The Heterotic String:

From Super-Geometry to the LHC

Burt Ovrut
4th International Sakharov Conference
Moscow, 2009

The Heterotic Superstring

Heterotic Compactifications
Spacetime: $D=10, g_{M N}$

Gauge Connection: $D=10, A_{M}^{a}, E_{8}$

- Heterotic Standard Model: $V, G=S U(4), W, F=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

\mathbb{R}^{4} Theory Gauge Group:

Gauge connection $G=S U(4) \Rightarrow$

$$
E_{8} \rightarrow H=\operatorname{Spin}(10)
$$

Wilson line $F=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \Rightarrow$

$$
\operatorname{Spin}(10) \rightarrow \mathcal{H}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}
$$

rank $\operatorname{Spin}(10)=5$ plus $\mathrm{FAbelian} \Rightarrow$ extra gauged $U(1)_{B-L}$.
Note that

$$
\mathbb{Z}_{2}(R-\text { parity }) \subset U(1)_{B-L}
$$

\Rightarrow no rapid proton decay. But must be spontaneously broken above the scale of weak interactions.

\mathbb{R}^{4} Theory Spectrum:

$$
\begin{aligned}
E_{8} & \xrightarrow{V} \operatorname{Spin}(10) \Rightarrow \\
& 248=(1,45) \oplus(4,16) \oplus(\overline{4}, \overline{16}) \oplus(6,10) \oplus(15,1)
\end{aligned}
$$

The Spin(IO) spectrum is determined from
45

$$
n_{45}=h^{0}(X, \mathcal{O})=1
$$

$$
\text { 16 } \quad n_{16}=h^{1}(X, V)=27
$$

$$
\underline{16} \quad n_{1 \overline{6}}=h^{1}\left(X, V^{*}\right)=0
$$

$$
\text { I0 } \quad n_{10}=h^{1}\left(X, \wedge^{2} V\right)=4
$$

$$
\underline{n_{1}}=h^{1}\left(X, V \otimes V^{*}\right)=117
$$

$\operatorname{Spin}(10) \xrightarrow{F} S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L} \Rightarrow$
a) Find representation of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ on $H^{1}\left(X, U_{R}(V)\right)$.

Example: $n_{16}=h^{1}(X, V)=27 \Rightarrow H^{1}(X, V)=R G^{\oplus 3}$ where

$$
R G=1 \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{1}^{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2}^{2}
$$

b) Find action of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ on representation R. Example:

$$
\begin{array}{r}
16=\left[\chi_{1} \chi_{2}^{2}(3,2,1,1) \oplus \chi_{2}^{2}(1,1,6,3) \oplus \chi_{1}{ }^{2} \chi_{2}{ }^{2}(\overline{3}, 1,-4,-1)\right] \\
\\
\oplus\left[(1,2,-3,-3) \oplus \chi_{1}{ }^{2}(\overline{3}, 1,2,-1)\right] \oplus \chi_{2}(1,1,0,3)
\end{array}
$$

Tensoring and taking invariant subspace gives 3 families of quarks/leptons each transforming as

$$
\begin{aligned}
Q_{L} & =(3,2,1,1), \quad u_{R}=(\overline{3}, 1,-4,-1), \quad d_{R}=(\overline{3}, 1,2,-1) \\
L_{L} & =(1,2,-3,-3), e_{R}=(1,1,6,3), \quad \nu_{R}=(1,1,0,3)
\end{aligned}
$$

under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$.

Similarly we get I pair of Higgs-Higgs conjugate fields

$$
H=(1,2,3,0), \quad \bar{H}=(1, \overline{2},-3,0)
$$

That is, we get exactly the matter spectrum of the MSSM! In addition, there are $n_{1}=h^{1}\left(X, V \times V^{*}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}=13$ vector bundle moduli

$$
\phi=(1,1,0,0)
$$

Supersymmetric Interactions:
The most general superpotential is

$$
W=\sum_{i=1}^{3}\left(\lambda_{u, i} Q_{i} H u_{i}+\lambda_{d, i} Q_{i} \bar{H} d_{i}+\lambda_{\nu, i} L_{i} H \nu_{i}+\lambda_{e, i} L_{i} \bar{H} e_{i}\right)
$$

Note $B-L$ symmetry forbids dangerous B and L violating terms

$$
L L e, \quad L Q d, \quad u d d
$$

Can we evaluate the Yukawa couplings from first principles?
Yes!
a) Texture:

$$
W=\ldots \lambda L H r+\ldots
$$

\Rightarrow a Yukawa coupling is the triple product

$$
H^{1}(X, V)^{z_{3} \times Z_{3}} \otimes H^{1}\left(X, \wedge^{2} V\right)^{z_{3} \times Z_{3}} \otimes H^{1}(X, V)^{z_{3} \times Z_{3}} \longrightarrow \mathbb{C}
$$

Internal super-geometry (X elliptically fibered over dP9 base) \Rightarrow in flavor diagonal basis for each of u, d, ν, e

$$
\lambda_{1}=0, \quad \lambda_{2}, \lambda_{3} \neq 0
$$

That is, naturally light first family and heavy second/third families.
b) Explicit Calculation:

The triple product \Rightarrow

$$
\lambda=\int_{X} \sqrt{g_{\mu \nu}} \psi_{L}^{a} \psi_{H}^{[b, c]} \psi_{r}^{d} \epsilon_{a b c d} d^{6} x
$$

where

$$
\nabla_{* *}^{2} \psi^{*}=\lambda \psi^{*}, \lambda=0
$$

\Rightarrow need to calculate the metric and eigenfunctions of the Laplacian. Unfortunately, a Calabi-Yau manifold does not admit a continuous symmetry. \Rightarrow the metric, gauge connection and, hence, the Laplacian are unknown! Remarkably, these can be well-approximated by numerical methods.

Ricci-Flat Metrics and Scalar Laplacians on Calabi-Yau Threefolds

Let $s_{\alpha}, \alpha=0, \ldots, N_{k}-1$ be degree-k polynomials on the CY and $h_{\text {bal }}^{\alpha \bar{\beta}}$ a specific matrix. Defining
then

$$
g_{\text {(ball } i \bar{j}}^{(k)}=\frac{1}{k \pi} \partial_{i} \partial_{\bar{j}} \ln \sum_{\alpha, \bar{\beta}=0}^{N_{k}-1} h_{\text {bal }}^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}
$$

$$
g_{(\mathrm{bal}) i \bar{j}}^{(k)} \xrightarrow{k \rightarrow \infty} g_{i \bar{j}}^{C Y}
$$

Expressed this way, $g_{(\text {bal }) i \bar{j}}^{(k)}$ at any finite k is not very enlightening. More interesting is how closely they approach $g_{i \bar{j}}^{C Y}$ for large k . This can be estimated using

$$
\sigma_{k}(\tilde{Q})=\frac{1}{\operatorname{Vol} l_{C Y}(\tilde{Q})} \int_{\tilde{Q}}\left|1-\frac{\omega_{k}^{3} / \operatorname{Vol}_{K}(\tilde{Q})}{\Omega \wedge \bar{\Omega} / \operatorname{Vol}_{C Y}(\tilde{Q})}\right| d V \operatorname{Vol}_{C Y}
$$

Fermat quintic:

The error measure σ_{k} for the metric on the Fermat quintic, computed with the two different point generation algorithms

Scalar Laplacians:

Given a metric $g_{\mu \nu} \Rightarrow$

$$
\Delta=-\frac{1}{\sqrt{g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{g} \partial_{\nu}\right)
$$

Solve the eigen-equation

$$
\Delta \phi_{m, i}=\lambda_{m} \phi_{m, i}, i=1, \ldots \mu_{m}
$$

where μ_{m} is the multiplicity from continuous/finite symmetry.
Choose a basis $\left\{f_{a}\right\} \Rightarrow$ the eigen-equation becomes

$$
\sum_{b}\left\langle f_{a}\right| \Delta\left|f_{b}\right\rangle\left\langle f_{b} \mid \tilde{\phi}_{m, i}\right\rangle=\sum_{b} \lambda_{m}\left\langle f_{a} \mid f_{b}\right\rangle\left\langle f_{b} \mid \tilde{\phi}_{m, i}\right\rangle
$$

Numerical Solution:
I) Choose a finite sub-basis $\left\{f_{a} \mid a=1, \ldots, k\right\}$
2) Calculate the finite-dimensional matrices $\left(\Delta_{a b}\right)_{1 \leq a, b \leq k,}$ and $\left\langle f_{a} \mid f_{b}\right\rangle_{1 \leq a, b \leq k}$
3) Solve numerically for λ_{n} and ϕ_{n}
4) For fixed k let $n_{\phi} \rightarrow \infty /$ for fixed n_{ϕ} let $k \rightarrow \infty$

Fermat quintic:

Eigenvalues of the scalar Laplace operator on the Fermat quintic. The metric is computed at degree $k_{h}=8$, using $n_{h}=2,166,000$ points. The Laplace operator is evaluated at degree $k_{\phi}=3$ using a varying number n_{ϕ} of points.

Tabulating the results

m	0	1	2	3	4	5
$\hat{\lambda}_{m}$	1.18×10^{-14}	41.1 ± 0.4	78.1 ± 0.5	82.1 ± 0.3	94.5 ± 1	102 ± 1
μ_{m}	1	20	20	4	60	30

The non-trivial multiplicity \Rightarrow there must be a symmetry. CY manifolds have no continuous symmetry, but they can have a finite isometry. For the Fermat quintic this is

$$
\overline{\operatorname{Aut}}\left(\tilde{Q}_{F}\right)=\left(S_{5} \times \mathbb{Z}_{2}\right) \ltimes\left(\mathbb{Z}_{5}\right)^{4}
$$

with irreducible representations

d	1	2	4	5	6	8	10	12	20	30	40	60	80	12
\# of irreps in $\operatorname{dim} d$	4	4	4	4	2	4	4	2	8	8	12	18	4	2
Match perfectly!														

Supersymmetry Breaking, the Renormalization Group and the LHC

Soft Supersymmetry Breaking:

$\mathrm{N}=$ I Supersymmetry is spontaneously broken by the moduli during compactification \Rightarrow soft supersymmetry breaking interactions. The relevant ones are

$$
\begin{gathered}
V_{2 s}=m_{\nu_{3}}^{2}\left|\nu_{3}\right|^{2}+m_{H}^{2}|H|^{2}+m_{H}^{2}|\bar{H}|^{2}-(B H \bar{H}+h c)+\ldots \\
V_{2 f}=\frac{1}{2} M_{3} \lambda_{3} \lambda_{3}+\ldots
\end{gathered}
$$

At the compactification scale $M_{C} \simeq 10^{16} \mathrm{GeV}$ these parameters are fixed by the vacuum values of the moduli. For example

$$
m_{\nu_{3}}^{2}=m_{\nu_{3}}^{2}(\langle\phi\rangle)
$$

However, at a lower scale μ measured by $t=\ln \left(\frac{\mu}{M_{C}}\right)$ these parameters change under the renormalization group.
For example,

$$
16 \pi^{2} \frac{d m_{\nu_{3}}^{2}}{d t} \simeq \frac{3}{4} g_{4}^{2} \mathcal{S}_{1}^{\prime}, \quad \mathcal{S}_{1}^{\prime}(0)=61.5 m_{\nu}(0)^{2}
$$

Solving this, at a scale $\mu \simeq 10^{4} \mathrm{GeV} \Rightarrow t_{B-L} \simeq-25$

$$
m_{\nu_{3}}\left(t_{B-L}\right)^{2}=m_{\nu}(0)^{2}-\left(3.10 \times 10^{-2}\right) \mathcal{S}_{1}^{\prime}(0)
$$

Including another effect

$$
m_{\mathrm{eff} \nu_{3}}\left(t_{B-L}\right)^{2}=m_{\nu_{3}}\left(t_{B-L}\right)^{2}+\sqrt{\frac{3}{4}} g_{4} \xi_{B-L}
$$

\Rightarrow

$$
m_{\mathrm{eff} \nu_{3}}\left(t_{B-L}\right)^{2}=-4 m_{\nu}(0)^{2}
$$

Therefore, we expect the spontaneous breaking of B-L at t_{B-L}.

Result:

The vacuum expectation value at t_{B-L} is

$$
\begin{aligned}
& \qquad\left\langle\nu_{3}\right\rangle=\frac{2 m_{\nu}(0)}{\sqrt{\frac{3}{4}} g_{4}} \\
& \Rightarrow \text { a B-L vector boson mass of }
\end{aligned}
$$

$$
M_{A_{B-L}}=2 m_{\nu}(0)
$$

At this scale, no other symmetry is broken.

Similarly, under the renormalization group

$$
\begin{gathered}
m_{H}(t)^{2} \simeq m_{H}(0)^{2} e^{-\frac{3}{4 \pi^{2}} \int_{t}^{0} \lambda_{3}^{2}\left(1+\left[\frac{-\frac{2}{3 \pi^{2} \int_{0}^{t^{\prime}} g_{3}^{2}\left|M_{3}\right|^{2}}}{m_{H}^{2}}\right]\right)} \\
m_{\bar{H}}(t)^{2} \simeq m_{\bar{H}}(0)^{2}
\end{gathered}
$$

At the electroweak scale $\mu \simeq 10^{2} G e V \Rightarrow t_{E W} \simeq-29.6$

$$
m_{\mathrm{effH}^{\prime}}\left(t_{E W}\right)^{2} \simeq-\frac{\epsilon^{2} m_{H}(0)^{2}}{\tan \beta^{2}} \quad, \quad m_{\bar{H}^{\prime}}\left(t_{E W}\right)^{2} \simeq m_{H}(0)^{2}
$$

where $\tan \beta=\frac{\langle H\rangle}{\langle\bar{H}\rangle}$ and $\epsilon<1$ is related to $M_{3}(0)$. Therefore, at $t_{E W}$ electroweak symmetry is broken by the expectation value

$$
\left\langle H^{\prime 0}\right\rangle=\frac{2 \epsilon m_{H}(0)}{\tan \beta \sqrt{\frac{3}{5} g_{1}^{2}+g_{2}^{2}}}
$$

$\Rightarrow \mathrm{a}$ Z-boson mass of

$$
M_{Z}=\frac{2 \epsilon m_{H}(0)}{\tan \beta} \simeq 91 G e V
$$

It follows that there is a B-L/EW gauge hierarchy given by

$$
\frac{M_{A_{B-L}}}{M_{Z}} \simeq \frac{\tan \beta}{\epsilon}
$$

Our approximations are valid for the range $6.32 \leq \tan \beta \leq 40$.
For $\epsilon=\frac{1}{2.5}$, the B-L/EW hierarchy in this range is

$$
15.8 \lesssim \frac{M_{A_{B-L}}}{M_{Z}} \lesssim 100
$$

We conclude that this vacuum exhibits a natural hierarchy of $\mathcal{O}(10)$ to $\mathcal{O}(100) \Rightarrow$

$$
1.42 \times 10^{3} \mathrm{GeV} \lesssim M_{A_{B-L}} \lesssim 0.91 \times 10^{4} \mathrm{GeV}
$$

All super-partner masses are related through intertwined renormalization group equations. \Rightarrow Measuring some masses predicts the rest!

For example, if

$$
\tan \beta \simeq 6.32, \quad \frac{M_{A_{B-L}}}{M_{Z}} \simeq 15.2 \Rightarrow \epsilon \simeq \frac{1}{2.5}
$$

This then requires

$$
M_{3}(0)=.216 m_{H}(0), \quad m_{H}(0) \simeq 7.19 \times 10^{2} G e V
$$

which, using the scaling equation for $M_{3}(t)$ predicts

$$
M_{3}\left(t_{E W}\right) \simeq 3.83 \times 10^{2} \mathrm{GeV}
$$

