{A}) \mathrm{dS}$ isometry alg. Manifest sym of free eqs.
$=\infty$-dim. extension $\mathfrak{h o}(\mathrm{D}-1,2)=\mathcal{L} i e[\mathscr{A}]=\mathcal{L} i e[\mathcal{U}(\mathbf{s o}(\mathrm{D}-1,2)) / \mathcal{J}(V)] \supset \mathfrak{g}$ $\operatorname{so}(\mathrm{D}-1,2):\left[M_{A B}, M_{C D}\right]_{\star}=4 i \eta_{[C \mid[B} M_{A] \mid D]}, \quad A=0^{\prime}, 0,1, \ldots, D-1$

$$
\begin{aligned}
& \text { With } \mathrm{P}_{\mathrm{a}}=\lambda \mathrm{M}_{0^{\prime} \mathrm{a}}, \quad \mathrm{a}=0,1, \ldots, \mathrm{D}-1, \text { Lorentz-cov. slicing } \mathfrak{g}=\mathfrak{m}-\mathfrak{p} \\
& {\left[M_{a b}, M_{c d}\right]_{\star}=4 i \eta_{\left[c\left[b b^{2}\right][d]\right.}, \quad\left[M_{a b}, P_{c]_{\star}}=2 i \eta_{c[b} P_{a]}, \quad\left[P_{a}, P_{b}\right]_{\star}=i \lambda^{2} M_{a b}\right.}
\end{aligned}
$$

$\mathcal{U}(\mathbf{s o}(\mathrm{D}-1,2))=\{$ totsym products of Ms \& Ps $\}$

Factorization of $\mathscr{J}(V)$ leaves traceless two-rows YD:

$$
\begin{aligned}
& \mathcal{I}[V]=\left\{X=V \star X^{\prime} \text { for } X^{\prime} \in \mathcal{U}\right\}, \quad V=l^{A B} V_{A B}+l^{A B C D} V_{A B C D} \\
& V_{A B} \equiv \frac{1}{2} M_{(A} C_{M_{B) C}-}-\frac{1}{D+1} \eta_{A B} C_{2} \approx 0, \quad V_{A B C D} \equiv M_{[A B} M_{C D]} \approx 0
\end{aligned}
$$

$$
\mathrm{X} \in \mathscr{A}: \quad X=\sum_{m \geq n \geq 0} X_{a(m), b(n)}^{(m, n)} M^{a_{1} b_{1}} \cdots M^{a_{n} b_{n}} P^{a_{n+1}} \ldots P^{a_{m}}
$$

Trace:

$$
\operatorname{Tr}^{\prime}[X]=X^{(0,0)}
$$

$$
\langle X \mid Y\rangle=\operatorname{Tr}^{\prime}\left[X^{\dagger} \star Y\right]_{5}
$$

Adjoint and Twisted-Adjoint Modules

Antiautomorphism: $\tau(X \star Y)=\tau(Y) \star \tau(X), \quad \tau\left(M_{A B}\right)=-M_{A B}$
Automorphism: $\pi(X \star Y)=\pi(X) \star \pi(Y), \quad \pi\left(M_{a b}\right)=M_{a b}, \pi\left(P_{a}\right)=-P_{a}$
Gauge fields $\in \mathfrak{h o}(\mathrm{D}-1,2)$ (master 1-form):

$$
A(x)=\sum_{s=0}^{\infty} \sum_{t=0}^{s-1} \frac{i}{2} d x^{\mu} A_{\mu, a_{1} \ldots a_{s-1}, b_{1} \ldots b_{t}}^{\{s-1, t\}}(x) M^{a_{1} b_{1}} \ldots M^{a_{t} b_{t}} P^{a_{t+1}} \ldots P^{a_{s-1}}
$$

Gauge invariant curvatures and derivatives: twisted adj rep. $\mathcal{J}(\mathbf{h o})$ э $Ф$

$$
\widetilde{X} \Phi:=\mathcal{T}(X)(\Phi):=[X, \Phi]_{\star, \pi}:=X \star \Phi-\Phi \star \pi(X) \text { (master 0-form) }
$$

$$
\Phi(x)=\sum_{s, k=0}^{\infty} \frac{1}{k!} \Phi_{a_{1} \ldots a_{s+k}, b_{1} \ldots b_{s}}^{\{s+k, s\}}(x) M^{a_{1} b_{1}} \ldots M^{a_{s} b_{s}} P^{a_{s+1} \ldots P^{a_{s+k}}}
$$

N.B.: spin-s sector spanned by all $\{\mathrm{s}+\mathrm{k}, \mathrm{s}\}$-tensors, $\mathrm{k}=0,1,2 \ldots$ (upon constraints, all on-shell-nontrivial covariant derivatives of the physical fields,
i.e., all the dynamical information is in the 0 -form at a point)

Unfolding \rightarrow dynamics "dual" to fibre $\mathcal{T}(\mathfrak{b o})$.

(U)IRs of $\mathbf{s o}(\mathbf{D}-1,2)$

- Dof of FT unfolded system in $\mathcal{J}(\mathfrak{h o})$ (Lorentz-covariantly sliced) \Rightarrow look for a map \mathcal{J}-basis monomials \leftrightarrow massless AdS $_{\text {D }}$ (U)IRs
- Noncompact algebra $\Rightarrow \infty$-dimensional UIRs
- Compact time translation $\left(\mathrm{E} \sim \mathrm{P}_{0} \sim \mathrm{M}_{0^{\prime}, 0}\right) \Rightarrow$ discrete energy spectrum E induces the splitting: $\quad \mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$

$$
\mathfrak{g}_{0}=\begin{array}{cc}
\mathfrak{s o}(D-1,2) & \oplus \\
\left(M_{r s}\right. & , \\
E)(2) \text { compact } \\
\text { subalgebra, },
\end{array} \mathfrak{g}_{ \pm}=\left\{L_{r}^{ \pm}=M_{0 r} \mp i M_{0^{\prime} r}\right\} \text { ladder ops. }
$$

$$
\left[L_{r}^{-}, L_{s}^{+}\right]=2 i M_{r s}+2 \delta_{r s} E, \quad\left[E, L_{r}^{ \pm}\right]= \pm L_{r}^{ \pm}, \quad\left[M_{r s}, M_{t u}\right]=4 i \delta_{[t \mid[s} M_{r] \mid u]}
$$

1.w. $I R \rightarrow \mathscr{D}\left(\mathrm{e}_{0},\left(\mathrm{~s}_{0}\right)\right)$, built on l.w.s. $\left|\mathrm{e}_{0},\left(\mathrm{~s}_{0}\right)\right\rangle$:
$L_{r}^{-}\left|e_{0},\left(s_{0}\right)\right\rangle=0 \Rightarrow \mathrm{E}$ bounded from below

$$
\mathcal{D}\left(e_{0},\left(s_{0}\right)\right)=\mathcal{V}\left(e_{0},\left(s_{0}\right)\right) / I
$$

$\mathcal{V}\left(e_{0},\left(s_{0}\right)\right)=\left\{L_{r_{1}}^{+} \ldots L_{r_{n}}^{+}\left|e_{0},\left(s_{0}\right)\right\rangle\right\}_{n=0}^{\infty}, \quad I=\left\{\mathcal{V}\left(e_{m},\left(s^{\prime}\right)\right): L_{r}^{-}\left|e_{m},\left(s^{\prime}\right)\right\rangle=0\right\}$
Factoring out singular submodules \Rightarrow multiplet shortening. 7

(U)IRs of $\operatorname{so}(\mathrm{D}-1,2)$

- (Composite) Massless: $\quad \mathrm{e}_{0}=\mathrm{s}_{0}+2 \varepsilon_{0} \rightarrow \mathscr{D}\left(\mathrm{~s}_{0}+2 \varepsilon_{0},\left(\mathrm{~s}_{0}\right)\right)$ (scalar \& shadow $\mathscr{D}\left(2 \varepsilon_{0},(0)\right)$ and $\left.\mathscr{D}(2,(0))\right)$
- Singletons: scalar $\mathscr{D}\left(\varepsilon_{0},(0)\right)$, spinor $\mathscr{D}\left(\varepsilon_{0}+1 / 2,(1 / 2)\right)$

$$
\left(+" \text { anti-particles": } \mathscr{D}^{-}\left(-\mathrm{e}_{0}, \mathrm{~s}_{0}\right)=\pi\left(\mathscr{D}\left(\mathrm{e}_{0}, \mathrm{~s}_{0}\right)\right)\right) \quad\left[\varepsilon_{0}=(\mathrm{D}-3) / 2\right]
$$

Massless particles $=\mathbf{t w o}$-singletons composites! (Flato-Fronsdal, '78, Vasiliev '04, Engquist-Sundell '05)

$$
\begin{aligned}
\mathcal{D}\left(\epsilon_{0},(0)\right) \otimes \mathcal{D}\left(\epsilon_{0},(0)\right) & =\bigoplus_{s=0}^{\infty} \mathcal{D}\left(s+2 \epsilon_{0},(s)\right), \\
D=4: \mathcal{D}(1,1 / 2) \otimes \mathcal{D}(1,1 / 2) & =\mathcal{D}(2,0) \oplus \bigoplus_{s=1}^{\infty} \mathcal{D}(s+1, s)
\end{aligned}
$$

Composite l.w. states:

$$
\left|s+2 \epsilon_{0},(s)\right\rangle_{r_{1} \ldots r_{s}}=\sum_{k=0}^{s} \alpha_{k, s}\left(L_{\left\{r_{1}\right.}^{+} \ldots L_{r_{k}}^{+}\right)(1)\left(L_{r_{k+1}}^{+} \ldots L_{\left.r_{s}\right\}}^{+}\right)(2)\left|\epsilon_{0}, 0\right\rangle_{1}\left|\epsilon_{0}, 0\right\rangle_{2}
$$

Weight diagrams

Main Ideas and Results

- To exhibit the correspondence states (U)IRs \leftrightarrow twisted-adjoint ops.

$$
\begin{aligned}
\mathcal{D}\left(s+2 \epsilon_{0} ;(s)\right) & \longleftrightarrow \mathcal{I}_{(s)} \ni \Phi_{(s)}=\sum_{k=0}^{\infty} \frac{i^{k}}{k!} \Phi^{a(s+k), b(s)} T_{a(s+k), b(s)}, \\
T_{a(s+k), b(s)} & =M_{\left\{a_{1} b_{1}\right.} \ldots M_{a_{s} b_{s}} P_{a_{s+1}} \ldots P_{\left.a_{s+k}\right\}}
\end{aligned}
$$

slice $\mathcal{J}(\mathfrak{s o}(2) \oplus \mathfrak{s o}(\mathrm{D}-1))$-covariantly \rightarrow (inv.) harmonic expansion

$$
\left.\mathcal{T}\right|_{m} \longrightarrow \mathcal{M}:=\left.\mathcal{T}\right|_{g}=\bigoplus_{s=0}^{\infty} \mathcal{M}_{(s)}, \quad \mathcal{M}_{(s)}=\bigoplus_{\substack{s \in \mathcal{Z} \\ j_{1} \geq s \in j_{2} \geq 0}} \mathbf{C} \otimes T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}
$$

and look for lowest (highest)-weight elements $T_{\mathrm{e}_{0} ;\left(\mathrm{s}_{0}\right)}$.
N.B.: $\quad \widetilde{\boldsymbol{C}}_{2 \mathrm{n}}\left[\mathcal{J}_{(\mathrm{s})}\right]=\widetilde{\boldsymbol{C}}_{2 \mathrm{n}}\left[\boldsymbol{\mathcal { M }}_{(\mathrm{s})}\right]=\boldsymbol{C}_{2 \mathrm{n}}\left[\mathfrak{D}\left(\mathrm{s}+2 \varepsilon_{0},(\mathrm{~s})\right)\right]=\boldsymbol{C}_{2 \mathrm{n}}\left[\mathfrak{b o} \mathbf{o}_{(\mathrm{s})}\right]$

- Work in $\mathcal{U}[\mathfrak{d}]: \mathbb{x}$-reps. defined by factoring out ideals . (Duflo,Dixmier,...) e.g.: $-\mathscr{J}[\mathrm{V}]=$ annihilating ideal of scalar singleton, $\mathcal{J}[\mathrm{V}]=\mathscr{J}_{\left[D_{0}\right]}\left(=\mathscr{J}_{D_{1 / 2}}\right]$ in $\left.\mathrm{D}=4\right)$
- Casimirs are fixed in $\mathscr{A}, \quad S:=\mathscr{A} * \mathbf{X}, \quad \boldsymbol{C}_{2 \mathrm{n}}[S]=\boldsymbol{C}_{2 \mathrm{n}}\left[\mathscr{D}_{0}\right]\left(=\boldsymbol{C}_{2 \mathrm{n}}\left[\mathscr{D}_{1 / 2}\right]\right.$ in $\left.\mathrm{D}=4\right)$
- Just as $|0\rangle\langle 0|=: \mathrm{e}^{-\mathrm{N}}:$, one-pt. states = non-polynomial $f(M, P)(\in$ some analytic completion of $\mathscr{U}[\mathfrak{q}])$.

Main Ideas and Results

- No a priori l.(h.)w.s \Rightarrow fibre approach is sensitive also to other irreps! (unbounded-E modules).
$\Rightarrow \mathscr{D}\left(\mathrm{s}+2 \varepsilon_{0},(\mathrm{~s})\right)$, massless one-pt. states, contained in \mathscr{A} as invariant subspaces of indecomposable module $\mathcal{M}=\mathcal{D} \notin \mathcal{W}$
$\boldsymbol{w}=$ lowest-spin module containing (linearized) runaway solutions.
\Rightarrow Prior to imposing b.c., $\mathcal{J}(\mathfrak{b o})$ contains more than one-pt. states.
- The entire \mathcal{M} can be generated via $\mathcal{J}(\mathfrak{b o})$-action from static (even/odd) runaway mode(s) $\phi_{0 ;(0)}$ (and $\phi_{0 ;(1)}$) of the free scalar field

$$
\begin{array}{ccc}
\mathrm{D}=4: & \text { Static, } \ell=0 & \\
\text { runaway field } & \text { unfolding } & \text { Static } \ell=0 \\
d s^{2}=\frac{1}{\cos ^{2} \xi}\left(-d t^{2}+d \xi^{2}+\sin ^{2} \xi d \Omega_{S^{2}}^{2}\right) & \phi_{0 ;(0)}(\xi)=\frac{\xi}{\tan \xi} &
\end{array}
$$

- \mathcal{M} can be endowed with (rescaled) Tr-norm (proved positive-def. for even scalar 1.s. module) and factorizable in terms of angletons.

$$
\mathcal{S}^{ \pm}=\mathcal{A} \star T_{(\pm)}^{(0)}
$$

Compact twisted-adjoint module

- $\boldsymbol{\mu}_{(\mathrm{s})}$ spanned by series expansions in \mathfrak{m}-cov. elements $T_{\mathrm{a}(\mathrm{s}+\mathrm{k}), \mathrm{b}(\mathrm{s})}$:

$$
\left[T_{\left.e ; ; j_{1}, j_{2}\right)}^{(s)}\right]_{r\left(j_{1}\right), t\left(j_{2}\right)}=\sum_{n=0}^{\infty} \underbrace{f_{e ;\left(j_{1}, j_{2}\right) ; n}^{(s)}}\left[T_{\left(j_{1}, j_{2}\right) ; n}^{(s)}\right]_{r\left(j_{1}\right), t\left(j_{2}\right)}, \quad\left[T_{\left(j_{1}, j_{2}\right) ; n}^{(s)}\right]_{r\left(j_{1}\right), t\left(j_{2}\right)}=T_{0(n)\left\{r\left(j_{1}\right), t\left(j_{2}\right)\right\} 0\left(s-j_{2}\right)}
$$

generating function $f_{e ;\left(j_{1}, j_{2}\right)}^{(s)}(z)=\sum_{n=0}^{\infty} f_{e ;\left(j_{1}, j_{2}\right) ; n}^{(s)} z^{n}$ (spectralf.) determined uniquely by

$$
\widetilde{E} T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}=\left\{E, T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}\right\}_{\star}=e T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}, \quad f_{e ;\left(j_{1}, j_{2}\right) ; 0}^{(s)}=1
$$

- $\mathcal{J}[\mathrm{V}]=0$:

$$
\begin{gathered}
\widetilde{L}_{r}^{ \pm}\left[T_{e ;\left(s, j_{2}\right)}^{(s)}\right]_{r t(s-1), u\left(j_{2}\right)}=0 \quad \text { for } j_{1}=s \geq 1 \text { and } j_{2}<s \\
\mathbf{P}_{\left\{j_{1}, j_{2}, 1\right\}}\left[\widetilde{L}_{u}^{ \pm}\left[T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}\right]_{r\left(j_{1}\right), t\left(j_{2}\right)}\right]=0 \quad \text { for } j_{2} \geq 1
\end{gathered}
$$

- $\boldsymbol{\mathcal { M }}_{(\mathrm{s})}$ splits under $\boldsymbol{U}(\mathcal{T}[\mathfrak{q}]) \mathcal{M}^{(\pm)}=$

$$
\mathbf{C} \otimes T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}
$$ in even/odd submodules:

$$
\left(\sigma_{ \pm}=(1 \mp 1) / 2\right)
$$

Compact twisted-adjoint module

- $\boldsymbol{\mu}_{(\mathrm{s})}$ generated via $\boldsymbol{U}(\mathcal{J}[\mathfrak{g}])$ from elements with $e=0$ and minimal
$j_{1}+j_{2}: s=0: \quad T_{(\pm)}^{(0)}=T_{0 ;\left(\sigma_{ \pm}\right)}^{(0)} ; \quad s>0: \quad T_{(\pm)}^{(s)}=T_{0 ;\left(s, \sigma_{ \pm}\right)}^{(s)}$
(static ground states)
and all \mathcal{M} from even/odd scalar ground states via $\boldsymbol{U}(\mathscr{T}[\mathfrak{h o}]) T_{(\pm)}^{(0)}$
\Rightarrow non-polynomiality included in their spectral functions:

$$
\begin{aligned}
& f_{0 ;(0)}^{(0)}(z)=\sum_{p=0}^{\infty} \frac{(4 z)^{2 p}\left(\epsilon_{0}+\frac{3}{2}\right)_{2 p}}{(2)_{2 p}\left(2 \epsilon_{0}+1\right)_{2 p}}={ }_{2} F_{3}\left(\frac{2 \epsilon_{0}+3}{4}, \frac{2 \epsilon_{0}+5}{4} ; \frac{3}{2}, \epsilon_{0}+\frac{1}{2}, \epsilon_{0}+1 ; 4 z^{2}\right), \\
& f_{0 ;(1)}^{(0)}(z)=\sum_{p=0}^{\infty} \frac{\left(\epsilon_{0}+\frac{5}{2}\right)_{2 p} z^{2 p}}{p!(2)_{p}\left(\epsilon_{0}+1\right)_{p}\left(\epsilon_{0}+2\right)_{p}}={ }_{2} F_{3}\left(\frac{2 \epsilon_{0}+5}{4}, \frac{2 \epsilon_{0}+7}{4} ; 2, \epsilon_{0}+1, \epsilon_{0}+2 ; 4 z^{2}\right)
\end{aligned}
$$

$$
\mathrm{D}=4: \quad f_{0 ;(0)}^{(0)}(z)=\frac{\sinh 4 z}{4 z}, \quad f_{0 ;(1)}^{(0)}(z)=\frac{3}{16 z^{2}}\left(\cosh 4 z-\frac{\sinh 4 z}{4 z}\right)
$$

(Sezgin-Sundell '05)

- Scalar even lowest-spin module: $\mathcal{W}_{(0)}^{(+)}=\bigoplus_{|e| \leq j} \mathbf{C} \otimes T_{e ;(j)}^{(0)}$

Lowest-weight submodules

- L.w. states in $\mathcal{M}_{(\mathrm{s})}$ are solutions of:

$$
\widetilde{L}_{r}^{-} T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}=L_{r}^{-} \star T_{e ;\left(j_{1}, j_{2}\right)}^{(s)}-T_{e ;\left(j_{1}, j_{2}\right)}^{(s)} \star L_{r}^{+}=0
$$

- Equating Casimir ops. for l.w.s. and $\mathcal{J}_{(\mathrm{s})}$ and using ideal relations
\Rightarrow l.w. admissibility conditions:

$$
\begin{aligned}
& j_{2}=0: \quad \underbrace{j_{1}=s, e=s+2 \epsilon_{0}}_{\mathscr{D}\left(\mathrm{s}+2 \varepsilon_{0},(\mathrm{~s})\right)} \quad \text { and } \underbrace{j_{1}=s=0, e=2}_{\mathscr{D}(2,(0))} \\
& j_{2}=s \geq 1: \quad j_{1}=j_{2}=s=1, \quad e=2 \operatorname{D}(2,(\mathrm{~s}, \mathrm{~s})) \\
& \cdot \mathrm{s}=0: T_{2 \epsilon_{0} ;(0)}^{(0)}={ }_{1} F_{1}\left(\epsilon_{0}+\frac{3}{2} ; 2 ;-4 E\right), \quad T_{2 ;(0)}^{(0)}={ }_{1} F_{1}\left(\epsilon_{0}+\frac{3}{2} ; 2 \epsilon_{0} ;-4 E\right) \\
& \mathrm{D}=4: \quad T_{1 ;(0)}^{(0)}=e^{-4 E}, \quad T_{2 ;(0)}^{(0)}=(1-4 E) e^{-4 E}
\end{aligned}
$$

- The Verma module built on top of 1.w. is an invariant submodule of $\boldsymbol{\mu}_{\text {(s) }}$ (indecomposable structure changes with dimension).

Lowest-weight submodules

- Similarly for $\mathrm{s}>0$, where the l.w. elements are (similar for T_{2} in $\mathrm{D}=4$)

$$
\left[T_{s+2 \epsilon_{;}(s)}^{(s)}\right]_{r(s)}=\sum_{k=0}^{s}(-1)^{s-k} \alpha_{s ; k} L_{\left\langle r_{1}\right.}^{+} * \cdots \star L_{r_{k}}^{+} * T_{2 \epsilon_{0} ;(0)}^{(0)} * L_{r_{k+1}}^{-} * \cdots \star L_{\left.r_{s}\right\}}^{-}
$$

- Two-sided, enveloping-alg. version of Flato-Fronsdal!, with

$$
T_{2 \epsilon_{0} ;(0)}^{(0)} \simeq\left|\epsilon_{0} ;(0)\right\rangle\left\langle\epsilon_{0} ;(0)\right|
$$

(can be mapped to one-sided version in a mathematically precise way using a reflector state.)
\rightarrow composite nature of compact twisted-adjoint l.w. elements.

- Can be verified by studying properties of compact scalar elements. Ideal relations imply: $E \star T_{e ;(0)}^{(0)}=T_{e ;(0)}^{(0)} \star E=\frac{e}{2} T_{e ;(0)}^{(0)}$,

$$
\begin{aligned}
L_{r}^{-} \star T_{e ;(0)}^{(0)} & =0=T_{e ;(0)}^{(0)} \star L_{r}^{+} \text {only if } e=2 \epsilon_{0}, 2 \\
M_{r s} \star T_{e ;(0)}^{(0)} & =0 \text { only if } e= \pm 2 \epsilon_{0}
\end{aligned}
$$

\Rightarrow one-sidedly

$$
\begin{array}{lll}
\text { one-sidedly } & \mathcal{S}_{2 \epsilon_{;} ;(0)}^{(0)}:=\mathcal{A} \star T_{2 \epsilon_{;} ;(0)}^{(0)} \simeq \mathcal{D}\left(\epsilon_{0} ;(0)\right) & \begin{array}{c}
\text { Shalated works: } \\
\text { Shaykman, Vasiliev }
\end{array} \\
\text { and two-sidedly } & \mathcal{D}^{+}:=\mathcal{A} \star T_{2 \epsilon_{0} ;(0)}^{(0)} \simeq \mathcal{A} \simeq \mathcal{D}_{0} \otimes \mathcal{D}_{0}^{*} & \text { Vasiliev } \left.{ }^{\prime 2} 2\right)_{15}
\end{array}
$$

Conclusions

- Reflection of dual modules gives composite-state presentation (reflector state does the job) on 1.w. subsectors of twisted-adjoint.
- It maps explicitly twisted-adjoint ops. to its compact-state content. (but factorization and explicit reflection only in composite-massless sectors)
- Opposite mapping can be performed, i.e., assembling compact states into Lorentz-covariant ones (harmonic expansion) and reflecting.
- Applied to Adjoint representation (non-unitary):

$$
R_{2}: \delta|A\rangle=[\epsilon(1)+\pi(\epsilon(2))] \star|A\rangle \rightarrow \delta A=[\epsilon, A]_{\star}
$$

equivalent to standard left action $\varepsilon(1)+\varepsilon(2)$ on the non-unitary Singleton \otimes Anti-Singleton module!
FF-like decomposition:

$$
\left(\mathcal{D}_{0}^{+} \otimes \mathcal{D}_{0}^{-}\right) \oplus\left(\mathcal{D}_{0}^{-} \otimes \mathcal{D}_{0}^{+}\right)=\bigoplus_{s=0}^{\infty} \mathcal{D}(-(s-1) ;(s-1))
$$

Conclusions \& Outlook

- Fibre/enveloping algebra approach is natural in unfolding. Insight on nature of field-th. representations (twisted-adj. content prior to b.c., compact-space meaning of Chevalley-Eilenberg cocycles...) and useful to rep.theory (independent of oscillator realization, analysis of dS irreps in Lorentz-cov. presentation...).
- Fibre harmonic expansion generalized to analyse content of twisted adjoint rep. and unitarity for mixed-symmetry fields in AdS.
(Boulanger, C.I., Sundell '08)
- What is the analog of the singleton annihilating ideal for mixed-sym fields?
- Interesting possible generalizations also involving massive and partially massless fields (generalizing fibre analysis to affine extensions of HS algebra).

Compact twisted-adjoint module

Admissibility criterion: spectrum of phys. fields matches doubletons
(Konstein-Vasiliev, '89)
Now: map doubletons (left module) to HS Master Fields (double-sided module)

- From compact to Lorentz-covariant basis of states
- Reflecting a LL into a LR-module, preserving rep. properties

$$
D_{0}^{\otimes 2} \oplus D_{1 / 2}^{\otimes 2} \longrightarrow|\Phi\rangle=\sum_{m, n} \phi_{m, n}|m\rangle_{1}|n\rangle_{2} \xrightarrow{R_{2}} \Phi\left(M_{a b}, P_{a}\right)
$$

- $\underline{s=0}$: find a Lorentz-scalar superposition $|\mathbf{1}\rangle_{0}=\psi(x)|1,0\rangle \in\left(D_{0}\right)^{\otimes 2}$:

$$
x \equiv L_{r}^{+} L_{r}^{+}=y^{2}
$$

$$
M_{a b}|11\rangle_{0}=0, \quad \text { i.e. } M_{0 r} \psi(x)|1,0\rangle=0
$$

a harmonic eq. in $y \Rightarrow$

$$
|\mathbb{I}\rangle_{0}=\cos (y)|1,0\rangle \in \operatorname{Env}(s o(3,2))
$$

Degeneracy! Also possible to expand on states in $\mathrm{D}(2,0) \in\left(\mathrm{D}_{1 / 2}\right)^{\otimes 2}$. Same procedure yields

$$
|\mathbb{1}\rangle_{1 / 2}=\frac{\sin (y)}{y}|2,0\rangle \in \operatorname{Env}(\operatorname{so}(3,2))
$$

Mapping Doubletons to Master Fields

Oscillator realization:

$$
|\mathbb{1}\rangle_{1 / 2}=\sin y|1,0\rangle \Rightarrow|\mathbb{1}\rangle_{0+i(1 / 2)}=e^{i y}|1,0\rangle
$$

$$
|1 / 2,0\rangle\left\langle 1 / 2,0 \mid=: e^{-a^{\dagger i} a_{i}}: \square\right\rangle
$$

Define Reflector: $\quad R(|1 / 2,0\rangle)=\langle 1 / 2,0|, \quad R\left(a^{\dagger i}\right)=i a^{i}, \quad R(f \star g)=R(g) \star R(f)$

$$
\Rightarrow \quad R_{2}\left(e^{i y}|1 / 2,0\rangle_{1}|1 / 2,0\rangle_{2}\right)=: e^{a^{\dagger i} a_{i}}|1 / 2,0\rangle\langle 1 / 2,0|:=\mathbb{1}
$$ i.e., the Lorentz-scalar in Φ !

R gives correct (tw. Adj.) tranformations!

$$
\begin{gathered}
R_{2}: \delta|\Phi\rangle=[\epsilon(1)+\epsilon(2)] \star|\Phi\rangle \longrightarrow \delta \Phi=\epsilon \star \Phi-\Phi \star \pi(\epsilon) \\
\left(\text { since } R(\epsilon|n\rangle)=-\left\langle n^{c}\right| \pi(\epsilon)\right)
\end{gathered}
$$

By HS-symmetry, this extends to all $\{\mathrm{s}+\mathrm{k}, \mathrm{s}\}$-monomials in tw. Adj.!

- General L-basis: $\quad\left|M^{s} P^{k}\right\rangle \sim e^{\mathrm{iy}} \times \operatorname{Pol}\left(a^{\mathrm{i}}, \mathrm{a}^{4 i}\right)|1 / 2,0\rangle_{1}|1 / 2,0\rangle_{2}$ result: \quad Reflection: $\quad \mathrm{R}_{2}\left(\operatorname{Pol}\left(\mathrm{a}^{\mathrm{i}}, \mathrm{a}^{\dagger \mathrm{i}}\right)\right)=\mathrm{M}^{\mathrm{s}} \mathrm{P}^{\mathrm{k}}$

More on the Reflector

- Map can be performed in abstract algebra and in D dimensions! Intro the REFLECTOR $|\mathbf{1}\rangle_{12}$ s.t.

$$
\begin{gathered}
\left(M_{a b}(1)+M_{a b}(2)\right)|\mathbb{1}\rangle_{12}=0, \quad\left(P_{a}(1)-P_{a}(2)\right)|\mathbb{1}\rangle_{12}=0 \\
M^{s} P^{k}=M^{s} P^{k} \star \mathbb{1} \xrightarrow{R_{2}^{-1}}\left|M^{s} P^{k}\right\rangle_{12}=\left(M^{s} P^{k}\right)(1)|\mathbb{1}\rangle_{12}
\end{gathered}
$$

Exp-states "special" only because normalizable in a certain inner product $(\leftrightarrow$ STr in twisted Adj.)

- Inverse map: $\Phi\left(M_{a b}, P_{a}\right) \longrightarrow \phi_{e_{0}, s_{0}}=\phi_{e_{0}, s_{0}}\left(M_{r s}, E, L_{r}^{ \pm}\right) \xrightarrow{R_{2}^{-1}} D_{0}^{\otimes 2} \oplus D_{1 / 2}^{\otimes 2}$

1. Single out l.w. combination of ops. (with definite e_{0} and s_{0})
2. Inverse reflection to doubleton states

Scalar: $\left[M_{r s}, \phi_{e_{0}, s_{0}}\right]_{\pi}=0, \quad\left[E, \phi_{e_{0}, s_{0}}\right]_{\pi}=e_{0}, \quad\left[L_{r}^{-}, \phi_{e_{0}, s_{0}}\right]_{\pi}=0$
2 solutions: $\quad \phi_{1,0}=\exp (-4 E), \quad \phi_{2,0}=(1-4 E) \exp (-4 E)$

Conclusions

- Reflection map connects very different descriptions:
a) L.w. modules \rightarrow global bkgrd properties (finite-E fluct.)
b) Tw.-Adjoint basis \rightarrow no b.c., only local data
(contains scalars with $\mathrm{N} \& D$ b.c.; in $\mathrm{D}=4$ each spin-s sector is furtherly decomposed in (anti)-selfdual;...)
- Also other nonpolynomial objects in $\Phi \rightarrow$ states outside l.w. modules!
\Rightarrow Full twisted adjoint (indecomposable) spin-0 module is

$$
\mathcal{M}_{0}=\mathcal{W}_{0} \oplus D(1,0) \oplus D(2,0) \oplus \widetilde{D}(1,0) \oplus \widetilde{D}(2,0)
$$

with ground states

$$
\phi_{0,0}=\frac{\sinh 4 E}{4 E}, \quad\left(\phi_{0,1}\right)_{r}=P_{r} \sum_{n} \frac{\left(4 E^{2}\right)^{n}}{n!(5 / 2)_{n}}
$$

Conclusions \& Outlook

- Adjoint ~ nonunitary, unbounded-E l.w. realization,

$$
R_{2}: \delta|A\rangle=[\epsilon(1)+\pi(\epsilon(2))] \star|A\rangle \rightarrow \delta A=[\epsilon, A]_{\star}
$$

equivalent to standard left action $\varepsilon(1)+\varepsilon(2)$ on the nonunitary module Singleton \otimes Anti-Singleton !
FF-like decomposition: $\quad D(1 / 2,0) \otimes \widetilde{D}(-1 / 2,0) \sim \sum_{s} \mathcal{V}_{s}$

- Extension to $\mathrm{O}(\mathrm{D}+1 ; \mathrm{C})$, i.e. arbitrary signature (interesting exact solution in different signatures \rightarrow C.I., E.Sezgin, P.Sundell, arXiv 0706.2983 [hep-th])
- Usata per mixsym. Possibly interesting extension to massive HS \& partially massless!

In components

$$
\begin{aligned}
& |\{s+k, s\} ;\{s+t, j\}\rangle=e^{i y} \times \operatorname{Ply}_{s, t, j}\left(a^{i}, a^{\dagger i}\right)|1 / 2,0\rangle_{1}|1 / 2,0\rangle_{2} \\
& \xrightarrow{R_{2}} R_{2}\left(\operatorname{Ply}_{s, t, j}\left(a^{i}, a^{\dagger i}\right)\right)=\left\{\begin{array}{c}
M_{0 r_{1}} \ldots M_{0 r_{s}} P_{r_{s+1}} \ldots P_{r_{s+t}}\left(P_{0}\right)^{s+k-t}, j=0 \\
M_{q r_{1}} M_{0 r_{2}} \ldots M_{0 r_{s}} P_{r_{s+1}} \ldots P_{r_{s+t}}\left(P_{0}\right)^{s+k-t}, j=1
\end{array}\right.
\end{aligned}
$$

(For general $\{\mathrm{s}+\mathrm{k}, \mathrm{s}\}:$ 1) decompose 4 d to $3 \mathrm{~d} Y \mathrm{Y},|\{\mathrm{s}+\mathrm{k}, \mathrm{s}\}\rangle \rightarrow$

$$
|\{\mathrm{s}+\mathrm{k}, \mathrm{~s}\} ;\{\mathrm{s}+\mathrm{t}, 0\}\rangle,|\{\mathrm{s}+\mathrm{k}, \mathrm{~s}\} ;\{\mathrm{s}+\mathrm{t}, 1\}\rangle, \mathrm{t}=0, \ldots, \mathrm{k}\left(\mathrm{M}_{0 \mathrm{r}} \sim \text { step op. }\right)
$$

2) $\mathrm{k}=0 \rightarrow$ bottom/top superpositions \sim trigonometric $\psi(\mathrm{y})$ on lws $|\mathrm{s}+1, \mathrm{~s}\rangle$; $\mathrm{k}>0 \rightarrow$ descendants of $\mathrm{k}=0$ via left-action of P^{k})

The Vasiliev Equations

NC extension, $\mathrm{x} \rightarrow(\mathrm{x}, \mathrm{Z}): \quad\left[z_{\alpha}, z_{\beta}\right]_{\star}=-2 i \varepsilon_{\alpha \beta}, \quad\left[\bar{z}_{\dot{\alpha}}, \bar{z}_{\dot{\beta}}\right]_{\star}=-2 i \varepsilon_{\dot{\alpha} \dot{\beta}}$

$$
d \rightarrow \widehat{d}=d+d_{Z}
$$

$$
\begin{aligned}
& A(x \mid Y) \rightarrow \widehat{A}(x \mid Z, Y) \equiv\left(d x^{\mu} \widehat{A}_{\mu}+d z^{\alpha} \widehat{A}_{\alpha}+d \bar{z}^{\dot{\alpha}} \widehat{A}_{\dot{\alpha}}\right)(x \mid Z, Y), \quad A_{\mu}(x \mid Y)=\left.\widehat{A}_{\mu}\right|_{Z=0} \\
& \Phi(x \mid Y) \rightarrow \Phi(x \mid Z, Y), \quad \Phi(x \mid Y)=\left.\widehat{\Phi}(x \mid Z, Y)\right|_{Z=0}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{F} \equiv \widehat{d} \widehat{A}+\widehat{A} \star \widehat{A}=\frac{i}{4}\left(d z^{\alpha} \wedge d z_{\alpha} \widehat{\Phi} \kappa+d \bar{z}^{\dot{\alpha}} \wedge d \bar{z}_{\dot{\alpha}} \widehat{\Phi} \bar{\kappa}\right) \\
& \hat{D} \Phi(x \mid Y, Z) \equiv \widehat{d} \Phi+\hat{A} \star \Phi-\Phi \star \bar{\pi}(\widehat{A})=0
\end{aligned}
$$

Local sym: $\quad \delta \widehat{A}=\hat{D} \widehat{\epsilon}, \quad \delta \widehat{\Phi}=-[\widehat{\epsilon}, \widehat{\Phi}]_{\pi} \quad \hat{F}_{\mu \nu}=\hat{F}_{\alpha \mu}=\hat{F}_{\dot{\alpha} \mu}=\hat{F}_{\alpha \dot{\alpha}}=0$
Solving for Z-dependence yields consistent nonlinear corrections as an expansion in Φ.

$$
\begin{aligned}
& \hat{F}_{\alpha \beta}=-\frac{i}{2} \epsilon_{\alpha \beta} \Phi \star \kappa, \\
& \hat{F}_{\dot{\alpha} \dot{\beta}}=-\frac{i}{2} \epsilon_{\dot{\alpha} \dot{\beta}} \bar{\Phi} \star \bar{\kappa}, \\
& \hat{\mathcal{D}}_{\mu} \hat{\Phi}=\hat{\mathcal{D}}_{\alpha} \hat{\Phi}=\hat{\mathcal{D}}_{\dot{\alpha}} \hat{\Phi}=0
\end{aligned}
$$

For space-time components, projecting on phys. space

$$
\left.\{Z=0\} \rightarrow \hat{F}_{\mu \nu}(x \mid A, \Phi ; Y)\right|_{Z=0}=0,\left.\quad\left(\hat{\mathcal{D}}_{\mu} \Phi\right)(x \mid \Phi ; Y)\right|_{Z=0}=0
$$

Appendix II

Also the other way around! (base \leftrightarrow fiber evolution) Locally give x-dep. via gauge functions (space-time ~ pure gauge!)...

$$
\begin{gathered}
\hat{A}_{\mu}=\hat{L}^{-1} \star \partial_{\mu} \widehat{L}, \quad \widehat{A}_{\alpha}=\hat{L}^{-1} \star\left(\widehat{A}_{\alpha}^{\prime}+\partial_{\alpha}\right) \star \widehat{L}, \quad \widehat{\Phi}=\widehat{L}^{-1} \star \Phi^{\prime} \star \pi(\widehat{L}) \\
\hat{L}=\widehat{L}(x \mid Z, Y), \quad \widehat{A}_{\alpha}^{\prime}=\widehat{A}_{\alpha}(0 \mid Z, Y), \Phi^{\prime}=\Phi(0 \mid Z, Y)
\end{gathered}
$$

\ldots and substitute in Z-eq. ${ }^{\text {ns: }}: \widehat{F}_{\alpha \beta}^{\prime}=-\frac{i}{2} \epsilon_{\alpha \beta} \bar{\Phi}^{\prime} \star \kappa, \widehat{F}_{\alpha \dot{\beta}}^{\prime}=0, \hat{D}_{\alpha}^{\prime}{\Phi^{\prime}}^{\prime}=0$ (fiber evolution)

Exact solution can be obtained with: (Sezgin, Sundell - '05)
1.

$$
A=L^{-1} \star d L \rightarrow A d S_{4}, \quad d s_{(0)}^{2}=\frac{4 d x^{2}}{\left(1-x^{2}\right)^{2}},\left(x^{2} \leq 1\right)
$$

2. $\mathrm{SO}(3,1)$-invariance:

$$
\left[\hat{M}_{\alpha \beta}^{\prime}, \Phi^{\prime}\right]_{\pi}=0, \quad\left[\hat{M}_{\alpha \beta}^{\prime}, \widehat{A}_{\alpha}^{\prime}\right]=0 \Rightarrow \begin{aligned}
& \bar{\Phi}^{\prime}=f(u, \bar{u}), \quad u \equiv y^{\alpha} z_{\alpha} \\
& \hat{A}_{\alpha}^{\prime}=z_{\alpha} A(u, \bar{u})
\end{aligned}
$$

