Geometry of supersymmetric backgrounds

George Papadopoulos
King's College London
4th Sakharov Conference, Moscow, May 2009

Work in collaboration with

Jan Gutowski and Ulf Gran

Motivation and Outline

Motivation: M-theory, string theory, AdS/CFT, Black Holes, Special Structures in geometry

- Solve the Killing spinor equations of the heterotic supergravity in all cases
- Give all $1 / 2$ supersymmetric solutions of the heterotic supergravity
- Describe all $1 / 4$ supersymmetric solutions of the heterotic supergravity
- Report on the progress for IIB and $D=11$ supergravities

Method

Originally the supersymmetric solutions 4-D Einstein-Maxwell supergravity have been found using twistor methods, [Tod].

The Killing spinor equations (KSEs) of simple 5-D supergravity have been solved using the Killing spinor form bi-linears, closely related to G-structures, [Gauntlett, Gutowski, Hull, Pakis, Reall].

Throughout, the Spinorial Geometry method to solving KSEs is used, [Gillard, Gran, GP].
This is based on the gauge symmetry of KSEs and a description of spinors in terms of forms.

Killing spinor equations

The Killing spinor equations of Heterotic supergravities are

$$
\begin{aligned}
\mathcal{D} \epsilon & =\hat{\nabla} \epsilon=\nabla \epsilon+\frac{1}{2} H \epsilon+\mathcal{O}\left(\alpha^{\prime}\right)=0, \quad \mathcal{F} \epsilon=F \epsilon+\mathcal{O}\left(\alpha^{\prime}\right)=0 \\
\mathcal{A} \epsilon & =d \Phi \epsilon-\frac{1}{2} H \epsilon+\mathcal{O}\left(\alpha^{\prime}\right)=0
\end{aligned}
$$

These are valid up to 2-loops in the sigma model calculation.
It is convenient to solve them in the order

$$
\text { gravitino } \rightarrow \text { gaugino } \rightarrow \text { dilatino }
$$

The gravitino and gaugino have a straightforward Lie algebra interpretation while the solution of the gaugino is more involved. All have been solved [Gran, Lohrmann, GP; hep-th/0510176], [Gran, Roest, Sloane, GP; hep-th/0703143].

Gravitino and dilatino

The gravitino Killing spinor equation is

$$
\mathcal{D} \epsilon=\hat{\nabla} \epsilon=\nabla \epsilon+\frac{1}{2} H \epsilon=0
$$

where $\hat{\nabla}$ is a metric connection with skew-symmetric torsion H, and so for generic backgrounds

$$
\operatorname{hol}(\hat{\nabla})=G=\operatorname{Spin}(9,1)
$$

In addition

$$
\hat{\nabla} \epsilon=0 \Rightarrow \hat{R} \epsilon=0
$$

So either

$$
\operatorname{Stab}(\epsilon)=\{1\} \Longrightarrow \hat{R}=0
$$

all spinors are parallel and M is parallelizable (group manifold if $d H=0$) or

$$
\operatorname{Stab}(\epsilon) \neq\{1\} \Longrightarrow \epsilon \text { singlets }
$$

$\operatorname{Stab}(\epsilon) \subset \operatorname{Spin}(9,1)$ and $\operatorname{hol}(\hat{\nabla}) \subseteq \operatorname{Stab}(\epsilon)$. The solution to both gravitino and dilatino Killing spinor equations can be summarized as follows:

L	$\operatorname{Stab}\left(\epsilon_{1}, \ldots, \epsilon_{L}\right)$	N
1	$\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$	$1(1)$
2	$S U(4) \ltimes \mathbb{R}^{8}$	$1(1), 2(1)$
3	$S p(2) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1)$
4	$\left(\times^{2} S U(2)\right) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1)$
5	$S U(2) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1), 5(1)$
6	$U(1) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1), 5(1), 6(1)$
8	\mathbb{R}^{8}	$1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)$
2	G_{2}	$1(1), 2(1)$
4	$S U(3)$	$1(1), 2(2), 3(1), 4(1)$
8	$S U(2)$	$1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)$
16	$\{1\}$	$8(2), 10(1), 12(1), 14(1), 16(1)$

- L is the number of parallel spinors, ie solutions of the gravitino and N is the number of solutions of both gravitino and dilatino, so $N \leq L$.
- The number in parenthesis denotes the different geometries for a given N.
- There are differences with the holonomy groups that appear in the Berger classification
- There are compact and non-compact isotropy groups which lead to geometries with different properties
- There is a restriction on the number of parallel spinors.
- The isotropy group of more than 8 spinors is $\{1\}$
- The conditions on the geometry of the spacetime which arise from the KSEs are known in all cases

L	$\operatorname{Stab}\left(\epsilon_{1}, \ldots, \epsilon_{L}\right)$	N
1	$\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$	$1(1)$
2	$S U(4) \ltimes \mathbb{R}^{8}$	$1(1), 2(1)$
3	$S p(2) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1)$
4	$\left(\times^{2} \operatorname{SU}(2)\right) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1)$
5	$S U(2) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1), 5(1)$
6	$U(1) \ltimes \mathbb{R}^{8}$	$1(1), 2(1), 3(1), 4(1), 5(1), 6(1)$
8	\mathbb{R}^{8}	$1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)$
2	G_{2}	$1(1), 2(1)$
4	$S U(3)$	$1(1), 2(2), 3(1), 4(1)$
8	$S U(2)$	$1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)$
16	$\{1\}$	$8(2), 10(1), 12(1), 14(1), 16(1)$

- If the isotropy group is the identity, the $1 / 2$ susy solutions are WZNW models.

$N=8, S U(2)$

The solution of the conditions that arise from the Killing spinor equations [GP] give

$$
\begin{aligned}
d s^{2} & =\eta_{a b} \lambda^{a} \lambda^{b}+h d s_{\mathrm{hk}}^{2}, \quad e^{2 \Phi}=h \\
H & =\frac{1}{3} \eta_{a b} \lambda^{a} \wedge d \lambda^{b}+\frac{2}{3} \eta_{a b} \lambda^{a} \wedge \mathcal{F}^{b}-\star_{\mathrm{hk}} \tilde{d} h
\end{aligned}
$$

- The spacetime is a Principal bundle $M=P(G, B ; \pi)$ equipped with local frame $\left(\lambda^{a}, e^{i}\right)$, where λ^{a} is an anti-self dual instanton connection and

$$
\mathcal{F}^{a} \equiv d \lambda^{a}-\frac{1}{2} H^{a}{ }_{b c} \lambda^{b} \lambda^{c}=\frac{1}{2} H^{a}{ }_{i j} e^{i} \wedge e^{j}
$$

- The base space B is a hyper-Kähler 4-manifold
- $\mathfrak{L i e} G=\mathbb{R}^{6,1}, \quad \mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s u}(2), \quad \mathfrak{c w}_{6}$, self-dual, [Chamseddine,Figueroa, Sabra]
- Φ depends only on the coordinates of B
- Field equations require

$$
\begin{aligned}
\star_{\mathrm{hk}} d H & \equiv-\tilde{\nabla}_{\mathrm{hk}}^{2} h-\frac{1}{2} \eta_{a b} \mathcal{F}_{i j}^{a} \mathcal{F}^{b i j}=\frac{\alpha^{\prime}}{8}\left(\operatorname{tr} \check{R}_{i j} \check{R}^{i j}-\operatorname{tr} F_{i j} F^{i j}\right)+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
\text { where } \check{\nabla} & =\nabla-\frac{1}{2} H .
\end{aligned}
$$

Solutions

Suppose that λ is flat, $\mathcal{F}=0$, and $F=\breve{R}$, so $d H=0$. There are two classes of solutions.

$$
G \times B_{\mathrm{hk}},
$$

where

$$
G=\mathbb{R}^{5,1}, \quad A d S_{3} \times S^{3}, \quad C W_{6}
$$

These include vacua for compactifications to 6 and 3 dimensions.
The 5-brane solution with flat [Callan, Harvey, Strominger] or curved worldvolume and transverse space B_{hk}. For $B_{\mathrm{hk}}=\mathbb{R}^{4}$

$$
\begin{aligned}
d s^{2} & =d s^{2}(G)+h d s^{2}\left(\mathbb{R}^{4}\right), \quad H=\frac{1}{3} \eta_{a b} \lambda^{a} \wedge d \lambda^{b}-\star_{\mathrm{hk}} \tilde{d} h \\
e^{2 \Phi} & =h, \quad h=1+\sum_{\ell} \frac{N_{\ell}}{\left|x-x_{\ell}\right|^{2}}
\end{aligned}
$$

At infinity is $G \times \mathbb{R}^{4}$, and $G \times S^{3} \times \mathbb{R}$ with linear dilaton near the position of the branes. The 5 -brane charge at infinity is $p=\sum_{\ell} N_{\ell}$

New solutions

Again suppose that $F=\check{R}$, ie $d H=0$. Take $G=A d S_{3} \times S^{3}$ and λ a $S U(2)=S^{3}$ instanton on $B_{\mathrm{hk}}=\mathbb{R}^{4}$. Using t'Hooft's ansatz to set

$$
C_{i}^{r}=\left(I_{r}\right)_{i}^{j} \partial_{j} \log \left(1+\frac{\rho^{2}}{|x|^{2}}\right), \quad r=1,2,3
$$

the smooth 1-instanton solution, $\lambda=d g g^{-1}-g C^{-1}, g \in S U(2)$,

$$
\begin{aligned}
d s^{2} & =d s^{2}\left(A d S_{3}\right)+\delta_{r s} \lambda^{r} \lambda^{s}+h d s^{2}\left(\mathbb{R}^{4}\right), \\
H & =d \operatorname{vol}\left(A d S_{3}\right)+\frac{1}{3} \delta_{r s} \lambda^{r} \wedge d \lambda^{s}+\frac{2}{3} \delta_{r s} \lambda^{r} \wedge \mathcal{F}^{s}-\star_{\mathrm{hk}} \tilde{d} h, \\
e^{2 \Phi} & =h, \quad h=1+4 \frac{|x|^{2}+2 \rho^{2}}{\left(|x|^{2}+\rho^{2}\right)^{2}}
\end{aligned}
$$

where ρ is the size of the instanton.
This solution $M=A d S_{3} \times X_{7}$ is smooth with one $A d S_{3} \times S^{3} \times \mathbb{R}^{4}$ asymptotic region. There is no throat at $|x|=0$, the location of the instanton. The dilaton is bounded everywhere on spacetime. Using the ADHM construction, solutions can be constructed that depend on $8 \nu-3$ continuous parameters.

$$
N=8, \mathbb{R}^{8}
$$

There is a choice of coordinates [GP] such that

$$
\begin{aligned}
d s^{2} & =2 e^{-} e^{+}+d s^{2}\left(\mathbb{R}^{8}\right), \quad H=d\left(e^{-} \wedge e^{+}\right), \\
e^{-} & =h^{-1} d v, \quad e^{+}=d u+V d v+n_{i} d x^{i}
\end{aligned}
$$

All components depend on v and x, and $e_{+}=\partial_{u}$ is Killing. If there is no v dependence, the field equations imply that

$$
\partial_{i}^{2} h=\partial_{i}^{2} V=0, \quad \partial^{i} d n_{i j}=0
$$

The solutions is a superposition of fundamental strings [Dabholkar, Gibbons, Harvey, Ruis-Ruis], pp-waves and null rotations (also known as chiral null models).

$N=4, S U(2)$

The solution of the conditions that arise from the Killing spinor equations give

$$
\begin{aligned}
d s^{2} & =\eta_{a b} \lambda^{a} \lambda^{b}+h d s_{4}^{2} \\
H & =\frac{1}{3} \eta_{a b} \lambda^{a} \wedge d \lambda^{b}+\frac{2}{3} \eta_{a b} \lambda^{a} \wedge \mathcal{F}^{b}-\star_{4} \tilde{d} h
\end{aligned}
$$

- The spacetime is a Principal bundle $M=P(G, B ; \pi)$ equipped with an anti-self dual connection $\lambda^{a} \equiv e^{a}$ with curvature, \mathcal{F} is either an anti-self-dual instanton or $\mathcal{F} \in \mathfrak{s u}(2) \oplus \mathfrak{u}(1)$.
- The base space B is either hyper-Kähler or Kähler 4-manifold
- $\mathfrak{L i e} G=$ $\mathbb{R}^{6,1}, \quad \mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s u}(2), \quad \mathfrak{c w}_{6}, \quad \mathbb{R}^{2,1} \oplus \mathfrak{s u}(2), \quad \mathfrak{s l}(2, \mathbb{R}) \oplus \mathbb{R}^{3}, \quad \mathfrak{c w}_{4} \oplus \mathbb{R}^{2}$
- Φ depends not only on the coordinates of B but also on the coordinates of the fibre G
- These solutions can be thought of as WZNW models with linear dilaton twisted over B.

$N=4, S U(3)$

The solution of the conditions that arise from the Killing spinor equations give

$$
\begin{aligned}
d s^{2} & =\eta_{a b} \lambda^{a} \lambda^{b}+d s^{2}(B), \\
H & =\frac{1}{3} \eta_{a b} \lambda^{a} \wedge d \lambda^{b}+\frac{2}{3} \eta_{a b} \lambda^{a} \wedge \mathcal{F}^{b}+\pi^{*} \tilde{H}
\end{aligned}
$$

- The spacetime is a Principal bundle $M=P(G, B ; \pi)$ equipped with an connection $\lambda^{a} \equiv e^{a}$ with curvature \mathcal{F}.
- $\mathfrak{L i e} G=\mathbb{R}^{3,1}, \quad \mathfrak{s l}(2, \mathbb{R}) \oplus \mathbb{R}, \quad \mathfrak{s u}(2) \oplus \mathbb{R}, \quad \mathfrak{c w}_{4}$
- Φ depends only on the coordinates of B
- If G is abelian, B is a complex, conformally balanced, with an $S U(3)$-structure compatible with a skew-symmetric connection with torsion, and $\mathcal{F} \in \mathfrak{s u}(3)$. (CYs with torsion)
- If G non-abelian, B is a complex, conformally balanced, with a $U(3)$-structure compatible with a skew-symmetric connection with torsion, and $\mathcal{F} \in \mathfrak{s u}(3) \oplus u(1)$ (Hermitian-Einstein).

$$
N=4, \times^{2} S U(2) \ltimes \mathbb{R}^{8}
$$

The solution of the conditions that arise from the Killing spinor equations give

$$
\begin{aligned}
d s^{2} & =2 e^{-} e^{+}+h_{1} d \sigma_{\mathrm{hk}}^{2}+h_{2} d \delta_{\mathrm{hk}}^{2} \\
H & =e^{+} \wedge d e^{-}+\frac{1}{2} h_{i j} e^{-} \wedge e^{i} \wedge e^{j}-\star_{\sigma} d h_{1}-\star_{\delta} d h_{2} \\
e^{-} & =\left(d v+m_{i} x^{i}\right), \quad e^{+}=d u+V d v+n_{i} d x^{i}
\end{aligned}
$$

where $e_{+}=\partial_{u}$ is a null Killing vector field and e^{i} is a transverse frame to the lightcone.

- These solutions are in the same universality class as those of rotating intersecting 5-branes with transverse space a hyper-Kähler manifold and superposed with a pp-wave and a fundamental string .

IIB

- $N=1$, the KSEs have been solved in all cases
- $N=2$, the KSEs have been solved provided $P=G=0$
- $N=28$, there is a unique plane wave solution constructed by Bena and Roidan
- $N>28$, all solutions are maximally supersymmetric
- $N=32$, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{9,1}, A d S_{5} \times S^{5}$ [Freund, Rubin; Schwarz], and the maximally supersymmetric plane wave [Blau, Hull, Figueroa, GP]
- $N=1$, the KSEs have been solved in all case [Gauntlett, Pakis, Gutowski]
- $N>29$, all solutions are maximally supersymmetric [Gutowski, Gran, Roest, GP]
- $N=32$, the maximally supersymmetric solutions, classified by [Figueroa, GP], are $\mathbb{R}^{10,1}, A d S_{4} \times S^{7}, A d S_{7} \times S^{4}$, [Freund, Rubin], and the maximally supersymmetric plane wave [Kowalski-Glikman]
- IIA, $N=31$, all solutions are maximally supersymmetric [Bandos, Azcarraga, Varela]

Conclusions

- The Killing spinor equations of heterotic supergravity have been solved in ALL cases.
- The $1 / 2$-supersymmetric heterotic solutions are either fundamental rotating strings superposed with pp-waves, or can be constructed from hyper-Kähler 4-manifolds and their anti-self dual instantons.
- The $1 / 4$-supersymmetric heterotic solutions are associated with either hyper-Kähler or Kähler 4-manifolds, or suitable 6-manifolds with a either $U(3)$ or $S U(3)$ structure and their anti-self dual instantons or Hermitian-Einstein connections.

