Spontaneous symmetry breaking in multidimensional gravity: Brane world concept

Boris E. Meierovich

P.L.Kapitza Instittute for Physical Problems

Vector order parameter ϕ_{I}

Symmetry breaking potential $\quad V\left(\phi^{K} \phi_{K}\right) \quad \phi^{K} \phi_{K}=g^{I K} \phi_{I} \phi_{K}$
Bilinear combination of derivatives $S_{I K L M}=\phi_{I: K} \phi_{L: M}$
Scalar $\quad S=A\left(\phi_{; K}^{K}\right)^{2}+B \phi_{; K}^{L} \phi_{L}^{K}+C \phi_{; K}^{M} \phi_{; M}^{K}$
Covariant derivative $\quad \phi_{P: M}=\frac{\partial \phi_{P}}{\partial x^{M}}-\frac{1}{2} g^{L A}\left(\frac{\partial g_{A M}}{\partial x^{P}}+\frac{\partial g_{A P}}{\partial x^{M}}-\frac{\partial g_{M P}}{\partial x^{A}}\right) \phi_{L}$
is a sum of symmetric and anti-symmetric tensors

$$
\phi_{P ; M}=\phi_{s ; M}+\phi_{a P ; M}, \quad \phi_{S P ; M}=\phi_{s M ; P}, \quad \phi_{a P ; M}=-\phi_{a M ; P}
$$

Lagrangian $\quad L\left(\phi_{I}, g^{I K}, \frac{\partial g_{I K}}{\partial x^{L}}\right)=L_{g}+L_{d}, \quad L_{g}=\frac{R}{2 \kappa^{2}}$,

$$
L_{d}=A\left(\phi_{s ; K}^{K}\right)^{2}+(B+C) \phi_{s}^{I ; K} \phi_{s l ; K}+(B-C) \phi_{a}^{I ; K} \phi_{a I ; K}
$$

The anti-symmetric $\quad \phi_{a}^{I ; K} \phi_{a I ; K}\left(\equiv F^{I K} F_{I K}\right) \quad$ is the ordinary electrodynamics.
The two symmetric terms provide new possibilities.

Vector order parameter specifies a direction. We chose the coordinate system so that

$$
\phi_{I}=\delta_{I I_{0}} \phi
$$

In application to the brane world with a topological defect in two extra dimensions we consider the metric in the form

$$
\begin{aligned}
d s^{2}=g_{I K} d x^{I} d x^{K} & =e^{2 \gamma(l)} \eta_{\mu v} d x^{\mu} d x^{v}-\left(d l^{2}+e^{2 \beta(l)} d \varphi^{2}\right) \\
\eta_{\mu \nu} & =\operatorname{diag}(1,-1, \ldots,-1)
\end{aligned}
$$

l is the distance from the brane,
$e^{2 \gamma(l)}$ is the warp factor, $\quad \gamma(l)$ is an analoge of gravitation potential, $r(l)=e^{\beta(l)}$ Is the circular radius.

$$
\text { Three unknowns: } \phi(l), \beta(l), \gamma(l)
$$

Covariant derivative $\phi_{I ; K}=\delta_{I}^{d_{0}} \delta_{K}^{d_{0}} \phi^{\prime}-\frac{1}{2} \delta_{I K} g^{I I}\left(g_{I I}\right)^{\prime} \phi$
is a symmetric tensor: $\phi_{; K}^{I} \phi_{I}^{; K}=\phi_{; K}^{I} \phi_{; I}^{K}$

$$
L_{d}=A\left(\phi_{; K}^{K}\right)^{2}+B \phi_{; K}^{I} \phi_{I}^{; K}-V\left(\phi^{K} \phi_{K}\right)
$$

Equation for field $\phi(l)$

$$
\frac{1}{\sqrt{-g}}\left(\frac{\partial \sqrt{-g} L_{d}}{\partial \phi^{\prime}}\right)^{\prime}-\frac{\partial L_{d}}{\partial \phi}=0
$$

$L_{d}=A\left(\phi^{\prime}+\frac{1}{2} \phi \sum_{K} g^{K K} g_{K K}^{\prime}\right)^{2}+B\left(\phi^{\prime 2}+\frac{1}{4} \phi^{2} \sum_{L}\left(g^{L L} g_{L L}^{\prime}\right)^{2}\right)-V\left(-\phi^{2}\right)$

$$
S_{n}=\frac{1}{2^{n}} \sum_{K}\left(g^{K K} g_{K K}^{\prime}\right)^{n}=d_{0} \gamma^{\prime n}+\beta^{\prime n}, \quad n=1,2, \ldots \quad g=(-1)^{D-1} e^{2\left(d_{0} \gamma+\beta\right)}
$$

Vector, type $\mathbf{A}(\mathbf{A}=\mathbf{1} / \mathbf{2}, \mathbf{B}=\mathbf{0})$	Vector, type $\mathbf{B}(\mathbf{A}=\mathbf{0}, \mathbf{B}=\mathbf{1 / 2})$	Scalar multiplet
$\left(\phi^{\prime}+S_{1} \phi\right)^{\prime}+\frac{\partial V}{\partial \phi}=0$	$\phi^{\prime \prime}+S_{1} \phi^{\prime}-S_{2} \phi+\frac{\partial V}{\partial \phi}=0$.	$\phi^{\prime \prime}+S_{1} \phi^{\prime}-\phi e^{-2 \beta}+\frac{\partial V}{\partial \phi}=0$

In the flat space-time $\gamma^{\prime}=0, \beta^{\prime}=\frac{1}{l}, \beta^{\prime \prime}=-\frac{1}{l^{2}}, e^{-2 \beta}=\frac{1}{l^{2}}$:

$$
\phi^{\prime \prime}+\frac{1}{l} \phi^{\prime}-\frac{1}{l^{2}} \phi+\frac{\partial V}{\partial \phi}=0
$$

Energy-momentum tensor

$$
T_{I K}=\frac{2}{\sqrt{-g}}\left[\frac{\partial \sqrt{-g} L_{d}}{\partial g^{I K}}+g_{Q K} g_{P I} \frac{\partial}{\partial x^{L}}\left(\sqrt{-g} \frac{\partial L_{d}}{\partial \frac{\partial g_{P Q}}{\partial x^{L}}}\right)\right]
$$

Be careful: $\quad V\left(\phi^{K} \phi_{K}\right)=V\left(g^{I K} \phi_{I} \phi_{K}\right)$
Differentiation goes first. Only after that one can set

$$
g^{d_{0} d_{0}}=-1, \quad\left(g^{d_{0} d_{0}}\right)^{\prime}=0
$$

Result:
Type A: $\quad T_{I}^{K}=\frac{1}{2} \delta_{I}^{K}\left(\phi^{\prime}+S_{1} \phi\right)^{2}+\delta_{I}^{K} V+\left(\delta_{I}^{d_{0}} \delta_{d_{0}}^{K}-\delta_{I}^{K}\right) \frac{\partial V}{\partial \phi} \phi$
Type B: $\begin{aligned} & T_{I<d_{0}}^{K}=\delta_{I}^{K}\left[\frac{1}{\sqrt{-g}}\left(\sqrt{-g} \gamma^{\prime}\right)^{\prime} \phi^{2}+\gamma^{\prime}\left(\phi^{2}\right)^{\prime}-\left(\frac{1}{2} \phi^{\prime 2}+\frac{1}{2} S_{2} \phi^{2}\right)+V\right] \\ & T_{d_{0}}^{d_{0}}=\frac{1}{2}\left(\phi^{\prime 2}+S_{2} \phi^{2}\right)+V \\ & T_{I>d_{0}}^{K}=\delta_{I}^{K}\left[\frac{1}{\sqrt{-g}}\left(\sqrt{-g} \beta^{\prime}\right)^{\prime} \phi^{2}+\beta^{\prime}\left(\phi^{2}\right)^{\prime}-\left(\frac{1}{2} \phi^{\prime 2}+\frac{1}{2} S_{2} \phi^{2}\right)+V\right]\end{aligned}$
Verification: $T_{I}^{K}{ }_{; K}=0$

Einstein equations

$$
\begin{array}{r}
R_{I}^{K}=\kappa^{2} \widetilde{T}_{I}^{K} \\
R_{I}^{K}=\left\{\begin{array}{cc}
\delta_{I}^{K}\left(\gamma^{\prime \prime}+\gamma^{\prime} S_{1}\right), \quad I<d_{0} \\
\delta_{d_{0}}^{K}\left(S_{1}^{\prime}+S_{2}\right), \quad I=d_{0} \\
\delta_{\varphi}^{K}\left(\beta^{\prime \prime}+S_{1} \beta^{\prime}\right), \quad I=\varphi
\end{array} \quad \widetilde{T}_{I}^{K}=T_{I}^{K}-\frac{1}{d_{0}} \delta_{I}^{K} T .\right.
\end{array}
$$

Type A: $\left.\begin{array}{r}\gamma^{\prime \prime}+S_{1} \gamma^{\prime}=\kappa^{2}\left[-\frac{1}{d_{0}}\left(\phi^{\prime}+S_{1} \phi\right)^{2}-\frac{2 V}{d_{0}}+\frac{1}{d_{0}} \frac{\partial V}{\partial \phi} \phi\right] \\ S_{1}^{\prime}+S_{2}=\kappa^{2}\left[-\frac{1}{d_{0}}\left(\phi^{\prime}+S_{1} \phi\right)^{2}-\frac{2 V}{d_{0}}+\left(1+\frac{1}{d_{0}}\right) \frac{\partial V}{\partial \phi} \phi\right] \\ \beta^{\prime \prime}+S_{1} \beta^{\prime}=\kappa^{2}\left[-\frac{1}{d_{0}}\left(\phi^{\prime}+S_{1} \phi\right)^{2}-\frac{2 V}{d_{0}}+\frac{1}{d_{0}} \frac{\partial V}{\partial \phi} \phi\right]\end{array}\right]$

Type B:

$$
\begin{array}{r}
\gamma^{\prime \prime}+S_{1} \gamma^{\prime}=\kappa^{2}\left[S_{1} \gamma^{\prime} \phi^{2}+\left(\gamma^{\prime} \phi^{2}\right)^{\prime}-\frac{1}{d_{0}} S_{1}^{2} \phi^{2}-\frac{1}{d_{0}}\left(S_{1} \phi^{2}\right)^{\prime}-\frac{2}{d_{0}} V\right] \\
S_{1}^{\prime}+S_{2}=\kappa^{2}\left[\phi^{\prime 2}+S_{2} \phi^{2}-\frac{1}{d_{0}} S_{1}^{2} \phi^{2}-\frac{1}{d_{0}}\left(S_{1} \phi^{2}\right)^{\prime}-\frac{2}{d_{0}} V\right] \\
\beta^{\prime \prime}+S_{1} \beta^{\prime}=\kappa^{2}\left[S_{1} \beta^{\prime} \phi^{2}+\left(\beta^{\prime} \phi^{2}\right)^{\prime}-\frac{1}{d_{0}} S_{1}^{2} \phi^{2}-\frac{1}{d_{0}}\left(S_{1} \phi^{2}\right)^{\prime}-\frac{2}{d_{0}} V\right]
\end{array}
$$

First integral

Type A	Type B
$S_{1}^{2}-S_{2}=-\kappa^{2}\left[\left(\phi^{\prime}+S_{1} \phi\right)^{2}+2 V\right]$	$S_{2}\left(1-\kappa^{2} \phi^{2}\right)=\kappa^{2} \phi^{\prime 2}+2 \kappa^{2} V+S_{1}^{2}$

More simplifications: $U=\gamma^{\prime}-\beta^{\prime}, \quad Z=\phi^{\prime}+S_{1} \phi, \quad \psi=\phi^{\prime}$

$$
\gamma^{\prime}=\frac{U+S_{1}}{d_{0}+1} \quad \beta^{\prime}=\frac{S_{1}-d_{0} U}{d_{0}+1} \quad S_{2}=\frac{d_{0} U^{2}+S_{1}^{2}}{d_{0}+1}
$$

$$
\begin{gathered}
\text { Type A } \\
\hline U^{\prime}=-U S_{1} \\
S_{1}^{\prime}=\kappa^{2} \frac{d_{0}+1}{d_{0}} \frac{\partial V}{\partial \phi} \phi-U^{2} \\
\phi^{\prime}=Z-S_{1} \phi \\
Z^{\prime}=-\frac{\partial V}{\partial \phi} \\
\hline
\end{gathered}
$$

Type B

$$
\begin{gathered}
{\left[U\left(1-\kappa^{2} \phi^{2}\right)\right]^{\prime}+U\left(1-\kappa^{2} \phi^{2}\right) S_{1}=0} \\
{\left[S_{1}\left(1+\frac{\kappa^{2} \phi^{2}}{d_{0}}\right)\right]^{\prime}+S_{1}^{2}\left(1+\frac{\kappa^{2} \phi^{2}}{d_{0}}\right)+\frac{2\left(1+d_{0}\right)}{d_{0}} \kappa^{2} V=0} \\
\phi^{\prime}=\psi \\
\psi^{\prime}+S_{1} \psi-\frac{d_{0} U^{2}+S_{1}^{2}}{d_{0}+1} \phi+\frac{\partial V}{\partial \phi}=0
\end{gathered}
$$

Type A: Symmetry breaking potential enters the equations only via its derivative. Type B : The derivative of the potential is eliminated from the Einstein equations

Regularity conditions

Riemann curvature tensor $\quad R_{C D}^{A B}=\left\{\begin{array}{l}-\gamma^{\prime 2}\left(\delta_{C}^{A} \delta_{D}^{B}-\delta_{D}^{A} \delta_{C}^{B}\right), \quad A, B, C, D<d_{0}, \\ -\beta^{\prime} \gamma^{\prime}, \quad A=C=\varphi, \quad B, D<d_{0}, \\ -\left(\gamma^{\prime \prime}+\gamma^{\prime 2}\right) \delta_{D}^{B}, \quad A=C=d_{0}, \quad B, D<d_{0}, \\ -\left(\beta^{\prime \prime}+\beta^{\prime 2}\right), \quad A=C=d_{0}, \quad B=D=\varphi .\end{array}\right\}$
$\gamma^{\prime}, \gamma^{\prime \prime}+\gamma^{\prime 2}, \beta^{\prime} \gamma^{\prime}$, and $\beta^{\prime \prime}+\beta^{\prime 2}$ must be finite.

$$
\beta^{\prime \prime}+\beta^{\prime 2}=c<\infty \quad \text { at } \quad l=0 \quad \beta^{\prime}=\frac{1}{l}+\frac{1}{3} c l+O\left(l^{3}\right) \quad \gamma^{\prime}=O(l)
$$

Boundary conditioms at $\quad l \rightarrow 0$

Type A	Type \mathbb{B}		
$U=\frac{1}{3}\left(d_{0}+1\right) \gamma_{0}^{\prime \prime} l-\frac{1}{l}$	$S_{1}=\frac{2}{3}\left(d_{0}+1\right) \gamma_{0}^{\prime \prime} l+\frac{1}{l}$		
$\phi=\phi_{0}^{\prime} l, \quad Z=2 \phi_{0}^{\prime}$.	$\gamma_{0}^{\prime \prime}=-\frac{\kappa^{2}}{d_{0}}\left(2 \phi_{0}^{\prime 2}+V_{0}\right)$		$U\left(1-\varkappa^{2} \phi^{2}\right)=-\frac{1}{l} \quad S_{1}\left(1+\frac{\varkappa^{2} \phi^{2}}{d_{0}}\right)=\frac{1}{l}$
:---:			
$\phi=\phi_{0}^{\prime} l . \quad \psi=\phi_{0}^{\prime} \quad \gamma_{0}^{\prime \prime}=-\frac{\kappa^{2}}{d_{0}}\left(\frac{1}{2} \phi_{0}^{\prime 2}+V_{0}\right)$			

One constant γ_{0} " or $\phi_{0}{ }^{\prime}$ remains arbitrary.

Analytical solution. Type A, case $\frac{\partial V}{\partial \phi} \equiv 0$
$\Lambda=\chi^{2} V_{0}$ - cosmological constant

$$
\begin{gathered}
U=-\frac{\sqrt{C}}{\sinh (\sqrt{C} l)}, \quad S_{1}=\sqrt{C} \operatorname{coth}(\sqrt{C} l), \quad \phi(l)=\frac{2 \phi_{0}^{\prime}}{\sqrt{C}} \tanh \frac{\sqrt{C l}}{2} \\
C=2\left(d_{0}+1\right) \gamma_{0}^{\prime \prime}=-\frac{2\left(d_{0}+1\right)}{d_{0}}\left(2 x^{2} \phi_{0}^{2}+\Lambda\right)
\end{gathered}
$$

The solution is regular if $C \geq 0$, i.e. $\Lambda \leq-2 x^{2} \phi_{0}^{\prime 2}$.

The existence of a (negative) cosmological constant is sufficient for the symmetry breaking of the initially flat bulk.

Numerical analysis

"Mexican hat" potential

$$
V=\frac{\lambda \eta^{4}}{4}\left[\varepsilon+\left(1-\frac{\phi^{2}}{\eta^{2}}\right)^{2}\right]
$$

Three extreme points

$$
\begin{array}{lll}
V_{\infty}^{\prime}=0, & V_{\infty}^{\prime \prime}=2 \eta^{2}, & \phi_{\infty}= \pm \eta \\
V_{\infty}^{\prime}=0, & V_{\infty}^{\prime \prime}=-\eta^{2}, & \phi_{\infty}=0 .
\end{array}
$$

Dimensionless parameters

$$
d_{0}, \varepsilon, \Gamma, \text { and } \phi_{0}^{\prime} \quad \Gamma=\chi^{2} \eta^{2}
$$

Solutions with fixed d_{0}, ε, and Γ exist within the interval

$$
0<\phi_{0}^{\prime} \leq \phi_{0 \max }^{\prime}\left(d_{0}, \varepsilon, \Gamma\right)
$$

We set $d_{0}=4, a=\left(\lambda \eta^{2}\right)^{-1 / 2}=1, \eta=1$ in computations.

Analysis of equations

Type A	Type B
$\gamma^{\prime}-\beta^{\prime}=-e^{-\left(d_{0} \gamma+\beta\right)}$	$\gamma^{\prime}-\beta^{\prime}=-\frac{e^{-\left(d_{0} \gamma+\beta\right)}}{1-\kappa^{2} \phi^{2}}$

$\beta^{\prime}>\gamma^{\prime} \quad \beta^{\prime}-\gamma^{\prime} \rightarrow 0, \quad l \rightarrow \infty$

Regular solutions exist within the whole interval $\mathbf{0}<\boldsymbol{l}<$ I ; r \rightarrow II at $l \rightarrow$ II

Limiting values

Type A	$\gamma_{\infty}^{\prime}=\sqrt{-\frac{2 \kappa^{2} V_{\infty}}{\left(d_{0}+1\right)\left[d_{0}+\left(d_{0}\right.\right.}}$	1) $\left.\kappa^{2} \phi_{\infty}^{2}\right]$
	$V^{\prime}\left(\phi_{\infty}\right)=0 \quad V_{\infty}<0$	
Type B	$\gamma_{\infty}^{\prime}=\sqrt{\frac{1}{\left(d_{0}+1\right) \phi_{\infty}} \frac{\partial V_{\infty}}{\partial \phi}}$	$\frac{\partial V_{\infty}}{\partial \phi^{2}}>0$
	$\kappa^{2} V_{\infty}=-\left(d_{0}+\kappa^{2} \phi_{\infty}^{2}\right) \frac{\partial V_{\infty}}{\partial \phi^{2}}$	$V_{\infty}<0$

Analysis of equations

Asymptotic behavior $\phi(l) \quad \phi=\phi_{\infty}+\delta \phi$ Type A $\delta \phi^{\prime \prime}+\left(d_{0}+1\right) \gamma_{\infty}^{\prime} \delta \phi^{\prime}+\frac{2 \chi^{2}\left|V_{\infty}\right| V_{\infty}^{\prime \prime}}{d_{0}\left(d_{0}+1\right) \gamma_{\infty}^{\prime 2}} \delta \phi=0$

$$
\lambda_{ \pm}=-\frac{\left(d_{0}+1\right) \gamma_{\infty}^{\prime}}{2}\left(1 \mp \sqrt{1-\frac{8 x^{2}\left|V_{\infty}\right| V_{\infty}^{\prime \prime}}{d_{0}\left(d_{0}+1\right)^{3} \gamma_{\infty}^{\prime 4}}}\right)
$$

$$
\delta \phi=A e^{\lambda+l}+B e^{\lambda-l}
$$

If $V_{\infty}^{\prime \prime}>0$, then both eigenvalues are either negative, or have negative real parts

$$
\frac{8 x^{2}\left|V_{\infty}\right| V_{\infty}^{\prime \prime}}{d_{0}\left(d_{0}+1\right)^{3} \gamma_{\infty}^{\prime 4}}>1 \quad \text { - oscillations }
$$

Analysis of equations

Asymptotic behavior $\phi(l) \quad \phi=\phi_{\infty}+\delta \phi$

Type B $\quad \delta \phi^{\prime \prime}+S_{1 \infty} \delta \phi^{\prime}+\left(\frac{\partial^{2} V_{\infty}}{\partial \phi^{2}}-\frac{d_{0}-3 \varkappa^{2} \phi_{\infty}^{2}}{\left(d_{0}+1\right)\left(d_{0}+\varkappa^{2} \phi_{\infty}^{2}\right)} S_{1 \infty}^{2}\right) \delta \phi=0$

$$
\begin{gathered}
\delta \phi=A e^{\lambda_{+} l}+B e^{\lambda-l}, \\
\lambda_{ \pm}=-\sqrt{\frac{d_{0}+1}{4 \phi_{\infty}} \frac{\partial V_{\infty}}{\partial \phi}} \pm \sqrt{\left(\frac{d_{0}+1}{4}+\frac{d_{0}-3 \varkappa^{2} \phi_{\infty}^{2}}{d_{0}+\varkappa^{2} \phi_{\infty}^{2}}\right) \frac{\partial V_{\infty}}{\phi_{\infty} \partial \phi}-\frac{\partial^{2} V_{\infty}}{\partial \phi^{2}}} .
\end{gathered}
$$

In practice both eigenvalues are complex with negative real parts.

Type A

Left:

Right:
Red line is a border between oscillating and Order parameter $\phi(\boldsymbol{l})$ in the vicinity of red smooth solutions $\phi(l)$. To the left of the blue points on the blue line in left figure. line $\phi(l)$ does not change sign.

$$
\varepsilon_{b}=-16 \frac{(1+G)^{2}}{G}, \quad G=\frac{d_{0}+1}{d_{0} \Gamma}
$$

$$
\phi^{\prime}(0)=\sqrt{-\frac{\varepsilon+1}{8}}
$$

Distance from the center

Type A

Domain of regular solutions in the plane of parameters $\quad\left(\phi_{0}^{\prime}, \varepsilon\right) \quad$ for $d_{0}=4, \Gamma=1$.

Type A solutions with the order parameter not changing sign
 $$
d_{0}=4, \quad \Gamma=1
$$

Type A solutions with the order parameter not changing sign, and terminating with $\phi=0$ at $l \rightarrow \infty$
$d_{0}=4, \quad \Gamma=1$

$\gamma^{\prime}(l)$

Type A solutions with the order parameter changing sign once $d_{0}=4, \quad \Gamma=1$

Type A solutions with the order parameter changing sign once, and terminating with $\phi=0$ при $l \rightarrow \infty$

$$
d_{0}=4, \quad \Gamma=1
$$

Type A solutions with the order parameter changing sign twice
$d_{0}=4, \quad \Gamma=1$

Type A solutions with the order parameter changing sign twice, and terminating with $\phi=0$ at $l \rightarrow \infty$

$$
d_{0}=4, \quad \Gamma=1
$$

Type A solutions on the border of regularity

$$
d_{0}=4, \quad \Gamma=1
$$

Type B

Upper border of regularity in the plane of parameters (ε, Γ)

Map of regular solutions

 in the plane $(\phi$ ' $(0), \Gamma)$

Neutral quantum particle

Lagrangian of a spin-less particle

$$
L_{\chi}=\frac{1}{2} g^{A B} \chi_{, B}^{*} \chi_{, A}-\frac{1}{2} m_{0}^{2} \chi^{*} \chi
$$

Wave equation

$$
\frac{1}{\sqrt{-g}}\left(\sqrt{-g} g^{A B} \chi_{, A}\right)_{, B}+m_{0}^{2} \chi=0
$$

Wave function

$$
\chi\left(x^{A}\right)=X(l) \exp \left(-i p_{\mu} x^{\mu}+i n \varphi\right)
$$

$$
X^{\prime \prime}+S_{1} X^{\prime}+\left(p^{2} e^{-2 \gamma}-n^{2} e^{-2 \beta}-m_{0}^{2}\right) X=0 \quad p^{2}=E^{2}-\mathbf{p}^{2}
$$

Schrödinger equation

$$
d l=e^{\gamma} d x, \quad X(l)=y(x) / \sqrt{f(x)},
$$

$$
y_{x x}+\left[p^{2}-V_{g}(x)\right] y=0
$$

Gravitational potential

$$
\mathrm{V}_{g}(x)=e^{2 \gamma}\left(e^{-2 \beta} n^{2}+m_{0}^{2}\right)+\frac{1}{2} \frac{1}{\sqrt{f}} \frac{d}{d x}\left(\frac{1}{f^{1 / 2}} \frac{d f}{d x}\right)
$$

Spin-less particles, identical in the plain bulk, acquire integer spins and different masses being trapped within different points of minimum of the gravitational potential

Comparison of vector and multi-scalar order parameters

Property	Multi-scalar	Vector, Type A	Vector, Type B
Order of Einstein equations	4	3	3
Number of parameters	n_{V}	$n_{V}+1$	$n_{V}+1$
Fine tuning	sometimes	no need	no need
Trapping of matter on brane	yes	yes	yes
Behavior $r(l)$	$\rightarrow \infty, \rightarrow r_{m}, \rightarrow 0$	$\rightarrow \infty$	$\rightarrow \infty$
In equations:	V	$d V / d \phi$	V
Behavior $V(\phi)$ at $l \rightarrow \infty$	$d V / d \phi=0$	$d V / d \phi=0$	$d V / d \phi^{2}>0$
Derivation of $T_{I K}$	easier	more difficult	more difficult
Strength of grav. field Γ	unlimited	unlimited	limited from above

