The Heterotic String: From Super-Geometry to the LHC

> Burt Ovrut 4th International Sakharov Conference Moscow, 2009

• Heterotic Standard Model: $V, G = SU(4), W, F = \mathbb{Z}_3 \times \mathbb{Z}_3$

 \mathbb{R}^4 Theory Gauge Group:

Gauge connection $G = SU(4) \Rightarrow$

 $E_8 \rightarrow H = Spin(10)$

Wilson line $F = \mathbb{Z}_3 \times \mathbb{Z}_3 \Rightarrow$

 $Spin(10) \rightarrow \mathcal{H} = SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

rank Spin(10)=5 plus F Abelian \Rightarrow extra gauged $U(1)_{B-L}$. Note that

 \mathbb{Z}_2 $(R - \text{parity}) \subset U(1)_{B-L}$

 \Rightarrow no rapid proton decay. But must be <u>spontaneously</u> <u>broken</u> above the scale of weak interactions.

 \mathbb{R}^4 Theory Spectrum: $E_8 \xrightarrow{V} Spin(10) \Rightarrow$ $248 = (1,45) \oplus (4,16) \oplus (\overline{4},\overline{16}) \oplus (6,10) \oplus (15,1)$ The Spin(10) spectrum is determined from $n_{45} = h^0(X, \mathcal{O}) = 1$ 45 $n_{16} = h^1(X, V) = 27$ 16 $\overline{16}$ $n_{\bar{16}} = h^1(X, V^*) = 0$ $n_{10} = h^1(X, \wedge^2 V) = 4$ 10 $n_1 = h^1(X, V \otimes V^*) = 117$

 $Spin(10) \xrightarrow{F} SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \Rightarrow$ a) Find representation of $\mathbb{Z}_3 \times \mathbb{Z}_3$ on $H^1(X, U_R(V))$. Example: $n_{16} = h^1(X, V) = 27 \Rightarrow H^1(X, V) = RG^{\oplus 3}$ where $RG = 1 \oplus \chi_1 \oplus \chi_2 \oplus \chi_1^2 \oplus \chi_2^2 \oplus \chi_1\chi_2 \oplus \chi_1^2\chi_2 \oplus \chi_1\chi_2^2 \oplus \chi_1^2\chi_2^2$

b) Find action of $\mathbb{Z}_3 \times \mathbb{Z}_3$ on representation R. Example:

 $16 = [\chi_1 \chi_2^2(3, 2, 1, 1) \oplus \chi_2^2(1, 1, 6, 3) \oplus \chi_1^2 \chi_2^2(\overline{3}, 1, -4, -1)] \\ \oplus [(1, 2, -3, -3) \oplus \chi_1^2(\overline{3}, 1, 2, -1)] \oplus \chi_2(1, 1, 0, 3)$

Tensoring and taking invariant subspace gives 3 families of quarks/leptons each transforming as

 $Q_L = (3, 2, 1, 1), \quad u_R = (\bar{3}, 1, -4, -1), \quad d_R = (\bar{3}, 1, 2, -1)$

 $L_L = (1, 2, -3, -3), e_R = (1, 1, 6, 3), \quad \nu_R = (1, 1, 0, 3)$

under $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$.

Similarly we get | pair of Higgs-Higgs conjugate fields

 $H = (1, 2, 3, 0), \quad \bar{H} = (1, \bar{2}, -3, 0)$

That is, we get <u>exactly</u> the matter spectrum of the MSSM! In addition, there are $n_1 = h^1(X, V \times V^*)^{\mathbb{Z}_3 \times \mathbb{Z}_3} = 13$ vector bundle moduli

 $\phi = (1, 1, 0, 0)$

Supersymmetric Interactions:

The most general superpotential is $W = \sum_{i=1}^{3} (\lambda_{u,i}Q_{i}Hu_{i} + \lambda_{d,i}Q_{i}\overline{H}d_{i} + \lambda_{\nu,i}L_{i}H\nu_{i} + \lambda_{e,i}L_{i}\overline{H}e_{i})$ Note B-L symmetry forbids dangerous B and L violating terms LLe, LQd, udd Can we evaluate the Yukawa couplings from first principles? Yes!

a) Texture:

 $W = \dots \lambda L H r + \dots$

 \Rightarrow a Yukawa coupling is the triple product

 $H^1(X,V)^{\mathbb{Z}_3 \times \mathbb{Z}_3} \otimes H^1(X,\wedge^2 V)^{\mathbb{Z}_3 \times \mathbb{Z}_3} \otimes H^1(X,V)^{\mathbb{Z}_3 \times \mathbb{Z}_3} \longrightarrow \mathbb{C}$

Internal super-geometry (X elliptically fibered over dP9 base) \Rightarrow in flavor diagonal basis for each of u, d, ν, e

 $\lambda_1 = 0, \quad \lambda_2, \lambda_3 \neq 0$

That is, <u>naturally light</u> first family and <u>heavy</u> second/third families.

b) Explicit Calculation:

The triple product \Rightarrow

$$\lambda = \int_X \sqrt{g_{\mu\nu}} \psi_L^a \psi_H^{[b,c]} \psi_r^d \epsilon_{abcd} d^6 x$$

where

 $\nabla_{**}^2 \psi^* = \lambda \psi^* , \lambda = 0$

 \Rightarrow need to calculate the metric and eigenfunctions of the Laplacian. Unfortunately, a Calabi-Yau manifold does not admit a continuous symmetry. \Rightarrow the metric, gauge connection and, hence, the Laplacian are unknown! Remarkably, these can be well-approximated by numerical methods.

Ricci-Flat Metrics and Scalar Laplacians on Calabi-Yau Threefolds

Let $s_{\alpha}, \alpha = 0, \dots, N_k - 1$ be degree-k polynomials on the CY and $h_{\text{bal}}^{\alpha \overline{\beta}}$ a specific matrix. Defining .

$$g_{(\mathrm{bal})i\bar{j}}^{(k)} = \frac{1}{k\pi} \partial_i \partial_{\bar{j}} \ln \sum_{\alpha,\bar{\beta}=0}^{N_k-1} h_{\mathrm{bal}}^{\alpha\bar{\beta}} s_\alpha \bar{s}_{\bar{\beta}}$$

then

 $g_{(\mathrm{bal})i\bar{j}}^{(k)} \xrightarrow{k \to \infty} g_{i\bar{j}}^{CY}$ Expressed this way, $g_{(\mathrm{bal})i\bar{j}}^{(k)}$ at any finite k is not very enlightening. More interesting is how closely they approach $g_{i\bar{j}}^{CY}$ for large k. This can be estimated using

$$\sigma_k(\tilde{Q}) = \frac{1}{Vol_{CY}(\tilde{Q})} \int_{\tilde{Q}} \left| 1 - \frac{\omega_k^3 / Vol_K(\tilde{Q})}{\Omega \wedge \bar{\Omega} / Vol_{CY}(\tilde{Q})} \right| dVol_{CY}$$

Fermat quintic:

The error measure σ_k for the metric on the <u>Fermat quintic</u>, computed with the two different point generation algorithms

Scalar Laplacians:

Given a metric $g_{\mu\nu} \Rightarrow$

$$\Delta = -\frac{1}{\sqrt{g}}\partial_{\mu}(g^{\mu\nu}\sqrt{g}\partial_{\nu})$$

Solve the eigen-equation

$$\Delta \phi_{m,i} = \lambda_m \phi_{m,i} , \ i = 1, \dots \mu_m$$

where μ_m is the multiplicity from continuous/finite symmetry. Choose a basis $\{f_a\} \Rightarrow$ the eigen-equation becomes

$$\sum_{b} \langle f_a | \Delta | f_b \rangle \langle f_b | \tilde{\phi}_{m,i} \rangle = \sum_{b} \lambda_m \langle f_a | f_b \rangle \langle f_b | \tilde{\phi}_{m,i} \rangle$$

Numerical Solution:

1) Choose a finite sub-basis $\{f_a | a = 1, ..., k\}$

2) Calculate the finite-dimensional matrices $(\Delta_{ab})_{1 \le a,b \le k}$ and $\langle f_a | f_b \rangle_{1 \le a,b \le k}$

- **3)** Solve numerically for λ_n and ϕ_n
- 4) For fixed k let $n_{\phi} \to \infty$ / for fixed n_{ϕ} let $k \to \infty$

Eigenvalues of the scalar Laplace operator on the <u>Fermat quintic</u>. The metric is computed at degree $k_h = 8$, using $n_h = 2,166,000$ points. The Laplace operator is evaluated at degree $k_{\phi} = 3$ using a varying number n_{ϕ} of points.

Tabulating the results

m	0	1	2	3	4	5
$\hat{\lambda}_m$	1.18×10^{-14}	41.1 ± 0.4	78.1 ± 0.5	82.1 ± 0.3	94.5 ± 1	102 ± 1
μ_m	1	20	20	4	60	30

The non-trivial multiplicity \Rightarrow there must be a symmetry. CY manifolds have no continuous symmetry, but they can have a finite isometry. For the Fermat quintic this is

 $\overline{\operatorname{Aut}}(\tilde{Q}_F) = (S_5 \times \mathbb{Z}_2) \ltimes (\mathbb{Z}_5)^4$

with irreducible representations

d	1	2	4	5	6	8	10	12	20	30	40	60	80	120
# of irreps in dim d	4	4	4	4	2	4	4	2	8	8	12	18	4	2
Match perfectly!														

Supersymmetry Breaking, the Renormalization Group and the LHC

Soft Supersymmetry Breaking:

N=I Supersymmetry is spontaneously broken by the moduli during compactification \Rightarrow soft supersymmetry breaking interactions. The relevant ones are

$$V_{2s} = m_{\nu_3}^2 |\nu_3|^2 + m_H^2 |H|^2 + m_{\bar{H}}^2 |\bar{H}|^2 - (BH\bar{H} + hc) + \dots$$
$$V_{2f} = \frac{1}{2} M_3 \lambda_3 \lambda_3 + \dots$$

At the compactification scale $M_C \simeq 10^{16} GeV$ these parameters are fixed by the vacuum values of the moduli. For example

$$m_{\nu_3}^2 = m_{\nu_3}^2(\langle \phi \rangle)$$

However, at a lower scale μ measured by $t = ln(\frac{\mu}{M_C})$ these parameters change under the renormalization group. For example,

$$16\pi^{2} \frac{dm_{\nu_{3}}^{2}}{dt} \simeq \frac{3}{4} g_{4}^{2} \mathcal{S}_{1}^{'}, \quad \mathcal{S}_{1}^{'}(0) = 61.5 \ m_{\nu}(0)^{2}$$

Solving this, at a scale $\mu \simeq 10^4 GeV \Rightarrow t_{B-L} \simeq -25$

$$m_{\nu_3}(t_{B-L})^2 = m_{\nu}(0)^2 - (3.10 \times 10^{-2})\mathcal{S}_1'(0)$$

Including another effect

$$m_{\text{eff}\nu_3}(t_{B-L})^2 = m_{\nu_3}(t_{B-L})^2 + \sqrt{\frac{3}{4}}g_4\xi_{B-L}$$

$$\Rightarrow$$

$$m_{\text{eff}\nu_3}(t_{B-L})^2 = -4m_{\nu}(0)^2$$

Therefore, we expect the spontaneous breaking of B-L at t_{B-L} .

Similarly, under the renormalization group

$$m_H(t)^2 \simeq m_H(0)^2 e^{-\frac{3}{4\pi^2} \int_t^0 \lambda_3^2 (1 + \left[\frac{-\frac{2}{3\pi^2} \int_0^{t'} g_3^2 |M_3|^2}{m_H^2}\right])}$$
$$m_{\bar{H}}(t)^2 \simeq m_{\bar{H}}(0)^2$$

At the electroweak scale $\mu \simeq 10^2 GeV \Rightarrow t_{EW} \simeq -29.6$

$$m_{\text{effH}'}(t_{EW})^2 \simeq -\frac{\epsilon^2 m_H(0)^2}{tan\beta^2}$$
, $m_{\bar{H}'}(t_{EW})^2 \simeq m_H(0)^2$

where $tan\beta = \frac{\langle H \rangle}{\langle \bar{H} \rangle}$ and $\epsilon < 1$ is related to $M_3(0)$. Therefore, at t_{EW} electroweak symmetry is broken by the expectation value

$$\langle H^{'0} \rangle = \frac{2\epsilon m_H(0)}{\tan\beta\sqrt{\frac{3}{5}g_1^2 + g_2^2}}$$

 \Rightarrow a Z-boson mass of

$$M_Z = \frac{2\epsilon m_H(0)}{tan\beta} \simeq 91 GeV$$

It follows that there is a B-L/EW gauge hierarchy given by

$$\frac{M_{A_{B-L}}}{M_Z} \simeq \frac{tan\beta}{\epsilon}$$

Our approximations are valid for the range $6.32 \le tan\beta \le 40$. For $\epsilon = \frac{1}{2.5}$, the B-L/EW hierarchy in this range is

$$15.8 \lesssim \frac{M_{A_{B-L}}}{M_Z} \lesssim 100$$

We conclude that this vacuum exhibits a natural hierarchy of $\mathcal{O}(10)$ to $\mathcal{O}(100) \Rightarrow$

 $1.42 \times 10^3 GeV \lesssim M_{A_{B-L}} \lesssim 0.91 \times 10^4 GeV$

All super-partner masses are related through intertwined renormalization group equations. \Rightarrow Measuring some masses <u>predicts the rest</u>!

For example, if

$$tan\beta \simeq 6.32, \quad \frac{M_{A_{B-L}}}{M_Z} \simeq 15.2 \Rightarrow \epsilon \simeq \frac{1}{2.5}$$

This then requires

 $M_3(0) = .216 \ m_H(0), \quad m_H(0) \simeq 7.19 \times 10^2 GeV$

which, using the scaling equation for $M_3(t)$ predicts

 $M_3(t_{EW}) \simeq 3.83 \times 10^2 GeV$