Peculiarities of Lattice Dynamics and the Melting of Alkali Metals

E.G. Maksimov, S.V. Lepeshkin, and M.V. Magnitskaya *P.N. Lebedev Physical Institute, Moscow, Russia*

> 1. Introduction (from simplicity to complexity)

2. Melting of sodium (*simplicity including complexity*)

3. Melting of lithium (*near total complexity*)

4. Conclusions (what is in the future?)

S.V. Lepeshkin et al. JETP Lett. (2009)

At ambient conditions, the alkali elements are prototype free-electron metals:

- highly symmetric crystal structure
- nearly parabolic *E*(**k**)
- spherical Fermi surface
- small electron-phonon interaction \rightarrow no superconductivity
- simple thermodynamic properties

Melting in classical systems is well described by Lindemann's criterion:

$$\sqrt{\langle u^2(T_{\rm m})\rangle} = Ld_{\rm NN}$$

with *L*≈ const

Experimental melting curves of Ar, Na, and Li

Structural sequences for alkali elements at $T \sim 300$ K

Li	bcc $\frac{7.5}{5}$ fcc $\frac{39}{5}$ hR1 $\frac{42}{5}$ cI16 $\frac{69}{5}$ Li-6 $\frac{79}{5}$ Li-7 < 1	10
	GPa	
	9R, fcc (low T)	
Na	bcc $\frac{65}{5}$ fcc $\frac{105}{5}$ cI16 $\frac{118}{5}$ oP8 $\frac{125}{5}$ host-guest $\frac{200}{5}$ hP4 < 2 GPa	220
K	bcc $\frac{11.6}{5}$ fcc $\frac{20}{5}$ host-guest <	60 GPa
Rb	bcc $\frac{7}{}$ fcc $\frac{13}{}$ oC52 $\frac{17}{}$ host-guest $\frac{20}{}$ tI4 $\frac{48}{}$ oC16 <	70 GPa
Cs	bcc $\frac{2.4}{5}$ fcc $\frac{4.2}{5}$ oC84 $\frac{4.4}{5}$ tI4 $\frac{12}{5}$ oC16 $\frac{72}{5}$ dhcp < 2 CsPbecomes superconductive in the fcc phase. At <i>p</i> ~ 12 GPa <i>T</i> _c ~	223 • 1.5 K
fcc Li becomes superconductive at $p > 20$ GPa. $T_c \sim 14$ K at 33 GPa		

At $p \sim 80$ GPa, Li-7 becomes semiconducting with $E_g \sim 0.1$ eV At $p\sim 200$ GPa, Na is in the semiconducting phase hP4 ($E_g\sim 2eV$)

High pressure phases of alkali metals

Incommensurate host-guest structure Rb-IV. Positions of host atoms (blue circles) correspond to the W-cation sublattice of W_5Si_3 . Yellow circles are guest atoms

Cs-IV structure. Arrangement of Cs atoms (red circles) resembles the Th-cation sublattice of $ThSi_2$. The electron clouds (green circles) 'imitate' absent Si anions

Valence electron density in Li-cI16. Black lines connect the neighbor atoms. Red maxima in the interstitials 'mimic' absent As anions in Yb_4As_3

p - T phase diagrams: Quasiharmonic approach

$$E_{\text{tot}}\{n(\mathbf{r})\} = T_0\{n(\mathbf{r})\} + \frac{e^2}{2} \int \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' + \int n(\mathbf{r}) \, V_{\text{ext}}(\mathbf{r}) \, d\mathbf{r} + E_{\text{xc}}\{n(\mathbf{r})\} + \frac{e^2}{2} \sum_{N,N'} \frac{Z_N Z_{N'}}{|\mathbf{R}_N - \mathbf{R}_{N'}|}$$

$$p(V) = -\frac{\partial E_{\text{tot}}}{\partial V}$$
 $H = E_{\text{tot}} + pV$

$$0 < T < E_{\rm F}$$
: $G = F + pV$ $F = E_{\rm tot}(V) + F_{\rm ph}(V, T)$

$$F(V,T) = E(V) + \frac{1}{2} \sum_{\mathbf{q},\lambda} \hbar \omega_{\mathbf{q}\lambda}(V) - k_{\mathrm{B}}T \sum_{\mathbf{q},\lambda} \ln \frac{1}{1 - \exp(-\hbar \omega_{\mathbf{q}\lambda}(V) / k_{\mathrm{B}}T)}$$

Metallic hydrogen [Brovman, Kagan & Holas JETP 1971]

$$E_{cr} = E_{el} + \frac{1}{2} \sum_{n,n'} \frac{e^2}{|\mathbf{R}_n - \mathbf{R}_{n'}|} + E_{ZPM} \qquad \qquad E_{ZPM} = \frac{1}{2} \sum_{\mathbf{q},\lambda} \hbar \omega_{\mathbf{q}\lambda}$$

Electron energy $E_{el} = E^{(0)} + E^{(2)} + E^{(3)} + E^{(4)} + \dots$ is expanded as a series in the electron-proton coupling $V_{\rm G}/E_{\rm F}$, where $V_{\rm G} = \frac{4\pi e^2}{G^2 \Omega_{at}}$

sh, rho + 5 triclinic structures

- All cubic structures are not favored energetically

- fcc, bcc, and hcp structures are dynamically unstable up to ~ 20 Mbar ($r_s \sim 1.2$) - Min. sh + min. rho + 5 triclinic structures form a unified family of structures - At $1 \le r_s \le 1.65$, or 1 - 100 Mbar, highly anisotropic (chain-like and layered) structures are energetically favorable

> EG Maksimov & DY Savrasov Solid State Commun. 2001 $T_c = 600 \text{ K}$

Anomalous melting of Na

Clausius–Clapeyron equation

$$\frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}p} = \frac{\Delta V}{\Delta S}$$

Melting of Na: ab initio simulations

Atomic displacements as a function of temperature

Melting curve of Na

Lepeshkin et al. JETP Lett. 2009

Na: phonon spectra at various pressures

400

1

1

K

Characteristic frequency of Na

Melting curve of Li [Lepeshkin et al. JETP Lett. 2009]

Lithium: Characteristic frequency $<\omega^{-2}>$

At any pressure, there is a jump in the characteristic frequency:

Phonon spectra of Li at various p

Phase diagram of Li

Phonon dispersions of bcc Li (transversal T1 mode)

Fermi surfaces of bcc Li and Na at various pressures

fcc Na and Li: dispersions of T1 mode at various p

Phonon instabilities of different types

Conclusions

Composite (host-guest) structures

Crystal structure of the Ba-IV phase along the tetragonal *c*-axis. One set of Ba atoms forms a framework (Z=8) which is filled with *incommensurate* chains of a second set of Ba atoms. This type of structure was later found for Sr and group-V elements (As, Sb, Bi) [*R. Nelmes et al. PRL 1999*]

Incommensurate crystal structure of the Rb-IV phase. The arrangement of guest atoms is similar to the cation sublattice of W_5Si_3 structure. A similar structure was also found for K-III high-pressure phase. [U. Schwarz et al. PRL 1999]

The $ThSi_2$ structure. The cation (Th) sublattice resembles the arrangement of Cs atoms in the Cs-IV structure. The electrons in Cs-IV 'imitate' absent anions in the Si sites

The bct crystal structure of Cs-IV (Z = 4). The structure is made up of layers of collinear face-sharing trigonal prisms, the layers being stacked along the vertical *c*-axis. The prism orientation changes by 90° in subsequent layers [*K. Takemura et al. PRL 1982*]