Spontaneous symmetry breaking in multidimensional gravity: Brane world concept

Boris E. Meierovich

P.L.Kapitza Instittute for Physical Problems

Vector order parameter ϕ_I

Symmetry breaking potential $V(\phi^K \phi_K) \qquad \phi^K \phi_K = g^{IK} \phi_I \phi_K$

Bilinear combination of derivatives $S_{IKLM} = \phi_{I;K} \phi_{L;M}$

Scalar $S = A \left(\phi_{;K}^{K} \right)^{2} + B \phi_{;K}^{L} \phi_{L}^{;K} + C \phi_{;K}^{M} \phi_{;M}^{K}$

Covariant derivative $\phi_{P;M} = \frac{\partial \phi_P}{\partial x^M} - \frac{1}{2}g^{LA} \left(\frac{\partial g_{AM}}{\partial x^P} + \frac{\partial g_{AP}}{\partial x^M} - \frac{\partial g_{MP}}{\partial x^A}\right) \phi_L$

is a sum of symmetric and anti-symmetric tensors

$$\phi_{P;M} = \phi_{sP;M} + \phi_{aP;M}, \qquad \phi_{sP;M} = \phi_{sM;P}, \qquad \phi_{aP;M} = -\phi_{aM;P}$$
Lagrangian
$$L\left(\phi_{I}, g^{IK}, \frac{\partial g_{IK}}{\partial x^{L}}\right) = L_{g} + L_{d}, \qquad L_{g} = \frac{R}{2\kappa^{2}},$$

$$L_{d} = A\left(\phi_{s;K}^{K}\right)^{2} + (B+C)\phi_{s}^{I;K}\phi_{sI;K} + (B-C)\phi_{a}^{I;K}\phi_{aI;K}$$

The anti-symmetric $\phi_a^{I;K}\phi_{aI;K} (\equiv F^{IK}F_{IK})$ is the ordinary electrodynamics. The two symmetric terms provide new possibilities. Vector order parameter specifies a direction. We chose the coordinate system so that $\phi_I = \delta_{II_0} \phi$.

In application to the brane world with a topological defect in two extra dimensions we consider the metric in the form

$$ds^{2} = g_{IK} dx^{I} dx^{K} = e^{2\gamma(l)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - (dl^{2} + e^{2\beta(l)} d\varphi^{2})$$
$$\eta_{\mu\nu} = \text{diag}(1, -1, ..., -1)$$

l is the distance from the brane,

 $e^{2\gamma(l)}$ is the warp factor, $\gamma(l)$ is an analoge of gravitation potential, $r(l) = e^{\beta(l)}$ is the circular radius.

Three unknowns: $\phi(l)$, $\beta(l)$, $\gamma(l)$ Covariant derivative $\phi_{I;K} = \delta_I^{d_0} \delta_K^{d_0} \phi' - \frac{1}{2} \delta_{IK} g^{II} (g_{II})' \phi$

is a symmetric tensor: $\phi_{;K}^{I}\phi_{I}^{;K} = \phi_{;K}^{I}\phi_{;I}^{K}$ $L_{d} = A(\phi_{\cdot\kappa}^{K})^{2} + B\phi_{\cdot\kappa}^{I}\phi_{I}^{;K} - V(\phi_{\kappa}^{K}\phi_{\kappa})$

Equation for field $\phi(l)$

$$\frac{1}{\sqrt{-g}} \left(\frac{\partial \sqrt{-g} L_d}{\partial \phi'} \right)' - \frac{\partial L_d}{\partial \phi} = 0$$

 $L_{d} = A \left(\phi' + \frac{1}{2} \phi \sum_{K} g^{KK} g'_{KK} \right)^{2} + B \left(\phi'^{2} + \frac{1}{4} \phi^{2} \sum_{L} \left(g^{LL} g'_{LL} \right)^{2} \right) - V \left(-\phi^{2} \right)$ $S_{n} = \frac{1}{2^{n}} \sum_{K} \left(g^{KK} g'_{KK} \right)^{n} = d_{0} \gamma'^{n} + \beta'^{n}, \quad n = 1, 2, \dots$ $g = (-1)^{D-1} e^{2(d_{0}\gamma + \beta)}$

Vector, type A (A=1/2, B=0)	Vector, type B (A=0, B= 1/2)	Scalar multiplet	
$(\phi' + S_1 \phi)' + \frac{\partial V}{\partial \phi} = 0$	$\phi'' + S_1 \phi' - S_2 \phi + \frac{\partial V}{\partial \phi} = 0.$	$\phi'' + S_1 \phi' - \phi e^{-2\beta} + \frac{\partial V}{\partial \phi} = 0.$	

In the flat space-time $\gamma' = 0, \, \beta' = \frac{1}{l}, \, \beta'' = -\frac{1}{l^2}, e^{-2\beta} = \frac{1}{l^2}$

$$\phi'' + \frac{1}{l}\phi' - \frac{1}{l^2}\phi + \frac{\partial V}{\partial \phi} = 0$$

Energy-momentum tensor

$$T_{IK} = \frac{2}{\sqrt{-g}} \left[\frac{\partial \sqrt{-g} L_d}{\partial g^{IK}} + g_{QK} g_{PI} \frac{\partial}{\partial x^L} \left(\sqrt{-g} \frac{\partial L_d}{\partial \frac{\partial g_{PQ}}{\partial x^L}} \right) \right]$$

Be careful: $V(\phi^K \phi_K) = V(g^{IK} \phi_I \phi_K)$

Differentiation goes first. Only after that one can set $g^{d_0d_0} = -1, \quad (g^{d_0d_0})' = 0$

Result:

Type A:
$$T_I^K = \frac{1}{2} \delta_I^K \left(\phi' + S_1 \phi \right)^2 + \delta_I^K V + \left(\delta_I^{d_0} \delta_{d_0}^K - \delta_I^K \right) \frac{\partial V}{\partial \phi} \phi$$

$$T_{I < d_0}^K = \delta_I^K \left[\frac{1}{\sqrt{-g}} \left(\sqrt{-g} \gamma' \right)' \phi^2 + \gamma' \left(\phi^2 \right)' - \left(\frac{1}{2} \phi'^2 + \frac{1}{2} S_2 \phi^2 \right) + V \right]$$
$$T_{d_0}^{d_0} = \frac{1}{2} \left(\phi'^2 + S_2 \phi^2 \right) + V$$
$$T_{I > d_0}^K = \delta_I^K \left[\frac{1}{\sqrt{-g}} \left(\sqrt{-g} \beta' \right)' \phi^2 + \beta' \left(\phi^2 \right)' - \left(\frac{1}{2} \phi'^2 + \frac{1}{2} S_2 \phi^2 \right) + V \right]$$

Verification: $T_{I}^{K}_{;K} = 0$

Einstein equations

$$R_{I}^{K} = \kappa^{2} \widetilde{T}_{I}^{K}$$

$$R_{I}^{K} = \begin{cases} \delta_{I}^{K} \left(\gamma'' + \gamma' S_{1}\right), & I < d_{0} \\ \delta_{d_{0}}^{K} \left(S_{1}' + S_{2}\right), & I = d_{0} \\ \delta_{\varphi}^{K} \left(\beta'' + S_{1}\beta'\right), & I = \varphi \end{cases} \qquad \widetilde{T}_{I}^{K} = T_{I}^{K} - \frac{1}{d_{0}} \delta_{I}^{K} T_{A}$$

$$\gamma'' + S_1 \gamma' = \kappa^2 \left[-\frac{1}{d_0} \left(\phi' + S_1 \phi \right)^2 - \frac{2V}{d_0} + \frac{1}{d_0} \frac{\partial V}{\partial \phi} \phi \right]$$

Type A: $S_1' + S_2 = \kappa^2 \left[-\frac{1}{d_0} \left(\phi' + S_1 \phi \right)^2 - \frac{2V}{d_0} + \left(1 + \frac{1}{d_0} \right) \frac{\partial V}{\partial \phi} \phi \right]$
 $\beta'' + S_1 \beta' = \kappa^2 \left[-\frac{1}{d_0} \left(\phi' + S_1 \phi \right)^2 - \frac{2V}{d_0} + \frac{1}{d_0} \frac{\partial V}{\partial \phi} \phi \right]$

$$\gamma'' + S_1 \gamma' = \kappa^2 \left[S_1 \gamma' \phi^2 + (\gamma' \phi^2)' - \frac{1}{d_0} S_1^2 \phi^2 - \frac{1}{d_0} (S_1 \phi^2)' - \frac{2}{d_0} V \right]$$

Type B:

$$S_1' + S_2 = \kappa^2 \left[\phi'^2 + S_2 \phi^2 - \frac{1}{d_0} S_1^2 \phi^2 - \frac{1}{d_0} (S_1 \phi^2)' - \frac{2}{d_0} V \right]$$

$$\beta'' + S_1 \beta' = \kappa^2 \left[S_1 \beta' \phi^2 + (\beta' \phi^2)' - \frac{1}{d_0} S_1^2 \phi^2 - \frac{1}{d_0} (S_1 \phi^2)' - \frac{2}{d_0} V \right]$$

First integral

Type A		Туре В	
$S_1^2 - S_2 = -\kappa^2 \left[(\phi' + S_1 \phi)^2 + 2V \right]$		$S_2 \left(1 - \kappa^2 \phi^2 \right) = \kappa^2 \phi'^2 + 2\kappa^2 V + S_1^2$	
More simplifications:	$U = \gamma' - \beta',$	$Z = \phi' + S_1 \phi, \psi = \phi'$	
$\gamma' = \frac{U+S_1}{d_0+1}$	$\beta' = \frac{S_1 - d_0}{d_0}$	$\frac{-d_0U}{+1} \qquad S_2 = \frac{d_0U^2 + S_1^2}{d_0 + 1}$	
Type A		Type B	
$U' = -US_1$		$(-\kappa^{2}\phi^{2})]' + U(1 - \kappa^{2}\phi^{2}) S_{1} = 0$	
$S_1' = \kappa^2 \frac{d_0 + 1}{d_0} \frac{\partial V}{\partial \phi} \phi - U^2$	$\left[S_1\left(1+\frac{\kappa^2 q}{d_0}\right)\right]$	$\left[\frac{b^2}{d}\right]' + S_1^2 \left(1 + \frac{\kappa^2 \phi^2}{d_0}\right) + \frac{2(1+d_0)}{d_0} \kappa^2 V = 0$	
$\phi' = Z - S_1 \phi$	$\phi'=\psi$		
$Z' = -\frac{\partial V}{\partial \phi}$	$\psi' + S_1 \psi - \frac{d_0 U^2 + S_1^2}{d_0 + 1} \phi + \frac{\partial V}{\partial \phi} = 0$		

Type A: Symmetry breaking potential enters the equations only via its derivative. **Type B :** The derivative of the potential is eliminated from the Einstein equations

Regularity conditions

$$\text{Riemann curvature tensor} \qquad R^{AB}_{\ \ CD} = \begin{cases} -\gamma'^2 \left(\delta^A_C \delta^B_D - \delta^A_D \delta^B_C \right), & A, B, C, D < d_0, \\ -\beta' \gamma', & A = C = \varphi, & B, D < d_0, \\ -(\gamma'' + \gamma'^2) \, \delta^B_D, & A = C = d_0, & B, D < d_0, \\ -(\beta'' + \beta'^2), & A = C = d_0, & B = D = \varphi. \end{cases}$$

 γ' , $\gamma'' + \gamma'^2$, $\beta'\gamma'$, and $\beta'' + \beta'^2$ must be finite.

$$\beta'' + \beta'^2 = c < \infty \quad \text{at} \quad l = 0 \qquad \qquad \beta' = \frac{1}{l} + \frac{1}{3}cl + O\left(l^3\right) \qquad \gamma' = O\left(l\right)$$

Boundary conditioms at $l \rightarrow 0$

Type A	Туре В	
$U = \frac{1}{3} \left(d_0 + 1 \right) \gamma_0'' l - \frac{1}{l} S_1 = \frac{2}{3} \left(d_0 + 1 \right) \gamma_0'' l + \frac{1}{l}$	$U\left(1 - \varkappa^2 \phi^2\right) = -\frac{1}{l} S_1\left(1 + \frac{\varkappa^2 \phi^2}{d_0}\right) = \frac{1}{l}$	
$\phi = \phi'_0 l, Z = 2\phi'_0. \qquad \gamma''_0 = -\frac{\kappa^2}{d_0} \left(2\phi'^2_0 + V_0\right)$	$\phi = \phi'_0 l$ $\psi = \phi'_0$ $\gamma''_0 = -\frac{\kappa^2}{d_0} \left(\frac{1}{2}\phi'^2_0 + V_0\right)$	

One constant γ_0 " or ϕ_0 ' remains arbitrary.

Analytical solution. Type A, case $\frac{\partial V}{\partial \phi} \equiv 0$

 $\Lambda = \chi^2 V_0$ - cosmological constant

$$U = -\frac{\sqrt{C}}{\sinh\left(\sqrt{C}l\right)}, \quad S_1 = \sqrt{C} \coth\left(\sqrt{C}l\right), \quad \phi\left(l\right) = \frac{2\phi_0'}{\sqrt{C}} \tanh\frac{\sqrt{C}l}{2}$$

$$C = 2(d_0 + 1)\gamma_0'' = -\frac{2(d_0 + 1)}{d_0}(2x^2\phi_0'^2 + \Lambda)$$

The solution is regular if $C \ge 0$, i.e. $\Lambda \le -2x^2\phi_0^{\prime 2}$.

The existence of a (negative) cosmological constant is sufficient for the symmetry breaking of the initially flat bulk.

Numerical analysis

"Mexican hat" potential

$$V = \frac{\lambda \eta^4}{4} \left[\varepsilon + \left(1 - \frac{\phi^2}{\eta^2} \right)^2 \right]$$

Three extreme points

$$\begin{split} V'_{\infty} &= 0, \quad V''_{\infty} = 2\eta^2, \qquad \phi_{\infty} = \pm \eta \\ V'_{\infty} &= 0, \quad V''_{\infty} = -\eta^2, \qquad \phi_{\infty} = 0. \end{split}$$

Dimensionless parameters

$$d_0, \varepsilon, \Gamma, \text{ and } \phi'_0 \qquad \Gamma = \chi^2 \eta^2$$

Solutions with fixed d_0 , ϵ , and Γ exist within the interval

$$0 < \phi_0' \le \phi_{0\max}' \left(d_0, \varepsilon, \Gamma \right)$$

We set $d_0 = 4$, $a = (\lambda \eta^2)^{-1/2} = 1$, $\eta = 1$ in computations.

Analysis of equations

Type A	Type B	
$\gamma' - \beta' = -e^{-(d_0\gamma + \beta)}$	$\gamma' - \beta' = -\frac{e^{-(d_0\gamma + \beta)}}{1 - \kappa^2 \phi^2}$	
$eta' > \gamma' \qquad eta' - \gamma' o 0, l o \infty$	Type B: singularity at $\kappa^2 \phi^2 =$	

Regular solutions exist within the whole interval $0 < l < \Pi$; $r \to \Pi$ at $l \to \Pi$

1

Limiting values

$$\begin{split} \mathbf{Y}_{\infty} &= \sqrt{-\frac{2\kappa^2 V_{\infty}}{(d_0+1) \left[d_0+(d_0+1) \kappa^2 \phi_{\infty}^2\right]}} \\ V'(\phi_{\infty}) &= 0 \quad V_{\infty} < 0 \end{split}$$

$$\begin{aligned} \mathbf{Y}_{\infty} &= \sqrt{\frac{1}{(d_0+1) \phi_{\infty}} \frac{\partial V_{\infty}}{\partial \phi}} \quad \frac{\partial V_{\infty}}{\partial \phi^2} > 0 \\ \kappa^2 V_{\infty} &= -\left(d_0 + \kappa^2 \phi_{\infty}^2\right) \frac{\partial V_{\infty}}{\partial \phi^2}} \quad V_{\infty} < 0 \end{aligned}$$

Analysis of equations

Analysis of equations

Asymptotic behavior $\phi(l)$ $\phi = \phi_{\infty} + \delta \phi$

Type B
$$\delta \phi'' + S_{1\infty} \delta \phi' + \left(\frac{\partial^2 V_{\infty}}{\partial \phi^2} - \frac{d_0 - 3\varkappa^2 \phi_{\infty}^2}{(d_0 + 1) (d_0 + \varkappa^2 \phi_{\infty}^2)} S_{1\infty}^2\right) \delta \phi = 0$$
 $\delta \phi = A e^{\lambda_+ l} + B e^{\lambda_- l},$

$$\lambda_{\pm} = -\sqrt{\frac{d_0 + 1}{4\phi_{\infty}}} \frac{\partial V_{\infty}}{\partial \phi} \pm \sqrt{\left(\frac{d_0 + 1}{4} + \frac{d_0 - 3\varkappa^2 \phi_{\infty}^2}{d_0 + \varkappa^2 \phi_{\infty}^2}\right)} \frac{\partial V_{\infty}}{\phi_{\infty} \partial \phi} - \frac{\partial^2 V_{\infty}}{\partial \phi^2}.$$

In practice both eigenvalues are complex with negative real parts.

Type A

Domain of regular solutions in the plane of parameters (ϕ'_0, ε) for $d_0 = 4$, $\Gamma = 1$.

Type A solutions with the order parameter not changing sign

Type A solutions with the order parameter not changing sign, and terminating with $\phi = 0$ at $l \rightarrow \infty$

Type A solutions with the order parameter changing sign once

Туре A solutions with the order parameter changing sign once, and terminating with $\phi = 0$ при $l \rightarrow \infty$

Type A solutions with the order parameter changing sign twice

Type A solutions with the order parameter changing sign twice, and terminating with $\phi = 0$ at $l \to \infty$

Type A solutions on the border of regularity

Neutral quantum particle

Spin-less particles, identical in the plain bulk, acquire integer spins and different masses being trapped within different points of minimum of the gravitational potential

Comparison of vector and multi-scalar order parameters

Property	Multi-scalar	Vector, Type A	Vector, Type B
Order of Einstein equations	4	3	3
Number of parameters	n_V	$n_V + 1$	$n_V + 1$
Fine tuning	sometimes	no need	no need
Trapping of matter on brane	yes	yes	yes
Behavior $r(l)$	$\rightarrow \infty, \rightarrow r_m, \rightarrow 0$	$\rightarrow \infty$	$\rightarrow \infty$
In equations:	V	$dV\!/d\phi$	V
Behavior $V(\phi)$ at $l \to \infty$	$dV/d\phi = 0$	$dV/d\phi = 0$	$dV/d\phi^2 > 0$
Derivation of T_{IK}	easier	more difficult	more difficult
Strength of grav. field Γ	unlimited	unlimited	limited from above