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Why Higher Spins?

1. Crucial problem in Field Theory

2. Key role in String Theory
• Strings beyond low-energy SUGRA
• HSGT as symmetric phase of String Theory?

3.    Positive results from AdS/CFT
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Summary

• Field Theory: Unfolded formulation

• Group Theory: (U)IRs  of so(D-1,2)

• Link: 1)  Lorentz-covariant « Compact  slicings
2)  Operator « state   correspondence

Harmonic analysis in fibre due to unfolding’s Dynamics/Fibre “duality”

• Conclusions & Outlook

Focus on AdS bosonic model
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Unfolded Formulation

§ Unfolding = formulating dynamics via consistent (d2=0) 1st-order
eqs. involving only Ù and d of pa-forms (no metric!):

Gauge invariance of {Ra≈ 0}:
§ Gauge symmetry " Xpa>0Þ all local dof in the 0-forms X0 !

Non-topological if the 0-form module is ¥-dimensional.

define a free differentiable algebra (FDA) (Â,Q), Â = {Xa = Xpa(x)}.

§ 1-form sector:  dW + W2 = 0 Þ W = WaTaÎ g, Lie algebra

§ Linearize around W, Xa = W + dXa : fluctuation p-form eqs:

Þ Fluctuation p-forms arranged  in g-modules!

(Vasiliev, ’89)
(Chevalley-Eilenberg,

Sullivan ,D’Auria-Fré…)
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HS algebra (totally sym bosonic fields)

HS gauge theories: g = (A)dS isometry alg.  Manifest sym of free eqs.
= ¥-dim. extension ho(D-1,2) = Lie[A ] = Lie[U(so(D-1,2)) /I(V)] É g

so(D-1,2) :

With Pa = lM0’a , a = 0,1,...,D-1, Lorentz-cov. slicing g = m    p

U(so(D-1,2)) = { totsym products of Ms & Ps }
Factorization of I(V) leaves traceless two-rows YD:

X Î A :

Trace:

]
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Adjoint and Twisted-Adjoint Modules

Gauge invariant curvatures and derivatives: twisted adj rep. T(ho) ' F
(master 0-form)

Gauge fields Î ho(D-1,2) (master 1-form):

Automorphism:
Antiautomorphism:

N.B.: spin-s sector spanned by all {s+k,s}-tensors,  k=0,1,2...
(upon constraints, all on-shell-nontrivial covariant derivatives of the physical fields,

i.e., all the dynamical information is in the 0-form at a point)

Unfoldingà dynamics “dual” to fibre T(ho).
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(U)IRs of so(D-1,2)

• Noncompact algebra Þ¥-dimensional UIRs
• Compact time translation (E ~ P0 ~ M0’0) Þ discrete energy spectrum

Factoring out singular submodules Þ multiplet shortening.

E induces the splitting:
compact

subalgebra, ladder ops.

l.w. IR à D(e0,(s0)),  built  on  l.w.s. |e0,(s0 )ñ:
Þ E bounded from below

§ Dof of FT unfolded system in T(ho) (Lorentz-covariantly sliced) Þ
look for a map T–basis monomials « massless AdSD (U)IRs
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Massless particles = two-singletons composites! (Flato-Fronsdal, ’78,
Vasiliev ’04, Engquist-Sundell ‘05)

Composite l.w. states:

(U)IRs of so(D-1,2)

• (Composite) Massless:     e0 = s0+2e0 ® D(s0+2e0,(s0)) (scalar & shadow
D(2e0,(0))  and D(2,(0)) )

• Singletons:       scalar D(e0,(0)),     spinor D(e0+1/2,(1/2))

(+ “anti-particles”: D– (-e0,s0) = p( D(e0,s0)) ) [e0 = (D-3)/2]
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Weight diagrams
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Main Ideas and Results
§ To exhibit the correspondence  states (U)IRs « twisted-adjoint ops.

slice T (so(2) Å so(D-1))-covariantlyà (inv.) harmonic expansion

and look for lowest (highest)-weight elements Te0;(s0).
N.B.: C2n [T(s)]  = C2n[M(s)]  = C2n [D(s+2e0,(s))]  = C2n[ho(s)]

§Work in U[g]: g-reps. defined by factoring out ideals . (Duflo,Dixmier,…)
e.g.: - I[V] = annihilating ideal of scalar singleton, I[V] = I[D0] (= I[D1/2] in D=4)

- Casimirs are fixed in A , S:=A * X, C2n[S] = C2n[D0] (=C2n[D1/2] in D=4)

§ Just as  |0ñá0| = : e –N : ,   one-pt. states = non-polynomial f(M,P) (Î some
analytic completion of U[g]).

~ ~
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Main Ideas and Results

§ No a priori l.(h.)w.s Þ fibre approach is sensitive also to other irreps!
(unbounded-E modules).
Þ D(s+2e0,(s)), massless one-pt. states, contained in A as invariant
subspaces of indecomposable module
W = lowest-spin module containing (linearized) runaway solutions.
Þ Prior to imposing b.c., T(ho) contains more than one-pt. states.

§ The entire M can be generated via T(ho)-action from static (even/odd)
runaway mode(s) f0;(0) (and f0;(1) ) of the free scalar field

D = 4 :

§M can be endowed with (rescaled) Tr-norm  (proved positive-def. for
even scalar l.s. module)  and factorizable in terms of angletons.
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Compact twisted-adjoint module

§ M(s) spanned by series expansions in m-cov. elements Ta(s+k),b(s) :

generating function                                              (spectral f. ) determined uniquely by

§ I[V] = 0 :

§ M(s) splits under U(T[g])
in even/odd submodules :



13

Compact twisted-adjoint module

§ M(s) generated via U(T[g])  from elements with e = 0 and minimal
j1 + j2 :
(static ground states)
and all M from even/odd scalar ground states via U(T[ho]) T(±)

(0)

Þ non-polynomiality included in their spectral functions:

D = 4 :

§ Scalar even lowest-spin module:
(Sezgin-Sundell  ’05)
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Lowest-weight submodules

§ L.w. states  in M(s) are solutions of:

§ Equating Casimir ops. for l.w.s. and T(s) and using ideal relations
Þ l.w. admissibility conditions:

D(s+2e0 ,(s)) D(2 ,(0))

D(2 ,(s,s))

§ s = 0 :

D = 4 :

§ The Verma module built on top of  l.w. is an invariant submodule of
M(s) (indecomposable structure changes with dimension).
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Lowest-weight submodules
§ Similarly for s > 0, where the l.w. elements are (similar for T2 in D=4)

§ Two-sided, enveloping-alg. version of Flato-Fronsdal!,  with

(can be mapped to one-sided version in a mathematically precise way using a reflector state.)
à composite nature of compact twisted-adjoint l.w. elements.

§ Can be verified by studying properties of compact scalar elements.
Ideal relations imply:

Þ one-sidedly
and two-sidedly

(related works:
Shaynkman, Vasiliev  ’01

Vasiliev ’02)
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Conclusions
§ Reflection of dual modules gives composite-state presentation

(reflector state does the job) on l.w. subsectors of twisted-adjoint.
§ It maps explicitly twisted-adjoint ops. to its compact-state content.

(but factorization and explicit reflection only in composite-massless sectors)

§ Opposite mapping can be performed, i.e., assembling compact states
into Lorentz-covariant ones (harmonic expansion) and reflecting.

§ Applied to Adjoint representation (non-unitary):

equivalent to standard left action e(1)+ e(2) on the non-unitary
Singleton ÄAnti-Singleton module!
FF-like decomposition:
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Conclusions & Outlook

§ Fibre/enveloping algebra approach is natural in unfolding.
Insight on nature of field-th. representations (twisted-adj. content
prior to b.c., compact-space meaning of Chevalley-Eilenberg
cocycles…) and useful to rep.theory (independent of oscillator
realization, analysis of dS irreps in Lorentz-cov. presentation…).

§ Fibre harmonic expansion generalized to analyse content of twisted
adjoint rep. and unitarity for mixed-symmetry fields in AdS.

§ What is the analog of the singleton annihilating ideal for mixed-sym
fields ?

§ Interesting possible generalizations also involving massive and
partially massless fields (generalizing fibre analysis to affine
extensions of HS algebra).

(Boulanger, C.I., Sundell ‘08)
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Compact twisted-adjoint module
Admissibility criterion: spectrum of phys. fields matches doubletons

§ s=0: find a Lorentz-scalar superposition |11ñ0=y(x)|1,0ñ Î (D0 )Ä2 :

a harmonic eq. in y Þ

Degeneracy! Also possible to expand on states in D(2,0) Î (D1/2 ) Ä2 .
Same procedure yields

(Konstein-Vasiliev, ’89)

Now: map doubletons (left module) to HS Master Fields (double-sided module)

• From compact to Lorentz-covariant basis of states
• Reflecting a LL into a LR-module, preserving rep. properties
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Mapping Doubletons to Master Fields

Define Reflector:

R gives correct (tw. Adj.) tranformations!

Oscillator realization:

Þ

(since                                 )

By HS-symmetry, this extends to all {s+k,s}-monomials in tw. Adj.!

• General            L-basis:    |Ms Pkñ ~ eiy ´ Pol(ai,a†i) |1/2,0ñ1|1/2,0ñ2
result:           Reflection : R 2 (Pol(ai,a†i))  =  Ms Pk

i.e., the LorentzLorentz--scalarscalar in F!
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More on the Reflector

• Map can be performed in abstract algebra and in D dimensions!
Intro the REFLECTOR |11ñ12 s.t.

Exp-states “special” only because normalizable in a certain
inner product (« STr in twisted Adj. )

• Inverse map:

1. Single out l.w. combination of ops. (with definite e0 and s0)
2. Inverse reflection to doubleton states

Scalar:

2 solutions:
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Conclusions

• Reflection map connects very different descriptions:
a) L.w. modulesà global bkgrd properties (finite-E fluct.)
b) Tw.-Adjoint basis à no b.c., only local data

(contains scalars with N&D b.c.; in D=4 each spin-s sector is
furtherly decomposed  in (anti)-selfdual;...)

• Also other nonpolynomial objects in Fà states outside l.w. modules!
Þ Full twisted adjoint (indecomposable) spin-0 module is

with ground states
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Conclusions & Outlook

• Usata per mixsym. Possibly interesting extension to massive
HS & partially massless!

• Extension to O(D+1;C), i.e. arbitrary signature
(interesting exact solution in different signaturesà C.I., E.Sezgin, P.Sundell,

arXiv 0706.2983 [hep-th])

• Adjoint ~ nonunitary, unbounded-E  l.w. realization,

equivalent to standard left action e(1)+ e(2) on the nonunitary
module Singleton ÄAnti-Singleton !

FF-like decomposition:
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In components

( For general {s+k,s}:    1) decompose 4d to 3d YD,   |{s+k,s}ñ ®
|{s+k,s};{s+t,0}ñ, |{s+k,s};{s+t,1}ñ,  t=0,...,k  (M 0r~ step op.)

2)  k=0à bottom/top superpositions ~ trigonometric y(y) on lws |s+1,sñ ;
k>0à descendants of k=0 via left-action of Pk )
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The Vasiliev Equations

Solving for Z-dependence yields
consistent nonlinear corrections
as an expansion in Φ.
For space-time components, projecting on phys. space
{Z=0} ®

NC extension, x ®(x,Z):

Local sym:
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Appendix II
Also the other way around! (base « fiber evolution)
Locally give x-dep. via gauge functions (space-time ~ pure gauge!)...

...and substitute in Z-eq.ns:
(fiber evolution)

Exact solution can be obtained with:
1.

2. SO(3,1)-invariance:

Þ

(Sezgin, Sundell – ’05)


