# Duality between Wilson Loops and Scattering Amplitudes in QCD 

by<br>Yuri Makeenko (ITEP, Moscow)

Based on: Y. M., Poul Olesen

- Phys. Rev. Lett. 102, 071602 (2009) [arXiv:0810. 4778 [hep-th]]
- arXiv:0903.4114 [hep-th]
- further developments


## Introduction and motivations since 1979

QCD string is not Nambu-Goto but the asymptote at large Wilson loops is universal

$$
W(C)^{\text {large } C} \mathrm{e}^{-K S_{\min }(C)} \quad \Longrightarrow \text { the area law }
$$

## What are the consequences for correlators of composite operators?

Regge behavior of scattering amplitudes at high energy and fixed momentum transfer under a few controllable approximations.

Why not 30 years ago?
Three essential constituents:

- Representation of QCD scattering amplitudes through Wilson Ioops Wilson (1975) (lattice), Y.M., Migdal (1979) (continuum)
- Representation of minimal area as quadratic functional of $x_{\mu}(\cdot)$

Douglas (1931) (Plateau problem)

- The idea of Wilson-Ioop/scattering-amplitude duality

$$
\text { Alday, Maldacena (2007) }(\mathcal{N}=4 \text { SYM })
$$

## QCD amplitudes through Wilson Ioops

Green's functions of $M$ colorless composite quark operators

$$
\bar{q}\left(x_{i}\right) q\left(x_{i}\right) \quad \bar{q}\left(x_{i}\right) \gamma_{5} q\left(x_{i}\right) \quad \bar{q}\left(x_{i}\right) \gamma_{\mu} q\left(x_{i}\right) \quad \bar{q}\left(x_{i}\right) \gamma_{\mu} \gamma_{5} q\left(x_{i}\right)
$$

are given by the sum over Wilson loops passing via $x_{i}(i=1, \ldots, M)$

$$
G \equiv\left\langle\prod_{i=1}^{M} \bar{q}\left(x_{i}\right) q\left(x_{i}\right)\right\rangle_{\mathrm{conn}}=\sum_{\text {paths } \ni\left\{x_{1}, \ldots, x_{M} \equiv x_{0}\right\}} J[z(\tau)] W[z(\tau)]
$$

The weight for the path integration is

$$
J[z(\tau)]=\int \mathcal{D} k(\tau) \mathrm{sp} \mathrm{P} \mathrm{e}^{\mathrm{i} \int_{0}^{\mathcal{T}} \mathrm{d} \tau[\dot{z}(\tau) \cdot k(\tau)-\gamma(\tau) \cdot k(\tau)]}
$$

for spinor quarks of mass $m$ and scalar operators or

$$
J[z(\tau)]=\mathrm{e}^{-\frac{1}{2} \int_{0}^{\mathcal{T}} \mathrm{d} \tau \dot{z}^{2}(\tau)}
$$

for scalar quarks. $\tau$ is the proper time.
The Wilson loop $W(C)$ is in pure Yang-Mills at large $N$ (or quenched).
For finite $N$, correlators of several Wilson loops are present.

## QCD amplitudes via Wilson loops (cont.)

On-shell scattering amplitudes are given by the LSZ reduction
Momentum-space scattering amplitude (functional Fourier transform)

$$
G\left(\Delta p_{1}, \ldots, \Delta p_{M}\right)=\sum_{\text {paths }} \mathrm{e}^{\mathrm{i} \int_{0}^{\mathcal{T}} \mathrm{d} \tau \dot{z}(\tau) \cdot p(\tau)} J[z(\tau)] W[z(\tau)]
$$

for piecewise constant momentum-space loop $p(\tau)$

$$
\begin{gathered}
p(\tau)=p_{i} \quad \text { for } \tau_{i}<\tau<\tau_{i+1} \\
\dot{p}(\tau)=-\sum_{i} \Delta p_{i} \delta\left(\tau-\tau_{i}\right) \quad \text { with } \quad \Delta p_{i} \equiv p_{i-1}-p_{i}
\end{gathered}
$$

representing $M$ momenta of (all incoming) particles.
Then momentum conservation is automatic while an (infinite) volume $V$ is produced, say, by integration over $x_{0}=x_{M}$.

This is because

$$
\int \mathrm{d} \tau p(\tau) \cdot \dot{z}(\tau)=\sum_{i} \Delta p_{i} \cdot x_{i}
$$

reproducing the exponent of the Fourier transformation.

## Minimal area and boundary functional

To calculate the scattering amplitudes, we substitute the area-law behavior of asymptotically Iarge Wilson loops:

$$
W(C) \stackrel{\text { large }}{\propto} C \mathrm{e}^{-K S_{\min }(C)},
$$

and integrate over the paths.
$S(C)$ is highly nonlinear functional $\Longrightarrow$ hopeless to calculate.
Douglas algorithm for solving the Plateau problem (finding the minimal surface) is to minimize the boundary functional

$$
A[x(\theta)]=\frac{1}{8 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime} \frac{\left[x(\theta(\phi))-x\left(\theta\left(\phi^{\prime}\right)\right)\right]^{2}}{1-\cos \left(\phi-\phi^{\prime}\right)}
$$

with respect to the reparametrizations $\theta(\phi)(\dot{\theta}(\phi) \geq 0)$. In general

$$
A[x(\theta)] \geq A\left[x\left(\theta_{*}\right)\right]=S_{\min }(C)
$$

The minimum is reached at $\theta(\phi)=\theta_{*}(\phi)$ which is contour-dependent.

## Minimal area and boundary functional (cont.)

The Douglas functional can be equivalently rewritten as

$$
A=-\frac{1}{4 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta_{1} \int_{0}^{2 \pi} \mathrm{~d} \theta_{2} \dot{x}\left(\theta_{1}\right) \cdot \dot{x}\left(\theta_{2}\right) \ln \left(1-\cos \left[\phi\left(\theta_{1}\right)-\phi\left(\theta_{2}\right)\right]\right)
$$

when only $\phi(\theta)$ is sensitive to reparametrizations.

Simplest example: $\phi_{*}(\theta)=\theta$ for a circle.

The solution for an ellipse with periods $a$ and $b$ is

$$
\theta_{*}^{\prime}(\phi)=\frac{\pi}{2 K(s)} \frac{1}{\sqrt{(1-s)^{2}+4 s \sin ^{2} \phi}} \quad \frac{\pi K\left(\sqrt{1-s^{2}}\right)}{2 K(s)}=\log \frac{a+b}{a-b}
$$

where $K(s)$ is the complete elliptic integral of the first kind.

Elliptic integrals also emerge for a rectangle (the Schwarz-Christoffel mapping).

## Integration over reparametrizations

Wilson loop in large- $N$ QCD $\Longleftrightarrow$ the tree-level string disk amplitude integrated over reparametrizations of the boundary contour.

Conformal map of the disk into the upper half-plane: the disk boundary $\Longrightarrow$ the real axis

$$
t(\tau)=-\cot \frac{\pi \tau}{\mathcal{T}} \quad-\infty<t<+\infty
$$

Reparametrization-invariant ansatz

$$
W(C)=\int \mathcal{D} s(t) \exp \left(\frac{K}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} t_{1} \mathrm{~d} t_{2} \dot{x}\left(t_{1}\right) \cdot \dot{x}\left(t_{2}\right) \ln \left|s\left(t_{1}\right)-s\left(t_{2}\right)\right|\right)
$$

where the path integral is over reparametrizations $s(t)$ (with $s^{\prime}(t) \geq 0$ ).
This classical boundary action is derivable for:

- bosonic string in $d=26$, $\quad$ superstring in $d=10$.

Area law for asymptotically large $C$ (or very large $K$ ) $\Longrightarrow$ a saddle point in the integral over reparametrizations at $s(t)=s_{*}(t)$.

## Large loops and minimal area

Gaussian fluctuations around the saddle-point $\theta_{*}(\sigma)$ result in a pre-exponential factor

$$
W[x(\cdot)] \stackrel{\text { large loops }}{=} F[\sqrt{K} x(\cdot)] \mathrm{e}^{-K S_{\min }[x(\cdot)]}\left[1+\mathcal{O}\left(\left(K S_{\min }\right)^{-1}\right)\right]
$$

which is contour dependent

$$
F[\text { circle }] \propto \sqrt{K R^{2}} \quad \text { for a circle }
$$

Asymptotic area law is recovered modulo the pre-exponential which is not essential for large loops.

More subtle effects (such as the Lüscher term are due to the preexponential factor.

## Functional Fourier transformation

Reparametrization-invariant functional Fourier transformation

$$
W[p(\cdot)]=\int \mathcal{D} x \mathrm{e}^{\mathrm{i} \int p \cdot \mathrm{~d} x} W[x(\cdot)]
$$

of the disk amplitude for piecewise constant $p(t)$.
Performing the Gaussian integration:
$W[p(\cdot)]=\int \mathcal{D} s(t) \exp \left(\alpha^{\prime} \int_{-\infty}^{+\infty} \mathrm{d} t_{1} \int_{-\infty}^{+\infty} \mathrm{d} t_{2} \dot{p}\left(t_{1}\right) \cdot \dot{p}\left(t_{2}\right) \ln \left|s\left(t_{1}\right)-s\left(t_{2}\right)\right|\right)$
It looks like the disk amplitude with $K$ replaced by $1 / K=2 \pi \alpha^{\prime}$.
The determinant is a s-independent constant.
The principal-value prescription will be important for stepwise $p(t)$.
$p(t)=p_{j}$ at the $j$-th interval for the stepwise discretization $\Longrightarrow$ reparametrization changes $t_{j}$ 's for $s_{j}$ 's keeping their cyclic order discrete reparametrization transformation.
Stepwise discretization of $x(t)$ itself would violate the continuity of the string end world line.

## Derivation of Koba-Nielsen amplitudes

First note that

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \mathrm{d} t_{1} \int_{-\infty}^{+\infty} \mathrm{d} t_{2} \dot{p}\left(t_{1}\right) \cdot \dot{p}\left(t_{2}\right) \ln \left|s\left(t_{1}\right)-s\left(t_{2}\right)\right| \\
& =-\frac{1}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\mathrm{d} s_{1} \mathrm{~d} s_{2}}{\left(s_{1}-s_{2}\right)^{2}}\left[p\left(t\left(s_{1}\right)\right)-p\left(t\left(s_{2}\right)\right)\right]^{2}
\end{aligned}
$$

Integration over $s_{1}$ or $s_{2}$ has divergences for adjacent sides $k=l \pm 1$.

Principal-value regularization $\Rightarrow$ omitting sides with $k=l \pm 1 \Rightarrow$ the integrals over $s_{1}$ and $s_{2}$ are finite:

$$
\begin{aligned}
& -\frac{1}{2} \sum_{k \neq l \pm 1} \int_{s_{k-1}}^{s_{k}} \mathrm{~d} s_{1} \int_{s_{l-1}}^{s_{l}} \mathrm{~d} s_{2} \frac{\left(p_{k}-p_{l}\right)^{2}}{\left(s_{1}-s_{2}\right)^{2}} \\
& =\sum_{k \neq l} \Delta p_{k} \cdot \Delta p_{l} \log \left|s_{k}-s_{l}\right| \\
& \quad+\sum_{j} \Delta p_{j}^{2} \log \frac{\left(s_{j}-s_{j-1}\right)\left(s_{j+1}-s_{j}\right)}{\left(s_{j+1}-s_{j-1}\right)}
\end{aligned}
$$

which is invariant under projective transformations.

## Projective transformation

Stepwise discretization of $p(t)$ naturally results in $M$-particle (off-shell) Koba-Nielsen amplitudes invariant under the $\operatorname{PSL}(2 ; \mathbb{R})$ projective (or Möbius) transformation

$$
s \Rightarrow \frac{a s+b}{c s+d} \quad \text { with } \quad a d-b c=1
$$

because the projective group is a subgroup of reparametrizations.

The main formulas:

$$
\begin{aligned}
\left(s_{i}-s_{j}\right) & \Rightarrow \frac{\left(s_{i}-s_{j}\right)}{\left(c s_{i}+d\right)\left(c s_{j}+d\right)} \\
\mathrm{d} s_{i} & \Rightarrow \frac{\mathrm{~d} s_{i}}{\left(c s_{i}+d\right)^{2}}
\end{aligned}
$$

under the projective transformation.

## Derivation of Koba-Nielsen amplitudes (cont.)

Integrating over reparametrizations at intermediate points $\left(s_{i-1}, s_{i}\right)$ results in the following measure

$$
D^{(M)} s=\prod_{i=1}^{M} \frac{\mathrm{~d} s_{i}}{\left|s_{i}-s_{i-1}\right|}
$$

for the integration over $s_{i}$ 's.
It is invariant under the projective transformation and gives

$$
W\left(\Delta p_{1}, \ldots, \Delta p_{M}\right)
$$

$$
=\int_{s_{i-1}<s_{i}} \prod_{i} \frac{\mathrm{~d} s_{i}}{\left|s_{i}-s_{i-1}\right|} \prod_{k \neq l}\left|s_{k}-s_{l}\right|^{\alpha^{\prime} \Delta \vec{p}_{k} \Delta \vec{p}_{l}} \prod_{j}\left(\frac{\left|s_{j}-s_{j-1}\right|\left|s_{j+1}-s_{j}\right|}{\left|s_{j+1}-s_{j-1}\right|}\right)^{\alpha^{\prime} \Delta p_{j}^{2}}
$$

where the integration over $s_{i}$ emerges from the path integral over reparametrizations.

Fixing the $P S L(2 ; \mathbb{R})$ invariance in the standard way

$$
s_{1}=0, \quad s_{M-1}=1, \quad s_{M}=\infty
$$

$\Longrightarrow$ scalar amplitudes in the Koba-Nielsen variables.

## Path integrals over reparametrization

The measure on $\operatorname{Diff}(\mathbb{R})$

$$
\int_{\substack{t\left(s_{0}\right)=t_{0} \\ t\left(s_{f}\right)=t_{f}}} \mathcal{D}_{\text {diff }} t(s) \cdots=\lim _{L \rightarrow \infty} \int_{t_{0}}^{t_{f}} \frac{1}{\left(t_{f}-t_{L}\right)} \prod_{j=1}^{L} \int_{t_{0}}^{t_{j+1}} \mathrm{~d} t_{j} \frac{1}{\left(t_{j}-t_{j-1}\right)} \cdots
$$

is invariant under reparametrizations

$$
s \rightarrow t(s), \quad t\left(s_{0}\right)=s_{0}, \quad t\left(s_{f}\right)=s_{f}, \quad \frac{\mathrm{~d} t}{\mathrm{~d} s} \geq 0
$$

The main integral for the integration at the intermediate point $t_{i}$

$$
\int_{t_{i-1}}^{t_{i+1}} \mathrm{~d} t_{i} \frac{\delta}{\left(t_{i+1}-t_{i}\right)^{1-\delta}\left(t_{i}-t_{i-1}\right)^{1-\delta}}=\frac{2}{\left(t_{i+1}-t_{i-1}\right)^{1-2 \delta}}
$$

where small $\delta$ is introduced to control a logarithmic divergence.
This is an analogue of the well-known formula

$$
\int_{-\infty}^{+\infty} \frac{\mathrm{d} t_{i}}{\sqrt{2 \pi}} \frac{\mathrm{e}^{-\left(t_{f}-t_{i}\right)^{2} / 2 \nu_{1}}}{\sqrt{\nu_{1}}} \frac{\mathrm{e}^{-\left(t_{i}-t_{0}\right)^{2} / 2 \nu_{2}}}{\sqrt{\nu_{2}}}=\frac{\mathrm{e}^{-\left(t_{f}-t_{0}\right)^{2} / 2\left(\nu_{1}+\nu_{2}\right)}}{\sqrt{\left(\nu_{1}+\nu_{2}\right)}}
$$

which is used for calculations with the usual Wiener measure

## Projective-invariant off-shell amplitudes

For 4 scalars this reproduces the Veneziano amplitude

$$
A\left(\Delta p_{1}, \Delta p_{2}, \Delta p_{3}, \Delta p_{4}\right)=\int_{0}^{1} \mathrm{~d} x x^{-\alpha(s)-1}(1-x)^{-\alpha(t)-1}
$$

where $\alpha(t)=\alpha^{\prime} t$ - linear Regge trajectory - and

$$
s=-\left(\Delta p_{1}+\Delta p_{2}\right)^{2}, \quad t=-\left(\Delta p_{2}+\Delta p_{3}\right)^{2}
$$

are usual Mandelstam's variables (for Euclidean metric).

The tachyonic condition $\alpha^{\prime} \Delta p_{j}^{2}=1$ has not to be imposed.

This is of the type of Lovelace choice that reproduces some projectiveinvariant off-shell string amplitudes known since late 1960's.

The more familiar on-shell tachyon amplitudes can be obtained by setting $\alpha^{\prime} \Delta p_{j}^{2}=1$.

## Regge-Veneziano behavior from the area law

To substitute the area-law behavior of $W(C)$ into the path integral and to find out for what momenta the asymptotically large loops dominate. Typical momenta will be large for large loops.

Interchanging the order of integration over $z(\tau)$ and $\sigma(\tau)$, we obtain for the QCD scattering amplitude (fixed $s_{M}$ )

$$
\begin{aligned}
& G\left(\Delta p_{1}, \ldots, \Delta p_{M}\right) \propto \prod_{i=1}^{M-1} \int_{-\infty}^{s_{i+1}} \frac{\mathrm{~d} s_{i}}{1+s_{i}^{2}}\left[\frac{\left|s_{i+1}-s_{i}\right|\left|s_{i}-s_{i-1}\right|}{\left|s_{i+1}-s_{i-1}\right|}\right]^{\Delta p_{i}^{2} / 2 \pi K} \\
& \quad \times\left|s_{i}-s_{j}\right|^{\Delta p_{i} \cdot \Delta p_{j} / 2 \pi K} \mathcal{K}\left(s_{1}, \ldots, s_{M-1} ; \Delta p_{1}, \ldots, \Delta p_{M}\right)
\end{aligned}
$$

which is a convolution of the Koba-Nielsen integrand and a kernel

$$
\begin{aligned}
\mathcal{K}= & \int \mathcal{D} s(t) \int \mathcal{D} k(t) \int_{0}^{\infty} \mathrm{d} \mathcal{T} \mathcal{T}^{M-1} \mathrm{e}^{-m \mathcal{T}} \mathrm{sp} \mathrm{P} \exp \left(-\frac{\mathrm{i} \mathcal{T}}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} t \gamma(t) k(t)\right) \\
& \times \exp \left(\frac{1}{4 \pi K} \int_{-\infty}^{+\infty} \mathrm{d} t_{1} \int_{-\infty}^{+\infty} \mathrm{d} t_{2} \dot{k}\left(t_{1}\right) \dot{k}\left(t_{2}\right) \ln \left|s\left(t_{1}\right)-s\left(t_{2}\right)\right|\right) \\
& \times \exp \left(\frac{1}{2 \pi K} \sum_{i} \Delta p_{i} \int_{-\infty}^{+\infty} \mathrm{d} t \dot{k}(t) \ln \left|s_{i}-s(t)\right|\right)
\end{aligned}
$$

## Regge-Veneziano behavior from the area law (cont.1)

The spectrum is still of the Regge-Veneziano type ( $=$ linear).

This is rather close to the disk amplitude, except for the additional integration over $k$.

For small $m$ (and/or very large $M$ ), the integral over $\mathcal{T}$ is dominated by large $\mathcal{T} \sim(M-1) / m$ because of $\mathcal{T}^{M-1}$. Typical values of $k \sim 1 / \mathcal{T}$ are essential in the path integral over $k$ for large $\mathcal{T}$
$\Longrightarrow \mathcal{K}$ becomes momentum independent:

$$
\mathcal{K}\left(s_{1}, \ldots, s_{M-1} ; \Delta p_{1}, \ldots, \Delta p_{M}\right)=\prod_{i=1}^{M} \frac{1}{\left|s_{i+1}-s_{i}\right|}
$$

so the (off-shell) Koba-Nielsen amplitudes are reproduced.

## Regge-Veneziano behavior from the area law (cont.2)

$M=4$ QCD scattering amplitude (with no $\operatorname{PSL}(2 ; \mathbb{R})$ )

$$
\begin{gathered}
G_{4}=\int_{-\infty}^{+\infty} \mathrm{d} s_{1} \mathrm{~d} s_{2} \mathrm{~d} s_{3} \theta_{\mathrm{c}}\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \frac{1}{\left(1+s_{1}^{2}\right)\left(1+s_{2}^{2}\right)\left(1+s_{3}^{2}\right)} \\
\times \frac{1}{\left|s_{43}\right|\left|s_{32}\right|\left|s_{21}\right|\left|s_{41}\right|}\left(\frac{s_{21} s_{43}}{s_{31} s_{42}}\right)^{-\alpha^{\prime} s}\left(\frac{s_{41} s_{32}}{s_{31} s_{42}}\right)^{-\alpha^{\prime} t} \\
s_{i j}=s_{i}-s_{j} .
\end{gathered}
$$

Introducing the variable

$$
x=\frac{s_{21} s_{43}}{s_{31} s_{42}} \quad 0 \leq x \leq 1 \quad x=0 \text { for } s_{2}=s_{1} \quad x=1 \text { for } s_{2}=s_{3}
$$

we get

$$
G_{4}=\int_{0}^{1} \mathrm{~d} x x^{-\alpha^{\prime} s-1}(1-x)^{-\alpha^{\prime} t-1} \int_{-\infty}^{+\infty} \mathrm{d} s_{1} \mathrm{~d} s_{3} \theta_{\mathrm{C}}\left(s_{1}, s_{3}, s_{4}\right) \frac{1}{\left|s_{43}\right|\left|s_{31}\right|\left|s_{41}\right|}
$$

because of the linear divergence of the integral over $s_{1}$ and $s_{3}$

## Dominating $C_{*}$ in the sum over paths

Loop $C_{*}$ dominating in the sum over paths:

$$
\begin{aligned}
x_{*} & =-\frac{\mathbf{i}}{K} G * \dot{p} \\
x^{\mu}\left(\tau_{*}(\sigma)\right) & =\frac{\mathrm{i}}{K} \sum_{j} \Delta p_{j}^{\mu} G\left(\sigma-\sigma_{j}\right)
\end{aligned}
$$

with arbitrary $\tau_{*}(\sigma): \tau_{*}\left(\sigma_{j}\right)=\sigma_{j}$.
It bounds the minimal surface of the area

$$
K S_{\min }(C)=\alpha^{\prime}\left[\ln \frac{s}{t}+1\right]
$$

for $s \gg t \gtrsim K$. It is large for very large $s$.
Actually, the integrand oscillates because of $\mathrm{e}^{\mathrm{i} \int p \cdot \mathrm{~d} x}$ that results in the factor of i . But an estimate of the order of magnitude is correct.

Probably $t$ has to be large but $\ll s$ for the width of $C_{*}$ to be $\gg 1 \mathrm{fm}$. Then the value of $\alpha(0)$ (coming from the measure) is not essential.

## Dominating $C_{*}$ in the sum over paths (cont.1)

Typical loop $C_{*}$ dominating in the sum over paths for $t / s=.2$



## Dominating $C_{*}$ in the sum over paths (cont.2)

Typical loop $C_{*}$ dominating in the sum over paths for $t / s=.1$


## Dominating $C_{*}$ in the sum over paths (cont.3)

Typical loop $C_{*}$ dominating in the sum over paths for $t / s=.01$


## Conclusions

- Regge-Veneziano behavior of QCD scattering amplitudes follows from the area law. The only approximation is large $N$. Great simplification occurs for small $m$ and/or large $M$ (Veneziano-type).
- It was crucial for the success of calculations that all integrals are Gaussian except for the one over reparametrizations which reduces to integration over the Koba-Nielsen variables.
- Derivation is legible for those momenta $\Delta p_{i}$ for which asymptotically large loops are essential in the sum over $C$ : $K S_{\min }\left(C_{*}\right)=\alpha^{\prime} t \ln \frac{s}{\max \{t, K\}}$ i.e. asymptotically large $s$ and $K \lesssim t \ll s$.
- This region is broader than classical string when $t \gg 1 / \alpha^{\prime}$ but the intercept $\alpha$ (0) of the $q \bar{q}$ Regge trajectory is not yet fixed.
- 4-point scattering amplitude is valid only for asymptotically large $s$ and fixed $t$ associated with small angle or fixed momentum transfer.
- When $-t \ll s$ becomes large, there are no longer reasons to expect the contribution of large loops to dominate over perturbation theory, which comes from integration over small loops.


## Effective $\rho$-trajectory and pQCD prediction

The figure taken from A. B. Kaidalov, hep-ph/0612358


It is hard to believe that pQCD Kirschner, Lipatov (1983) is relevant

