Geometry of supersymmetric backgrounds

George Papadopoulos

King's College London

4th Sakharov Conference, Moscow, May 2009

Work in collaboration with

Jan Gutowski and Ulf Gran

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	0000	000	O	O	
Motivation	and Outline				

Motivation: M-theory, string theory, AdS/CFT, Black Holes, Special Structures in geometry

- Solve the Killing spinor equations of the heterotic supergravity in all cases
- ► Give all 1/2 supersymmetric solutions of the heterotic supergravity
- Describe all 1/4 supersymmetric solutions of the heterotic supergravity
- Report on the progress for IIB and D = 11 supergravities

Heterotic 000	N = 8 backgrounds 0000	N = 4 backgrounds 000	IIB O	D = 11	Conclusions
Method					

Originally the supersymmetric solutions 4-D Einstein-Maxwell supergravity have been found using twistor methods, [Tod].

The Killing spinor equations (KSEs) of simple 5-D supergravity have been solved using the Killing spinor form bi-linears, closely related to G-structures, [Gauntlett, Gutowski, Hull, Pakis, Reall].

Throughout, the Spinorial Geometry method to solving KSEs is used, [Gillard, Gran, GP].

This is based on the gauge symmetry of KSEs and a description of spinors in terms of forms.

Heterotic 000	N = 8 backgrounds 0000	N = 4 backgrounds 000	IIB O	D = 11	Conclusions
Killing spin	or equations				

The Killing spinor equations of Heterotic supergravities are

$$\begin{aligned} \mathcal{D}\epsilon &= \hat{\nabla}\epsilon = \nabla\epsilon + \frac{1}{2}H\epsilon + \mathcal{O}(\alpha') = 0 , \quad \mathcal{F}\epsilon = F\epsilon + \mathcal{O}(\alpha') = 0 , \\ \mathcal{A}\epsilon &= d\Phi\epsilon - \frac{1}{2}H\epsilon + \mathcal{O}(\alpha') = 0 \end{aligned}$$

These are valid up to 2-loops in the sigma model calculation. It is convenient to solve them in the order

gravitino \rightarrow gaugino \rightarrow dilatino

The gravitino and gaugino have a straightforward Lie algebra interpretation while the solution of the gaugino is more involved. All have been solved [Gran, Lohrmann, GP; hep-th/0510176], [Gran, Roest, Sloane, GP; hep-th/0703143].

000	0000	000	0	0	
Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions

Gravitino and dilatino

The gravitino Killing spinor equation is

$$\mathcal{D}\epsilon = \hat{\nabla}\epsilon = \nabla\epsilon + \frac{1}{2}H\epsilon = 0$$

where $\hat{\nabla}$ is a metric connection with skew-symmetric torsion *H*, and so for generic backgrounds

 $\operatorname{hol}(\hat{\nabla}) = G = \operatorname{Spin}(9,1)$

In addition

$$\hat{\nabla}\epsilon = 0 \Rightarrow \hat{R}\epsilon = 0$$

So either

$$\operatorname{Stab}(\epsilon) = \{1\} \Longrightarrow \hat{R} = 0$$

all spinors are parallel and M is parallelizable (group manifold if dH = 0) or

 $\operatorname{Stab}(\epsilon) \neq \{1\} \Longrightarrow \epsilon \text{ singlets}$

 $\operatorname{Stab}(\epsilon) \subset \operatorname{Spin}(9,1)$ and $\operatorname{hol}(\hat{\nabla}) \subseteq \operatorname{Stab}(\epsilon)$. The solution to both gravitino and dilatino Killing spinor equations can be summarized as follows:

Heterotic •00		N = 8 backgrounds 0000	N = 4 backgrounds	IIB O	D = 11 O	Conclusio
	L	$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_L)$		N		•
	1	$Spin(7) \ltimes \mathbb{R}^8$		1(1)		•
	2	$SU(4)\ltimes \mathbb{R}^8$		1(1), 2(1)		-
	3	$Sp(2)\ltimes \mathbb{R}^8$	1(1	l), 2(1), <mark>3(</mark> 1	1)	•
	4	$(\times^2 SU(2)) \ltimes \mathbb{R}^8$	1(1),	2(1), 3(1),	4(1)	-
	5	$SU(2)\ltimes \mathbb{R}^8$	1(1), 2(1	1), 3(1), 4(1	1), 5(1)	-
	6	$U(1)\ltimes \mathbb{R}^8$	1(1), 2(1),	3(1), 4(1),	5(1), 6(1)	
	8	\mathbb{R}^{8}	1(1), 2(1), 3(1),	4(1), 5(1),	6(1), 7(1), 8(1)	-
	2	G_2		1(1), 2(1)		
	4	SU(3)	1(1),	2(2), 3(1),	4(1)	-
	8	SU(2)	1(1), 2(2), 3(3),	4(6), 5(3),	6(2), 7(1), 8(1)	-
	16	{1}	8(2), 10(1)	, 12(1), 14	(1), 16(1)	-

- ▶ *L* is the number of parallel spinors, it solutions of the gravitino and *N* is the number of solutions of both gravitino and dilatino, so $N \leq L$.
- ► The number in parenthesis denotes the different geometries for a given *N*.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	0000	000	0	0	

- ► There are differences with the holonomy groups that appear in the Berger classification
- There are compact and non-compact isotropy groups which lead to geometries with different properties
- There is a restriction on the number of parallel spinors.
- The isotropy group of more than 8 spinors is {1}
- The conditions on the geometry of the spacetime which arise from the KSEs are known in all cases

Heterotic 00●		N = 8 backgrounds 0000	N = 4 backgrounds 000	IIB O	D = 11 O	Conclusion
		$\operatorname{Stab}(\epsilon_1,\ldots,\epsilon_r)$		N		-
	1	$Spin(7) \ltimes \mathbb{R}^{8}$		1(1)		-
	2	$SU(4)\ltimes \mathbb{R}^8$		1(1), 2(1)		-
	3	$Sp(2)\ltimes \mathbb{R}^8$	1(1	1), 2(1), 3(1	1)	-
	4	$(\times^2 SU(2))\ltimes \mathbb{R}^8$	1(1),	2(1), 3(1),	4(1)	-
	5	$SU(2)\ltimes \mathbb{R}^8$	1(1), 2(1	1), 3(1), 4(1	1), 5(1)	_
	6	$U(1)\ltimes \mathbb{R}^8$	1(1), 2(1),	$3(1), \ 4(1),$	5(1), 6(1)	
	8	\mathbb{R}^{8}	1(1), 2(1), 3(1),	4(1), 5(1),	6(1), 7(1), 8(1)	-
	2	G_2		1(1), 2(1)		-
	4	<i>SU</i> (3)	1(1),	2(2), 3(1),	4(1)	_
	8	SU(2)	1(1), 2(2), 3(3),	4(6) , 5 (3),	6(2), 7(1), 8(1)	_
	16	{1}	8(2), 10(1)	, 12(1), 14	(1), 16(1)	_

• If the isotropy group is the identity, the 1/2 susy solutions are WZNW models.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	OOO	000	O	O	
N = 8 SU(2)	2)				

The solution of the conditions that arise from the Killing spinor equations [GP] give

$$\begin{aligned} ds^2 &= \eta_{ab}\lambda^a\lambda^b + h\,ds^2_{hk}\,, \quad e^{2\Phi} = h \\ H &= \frac{1}{3}\eta_{ab}\lambda^a \wedge d\lambda^b + \frac{2}{3}\eta_{ab}\lambda^a \wedge \mathcal{F}^b - \star_{hk}\tilde{d}h \end{aligned}$$

• The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with local frame (λ^a, e^i) , where λ^a is an anti-self dual instanton connection and

$$\mathcal{F}^{a}\equiv d\lambda^{a}-rac{1}{2}H^{a}{}_{bc}\lambda^{b}\lambda^{c}=rac{1}{2}H^{a}{}_{ij}e^{i}\wedge e^{j}$$

- ▶ The base space *B* is a hyper-Kähler 4-manifold
- $\mathfrak{Lie}G = \mathbb{R}^{6,1}$, $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2)$, \mathfrak{cw}_6 , self-dual, [Chamseddine,Figueroa, Sabra]
- Φ depends only on the coordinates of *B*
- Field equations require

$$\star_{\rm hk} dH \equiv -\tilde{\nabla}_{\rm hk}^2 h - \frac{1}{2} \eta_{ab} \,\mathcal{F}_{ij}^a \,\,\mathcal{F}^{bij} = \frac{\alpha'}{8} \left({\rm tr} \check{R}_{ij} \check{R}^{ij} - {\rm tr} F_{ij} F^{ij} \right) + \mathcal{O}(\alpha'^2)$$

where $\check{\nabla} = \nabla - \frac{1}{2} H.$

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	$O \bullet O \circ$	000	O	O	
Solutions					

Suppose that λ is flat, $\mathcal{F} = 0$, and $F = \check{R}$, so dH = 0. There are two classes of solutions.

 $G \times B_{\rm hk}$,

where

$$G = \mathbb{R}^{5,1}, AdS_3 \times S^3, CW_6$$

These include vacua for compactifications to 6 and 3 dimensions.

The 5-brane solution with flat [Callan, Harvey, Strominger] or curved worldvolume and transverse space B_{hk} . For $B_{hk} = \mathbb{R}^4$

$$\begin{aligned} ds^2 &= ds^2(G) + hds^2(\mathbb{R}^4) , \quad H = \frac{1}{3} \eta_{ab} \lambda^a \wedge d\lambda^b - \star_{hk} \tilde{d}h , \\ e^{2\Phi} &= h , \quad h = 1 + \sum_{\ell} \frac{N_{\ell}}{|x - x_{\ell}|^2} \end{aligned}$$

At infinity is $G \times \mathbb{R}^4$, and $G \times S^3 \times \mathbb{R}$ with linear dilaton near the position of the branes. The 5-brane charge at infinity is $p = \sum_{\ell} N_{\ell}$

Heterotic 000	N = 8 backgrounds $OO \bullet O$	N = 4 backgrounds 000	IIB O	D = 11	Conclusions
N7 1					

New solutions

Again suppose that $F = \check{R}$, ie dH = 0. Take $G = AdS_3 \times S^3$ and λ a $SU(2) = S^3$ instanton on $B_{hk} = \mathbb{R}^4$. Using t'Hooft's ansatz to set

$$C_i^r = (I_r)^j \partial_j \log(1 + \frac{\rho^2}{|x|^2}), \quad r = 1, 2, 3$$

the smooth 1-instanton solution, $\lambda = dgg^{-1} - gCg^{-1}, g \in SU(2)$,

$$\begin{aligned} ds^2 &= ds^2 (AdS_3) + \delta_{rs} \lambda^r \lambda^s + h ds^2 (\mathbb{R}^4) , \\ H &= d \operatorname{vol}(AdS_3) + \frac{1}{3} \delta_{rs} \lambda^r \wedge d\lambda^s + \frac{2}{3} \delta_{rs} \lambda^r \wedge \mathcal{F}^s - \star_{hk} \tilde{d}h , \\ e^{2\Phi} &= h , \quad h = 1 + 4 \frac{|x|^2 + 2\rho^2}{(|x|^2 + \rho^2)^2} \end{aligned}$$

where ρ is the size of the instanton.

This solution $M = AdS_3 \times X_7$ is smooth with one $AdS_3 \times S^3 \times \mathbb{R}^4$ asymptotic region. There is no throat at |x| = 0, the location of the instanton. The dilaton is bounded everywhere on spacetime. Using the ADHM construction, solutions can be constructed that depend on $8\nu - 3$ continuous parameters.

Heterotic 000	N = 8 backgrounds $000 \bullet$	N = 4 backgrounds 000	IIB O	D = 11	Conclusions
$N=8,{\mathbb R}^8$					

There is a choice of coordinates [GP] such that

$$ds^{2} = 2e^{-}e^{+} + ds^{2}(\mathbb{R}^{8}), \quad H = d(e^{-} \wedge e^{+}), e^{-} = h^{-1}dv, \quad e^{+} = du + Vdv + n_{i}dx^{i}$$

All components depend on v and x, and $e_+ = \partial_u$ is Killing. If there is no v dependence, the field equations imply that

$$\partial_i^2 h = \partial_i^2 V = 0$$
, $\partial^i dn_{ij} = 0$

The solutions is a superposition of fundamental strings [Dabholkar, Gibbons, Harvey, Ruis-Ruis], pp-waves and null rotations (also known as chiral null models).

Heterotic 000	N = 8 backgrounds 0000	N = 4 backgrounds $\bullet \circ \circ$	IIB O	D = 11 O	Conclusions
N = 4, SU(2)	2)				

The solution of the conditions that arise from the Killing spinor equations give

$$egin{array}{rcl} ds^2&=&\eta_{ab}\lambda^a\lambda^b+h\,ds_4^2\ ,\ H&=&rac{1}{3}\eta_{ab}\lambda^a\wedge d\lambda^b+rac{2}{3}\eta_{ab}\lambda^a\wedge \mathcal{F}^b-\star_4 ilde dh \end{array}$$

- ► The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with an anti-self dual connection $\lambda^a \equiv e^a$ with curvature, \mathcal{F} is either an anti-self-dual instanton or $\mathcal{F} \in \mathfrak{su}(2) \oplus \mathfrak{u}(1)$.
- ► The base space *B* is either hyper-Kähler or Kähler 4-manifold
- $\begin{array}{l} \blacktriangleright \ \mathfrak{Lie}G = \\ \mathbb{R}^{6,1} \ , \ \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2) \ , \ \mathfrak{cw}_6 \ , \ \mathbb{R}^{2,1} \oplus \mathfrak{su}(2) \ , \ \mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}^3 \ , \ \mathfrak{cw}_4 \oplus \mathbb{R}^2 \end{array}$
- Φ depends not only on the coordinates of *B* but also on the coordinates of the fibre *G*
- These solutions can be thought of as WZNW models with linear dilaton twisted over B.

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	0000	$\bigcirc \bullet \bigcirc$	O	O	
N = 4, $SU($	(3)				

The solution of the conditions that arise from the Killing spinor equations give

$$\begin{array}{ll} ds^2 &=& \eta_{ab}\lambda^a\lambda^b + ds^2(B) \ , \\ H &=& \frac{1}{3}\eta_{ab}\lambda^a \wedge d\lambda^b + \frac{2}{3}\eta_{ab}\lambda^a \wedge \mathcal{F}^b + \pi^*\tilde{H} \end{array}$$

- The spacetime is a Principal bundle $M = P(G, B; \pi)$ equipped with an connection $\lambda^a \equiv e^a$ with curvature \mathcal{F} .
- $\mathfrak{Lie}G = \mathbb{R}^{3,1}$, $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}$, $\mathfrak{su}(2) \oplus \mathbb{R}$, \mathfrak{cw}_4
- Φ depends only on the coordinates of *B*
- If *G* is abelian, *B* is a complex, conformally balanced, with an SU(3)-structure compatible with a skew-symmetric connection with torsion, and $\mathcal{F} \in \mathfrak{su}(3)$. (CYs with torsion)
- If G non-abelian, B is a complex, conformally balanced, with a U(3)-structure compatible with a skew-symmetric connection with torsion, and F ∈ su(3) ⊕ u(1) (Hermitian-Einstein).

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	0000	$\bigcirc \bigcirc \bigcirc$	O	O	
$N = 4, \times^2 S$	$U(2)\ltimes \mathbb{R}^8$				

The solution of the conditions that arise from the Killing spinor equations give

$$\begin{aligned} ds^2 &= 2e^-e^+ + h_1 \, d\sigma_{hk}^2 + h_2 \, d\delta_{hk}^2 \,, \\ H &= e^+ \wedge de^- + \frac{1}{2} h_{ij} \, e^- \wedge e^i \wedge e^j - \star_\sigma dh_1 - \star_\delta dh_2 \\ e^- &= (dv + m_i x^i) \,, \quad e^+ = du + V dv + n_i dx^i \end{aligned}$$

where $e_+ = \partial_u$ is a null Killing vector field and e^i is a transverse frame to the lightcone.

These solutions are in the same universality class as those of rotating intersecting 5-branes with transverse space a hyper-Kähler manifold and superposed with a pp-wave and a fundamental string.

Heterotic 000	N = 8 backgrounds 0000	N = 4 backgrounds 000	IIB ●	D = 11	Conclusions
IIB					

[Gutowski, Gran, Roest, GP]

- N = 1, the KSEs have been solved in all cases
- ▶ N = 2, the KSEs have been solved provided P = G = 0
- ► N = 28, there is a unique plane wave solution constructed by Bena and Roidan
- N > 28, all solutions are maximally supersymmetric
- ▶ N = 32, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{9,1}$, $AdS_5 \times S^5$ [Freund, Rubin; Schwarz], and the maximally supersymmetric plane wave [Blau, Hull, Figueroa, GP]

Heterotic 000	N = 8 backgrounds 0000	N = 4 backgrounds 000	IIB O	D = 11	Conclusions
D = 11					

- ► N = 1, the KSEs have been solved in all case [Gauntlett, Pakis, Gutowski]
- ► N > 29, all solutions are maximally supersymmetric [Gutowski, Gran, Roest, GP]
- ► N = 32, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{10,1}$, $AdS_4 \times S^7$, $AdS_7 \times S^4$, [Freund, Rubin], and the maximally supersymmetric plane wave [Kowalski-Glikman]
- ► IIA, *N* = 31, all solutions are maximally supersymmetric [Bandos, Azcarraga, Varela]

Heterotic	N = 8 backgrounds	N = 4 backgrounds	IIB	D = 11	Conclusions
000	0000	000	O	O	
Conclusions					

- The Killing spinor equations of heterotic supergravity have been solved in ALL cases.
- The 1/2-supersymmetric heterotic solutions are either fundamental rotating strings superposed with pp-waves, or can be constructed from hyper-Kähler 4-manifolds and their anti-self dual instantons.
- ► The 1/4-supersymmetric heterotic solutions are associated with either hyper-Kähler or Kähler 4-manifolds, or suitable 6-manifolds with a either U(3) or SU(3) structure and their anti-self dual instantons or Hermitian-Einstein connections.