Monodromies and Confinement in Supersymmetric QCD

Andrei Marshakov Lebedev Institute & ITEP, Moscow

SC4, Moscow, May 2009 (based on joint work with Alexei Yung) Meissner mechanism in superconductor: condensation of electric charge (red) kills magnetic field except for a tube, ensuring confinement of magnetic monopoles (blue).

To turn into problem of particle QFT one needs duality between electric and magnetic charges.

Dual picture - confenement of quarks?

Supersymmetric QCD: $\mathcal{N} = 2$ softly broken to $\mathcal{N} = 1$.

- Adjoint vector multiplet: Φ, A, ...
- Fundamental (anti-fundamental) matter: Q^B , (\tilde{Q}_B) ... with masses m_B ; $B = 1, ..., N_f$
- Superpotential $\mathcal{W} = \tilde{Q}_B \Phi Q^B + \mu \mathrm{Tr} \Phi^2$

 $SU(N_c)$ theory with $N_c < N_f < 2N_c$, broken down *minimally* to $SU(N_c - 1) \times U(1)$ (maximally to $U(1)^{N_c-1}$).

 $N_c = 2$ pure gauge theory: quantum moduli space ($u = Tr\Phi^2$)

contains $\mathcal{N} = 2$ singularities ($\mathcal{N} = 1$ vacua) with massless monopole at $a^D = 0$ and dyon at $a + a^D = 0$ (at strong coupling: instead of u = 0).

BPS masses a(u), $a^{D}(u)$ - exactly computed SW period integrals, $a(u) \sim \sqrt{u}$, $a^{D}(u) \sim \sqrt{u} \log u$ at large u (semiclassical regime). No vacuum at weak coupling, instead the effective theory at $a^D(u) = 0$, $u \sim \Lambda^2 \neq 0$

•
$$a^D = 0, \ a \neq 0, \ g_D(u) \sim \frac{1}{g(u)} \ll 1$$
 of $U(1)$ magnetic theory
 $\mathcal{L}_M = \frac{1}{g_D^2} \left(F_{\mu\nu}^D \right)^2 + |\nabla^D_\mu M|^2 + |\nabla^D_\mu \tilde{M}|^2 + \dots;$

• $\mathcal{N} = 1$ (super)potential $\mathcal{W} = \mu u(a^D) + \tilde{M} a^D M$ causes condensation of monopoles

$$\langle \tilde{M}M \rangle \sim \mu \Lambda$$

and confinement of electric charges (quarks (?!)) by ANO strings with tension $T \sim \mu \Lambda$.

No "real" quarks and no smooth interpolation ...

For the non-Abelian confinement $(SU(N_c-1)$ at scales between $\sqrt{\mu\Lambda}$ and Λ)

- Supersymmetric QCD with $N_c \ge 3$ and large fundamental masses: weak coupling $m \gg \Lambda$ and confinement of monopoles by ANO strings.
- Towards strong coupling: towards regime of dual theory, $m \ll \Lambda$, change of quantum numbers due to monodromies.
- Exact solution based on studying (degenerations of) the curve

$$W + \frac{\Lambda^{2N_c}}{W} = \frac{P_{N_c}(x)}{\sqrt{Q_{N_f}(x)}}$$

Supersymmetric QCD (e.g. $N_c = 2$) with matter of mass m

contains also (weakly coupled for $m \gg \Lambda$) quark singularity (vacuum) at a + m = 0. Here

$$a = \oint_A x \frac{dW}{W}, \quad a^D = \oint_B x \frac{dW}{W}, \quad m = \operatorname{res} x \frac{dW}{W}$$

Regime of weak coupling:

 $\beta_{\text{UV}} = 2N_c - N_f > 0$: asymptotic freedom in UV; $\beta_{\text{eff}} = 2(N_c - 1) - N_f = \beta_{\text{UV}} - 2 \le 0$: IR free or conformal theory: allows semiclassical analysis!

Hence, $2N_c - 2 \le N_f < 2N_c$, e.g. $N_c = 3$, $N_f = 4,5$ with non Abelian confinement in IR: at least $SU(2) \times U(1)$ non Abelian gauge symmetry.

r = 2 vacuum ($r = N_c - 1$ for $SU(N_c - 1)$): at least two (light) flavors condense, one gets the non Abelian structure for the (e.g. doublets) of confined states.

Different effective theories (light fields, Lagrangians,...) at different regions of moduli space.

 $N_c = 3$, $N_f = 4$ theory with pairwise coinciding masses $m_1 = m_3$, $m_2 = m_4$.

weakly-coupled (white), intermediate (grey) and strongly-coupled (dark) regions - the real slice of complex mass picture.

Change of the quantum numbers due to monodromies:

the doublet of quarks (weak coupling region) turns finally into the doublet of dyons (at strong coupling).

Colliding of r = 2 vacua with r = 1 vacua at border lines.

Quark charges (red) are weights and monopole charges (blue) are roots of the SU(3) gauge group

 $\mu_i \cdot \alpha_j = \delta_{ij} \Rightarrow A_i \circ B_j = \delta_{ij}$ intersection of the cycles: physical charges different from "homological charges".

Monodromies, say, in the effective theory with $N_c - 1 = 2$ and $\hat{N}_f = 2$ with equal (effective) mass, e.g. $\hat{m} = m_1 + \frac{1}{2}m_2$ (real slice)

Branch points of the SW curve

$$y^{2} = (x^{2} - \hat{u} + \Lambda^{2})^{2} - 4\Lambda^{2}(x + \hat{m})^{2}$$

with

$$\hat{m} = m_1 + \frac{m_2}{2}, \qquad \hat{u} = u - \frac{3}{4}m_2^2$$

and studying the periods and residues of

$$dS = x\frac{dW}{W} = \frac{2x^2dx}{y} - x\frac{x-\hat{u}}{y}\frac{dx}{x+\hat{m}}$$

in the vicinity of "permutation of the branch points".

Alternative: the Picard-Fuchs equations for the periods and their monodromies (possible relation with qKZ equation in some models).

Generalization of common ANO strings from relativistic Landau-Ginzburg theory: the first order BPS vortex equations, etc.

The doublet of confined monopoles, w.r.t. $\alpha_{12} = \alpha_1 - \alpha_2$ $SU(N_c - 1) = SU(2)$ subgroup. Confinement with condensed dyons:

Condensate is doublet of dyons: D_2 D_1

The fundamental strings: $\mu_i \cdot \mathbf{A} + \alpha_i \cdot \mathbf{A}^D \sim \delta_{iK} d\theta$, K = 1, 2 from the effective Lagranian for light dyons: $\mathcal{L} \sim \sum_{K=1,2} |\nabla \mathcal{D}_K|^2 + \dots$,

$$\nabla_{\mu} \mathcal{D}_{K} = \left(\partial_{\mu} - i(\boldsymbol{\mu}_{K} \cdot \mathbf{A} + \boldsymbol{\alpha}_{K} \cdot \mathbf{A}^{D}) \right) \mathcal{D}_{K}$$

and θ is angle in the plane transversal to the direction of string.

From these equations $\alpha_{12} \cdot (\mathbf{A} + \mathbf{A}^D) \sim d\theta$, for the dual component $\alpha_{12} \cdot (\mathbf{A} - \mathbf{A}^D) \sim 0$.

Dymamics in the only non-Abelian direction α_{12} is determined by "difference dyon" $\mathcal{D}_1 - \mathcal{D}_2 = \implies$ and "difference string" $S_1 - S_2 = \checkmark$.

Screening of the electric charge of "difference string" by the condensate of the "difference dyon"

$$S_1 - S_2 + \frac{1}{2}(\mathcal{D}_1 - \mathcal{D}_2) = \longrightarrow$$

causes still the confinement of monopoles at strong coupling!

Conclusions

- All technical details were omitted: studying the periods, carefull analysis of monodromies, etc
- Even more principal issues: existence of the Higgs branch in case of many flavors, "fat strings" (semi-local, non-BPS, ...) deserve additional study.
- Main principal outcome: transporting the picture from weak to strong coupling the quantum number of condensates change, but one does not get the confinement of quarks the confined objects are still monopoles!