$\mathcal{N} = 3$ Superfield Formulation of the ABJM and BLG Models

Igor B. Samsonov¹

¹Tomsk Polytechnic University, Tomsk, Russia

4-th International Sakharov Conference on Physics, 18 May 2009

References

I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B.S., B.M. Zupnik, JHEP 0903 (2009) 096, arXiv:0811.4774 [hep-th].

Very well known example:

- In the bulk of D3 brane we have four-dimensional gauge theory with 16 supersymmetries $\Rightarrow \mathcal{N} = 4$ Abeian gauge theory.
- Stack of D3 branes $\Rightarrow \mathcal{N} = 4$ SYM with gauge group SU(n).
- AdS₅/CFT₄ correspondence: Correlation functions of composite operators in $\mathcal{N} = 4$ SYM are related to the corresponding functions of the IIB supergravity in $AdS_5 \times S^5$ background.

Very well known example:

- In the bulk of D3 brane we have four-dimensional gauge theory with 16 supersymmetries $\Rightarrow \mathcal{N} = 4$ Abeian gauge theory.
- Stack of D3 branes $\Rightarrow \mathcal{N} = 4$ SYM with gauge group SU(n).
- AdS₅/CFT₄ correspondence: Correlation functions of composite operators in $\mathcal{N} = 4$ SYM are related to the corresponding functions of the IIB supergravity in $AdS_5 \times S^5$ background.

Analogous recent achievements for M2 brane

- In the bulk of M2 brane lives a three-dimensional superconformal gauge theory with 16 supersymmetries ⇒ N = 8, d = 3 Chern-Simons-matter gauge theory, or, Bagger-Lambert-Gustavsson (BGL) theory [J. Bagger, N. Lambert, Phys. Rev. D75 (2007) 045020; D77 (2008) 065008; JHEP 0802 (2008) 105; A. Gustavsson, JHEP 0804 (2008) 083; Nucl. Phys. B807 (2009) 315; Nucl. Phys. B811 (2009) 66].
- Stack of M2 branes $\Rightarrow \mathcal{N} = 6$, d = 3 Chern-Simons-matter theory with gauge group $SU(n) \times SU(n)$, or, Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, JHEP 0810 (2008) 091]
- AdS₄/CFT₃ correspondence: Chern-Simons-matter model with $\mathcal{N} = 6$ supersymmetry have dual gravitation description in terms of superstrings on $AdS_4 \times CP^3$ in low-energy limit.

Definition:

- ABJM model is a $d = 3 \mathcal{N} = 6$ superconformal Chern-Simons-matter theory with gauge group $SU(n)_L \times SU(n)_R$.
- BLG model is a d = 3 $\mathcal{N} = 8$ superconformal Chern-Simons-matter theory with gauge group $SO(4) = SU(2) \times SU(2)$.

Note: The ABJM model reduces to BLG theory when the gauge group is $SU(2) \times SU(2)$. \Rightarrow BLG model is a particular case of ABJM theory.

Field content:

- 4 complex scalars: f^{I} , \bar{f}_{I} , I = 1, 2, 3, 4 (index of SU(4)) in bifundamental representation;
- 4 complex spinors: ψ^I_{α} , $\bar{\psi}_{I\alpha}$, $\alpha = 1, 2$ (index of SU(2)) in bifundamental representation;
- 2 vector fields: $A^L_\mu,\,A^R_\mu$ in the adjoint representations of $SU(n)_L$ and $SU(n)_R$ respectively.

The ABJM action

$$\begin{split} S^{ABJM} &= S_{mat} + S_{CS} + S_{int}, \\ S_{mat} &= \frac{k}{2\pi} \text{tr} \int d^3 x (-\nabla^{\mu} f^I \nabla_{\mu} \bar{f}_I + i \bar{\psi}_I \gamma^{\mu} \nabla_{\mu} \psi^I), \\ S_{CS} &= \frac{k}{2\pi} \text{tr} \int d^3 x \varepsilon^{\mu\nu\rho} (\frac{1}{2} A^L_{\mu} \partial_{\nu} A^L_{\rho} + \frac{1}{3} A^L_{\mu} A^L_{\nu} A^L_{\rho} - \frac{1}{2} A^R_{\mu} \partial_{\nu} A^R_{\rho} - \frac{1}{3} A^R_{\mu} A^R_{\nu} A^$$

 $\mathcal{N} = 6$ supersymmetry (on-shell)

$$\begin{split} \delta f^{I} &= -i\epsilon^{[IJ]\alpha}\bar{\psi}_{J\alpha} \\ \delta \psi^{I} &= \gamma^{\mu}\epsilon^{[IJ]}\nabla_{\mu}\bar{f}_{J} + \delta_{3}\psi, \quad (\delta_{3}\psi\sim\epsilon fff) \\ \delta A^{L}_{\mu} &= \epsilon^{[IJ]}\gamma_{\mu}\bar{\psi}_{I}\bar{f}_{J} - \epsilon_{[IJ]}f^{I}\psi^{J}\gamma_{\mu} \\ \delta A^{R}_{\mu} &= \epsilon^{[IJ]}\bar{f}_{I}\gamma_{\mu}\bar{\psi}_{J} - \epsilon_{[IJ]}\psi^{I}\gamma_{\mu}f^{J}. \end{split}$$

Here $\nabla_\mu f^I=\partial_\mu f^I+iA^L_\mu f^I-if^IA^R_\mu$, k is the Chern-Simons level.

Our goal:

To develop an unconstrained $\mathcal{N}=3$ superfield formulation of the ABJM model. Such a formulation should

- make manifest the symmetries of the ABJM theory,
- explain the structure of the scalar potential.

Known superfield formulations of the ABJM theory

- In terms of $\mathcal{N} = 1$ superfields: A. Mauri, A.C. Petkou, Phys. Lett. B666 (2008) 527;
- In terms of $\mathcal{N} = 2$ superfields: M. Benna, I. Klebanov, T. Klose, M. Smedback, JHEP 0809 (2008) 027;
- In terms of on-shell N = 6 and N = 8 superfields: M. Cederwall, JHEP 0809 (2008) 116, JHEP 0810 (2008) 070;
 I.A. Bandos, Phys. Lett. B669 (2008) 105.

Standard $\mathcal{N} = 3$ superspace:

$$\{x_{\mu}, \theta^A_{lpha}\}, \qquad A=1,2,3 \text{ (index of } SO(3)).$$

Harmonic $\mathcal{N} = 3$ superspace:

 $\begin{array}{ll} \text{Coordinates:} & \{x^{\mu}, \theta^{++}_{\alpha}, \theta^{--}_{\alpha}, \theta^{0}_{\alpha}, u^{\pm}_{i}\},\\ \text{Harmonics:} & u^{\pm}_{i} \in SU(2), \quad u^{+i}u^{+}_{i} = 0, \ u^{-i}u^{-}_{i} = 0, \ u^{+i}u^{-}_{i} = 1.\\ \text{Harmonic derivatives:} & \mathcal{D}^{++}, \quad \mathcal{D}^{--}, \quad \mathcal{D}^{0} = [\mathcal{D}^{++}, \mathcal{D}^{--}].\\ \text{Grassmann derivatives:} & D^{++}_{\alpha}, \quad D^{--}_{\alpha}, \quad D^{0}_{\alpha}. \end{array}$

Superfields

• q-hypermultiplet:
$$q^+(x_\mu, \theta^{++}_\alpha, \theta^0_\alpha, u^{\pm}_i)$$

$$q^+: \{f^i, \bar{f}_i, \psi^i_{\alpha}, \bar{\psi}_{i\alpha}\}, \quad i = 1, 2.$$

2 Vector superfield: $V^{++}(x_{\mu}, \theta_{\alpha}^{++}, \theta_{\alpha}^{0}, u_{i}^{\pm})$

 $V^{++}: \quad \{A_{\mu}, \phi^{(ij)}, \lambda_{\alpha}, \lambda_{\alpha}^{(ij)}\}.$

For the ABJM model we need:

- $\bullet~2$ hypermultiplet superfields, $q^{+a}\text{, }a=1,2$
- 2 vector superfield, V_L^{++} , V_R^{++} .

The action in the Abelian case

$$S_{\mathcal{N}=6} = S_{hyp} + S_{gauge},$$

$$S_{hyp} = \int d\zeta^{(-4)} \bar{q}^{+a} (\mathcal{D}^{++} + V_L^{++} - V_R^{++}) q_a^+,$$

$$S_{gauge} = S_{CS}[V_L^{++}] - S_{CS}[V_R^{++}], \quad S_{CS}[V^{++}] = \frac{ik}{8\pi} \int d\zeta^{(-4)} V^{++} W^{++}.$$

Here $W^{++} = -\frac{1}{4}(D^{++})^2 V^{--}$ is a superfield strength corresponding to the gauge superfield V^{++} ; V^{--} is expressed through V^{++} from the equation $D^{++}V^{--} = D^{--}V^{++}$.

• No any superfield potential $S_{int} \sim g \int d\zeta^{(-4)} (\bar{q}^{+a}q_a^+)^2$ is admissible!

Symmetries of the action $S_{\mathcal{N}=6}$:

1

- Manifest $\mathcal{N} = 3$ supersymmetry;
- Hidden $\mathcal{N} = 3$ supersymmetry with parameters $\epsilon^{\alpha(ab)}$:

$$\delta_{\epsilon}q^{+a} = i\epsilon^{\alpha(ab)} [\nabla^0_{\alpha} + \theta^{-\alpha}(W_L^{++} - W_R^{++})]q_b^+,$$

$$\delta_{\epsilon}V_L^{++} = \delta_{\epsilon}V_R^{++} = \epsilon^{\alpha(ab)}\theta^0_{\alpha}\bar{q}_a^+q_b^+.$$

• $SO(6) \simeq SU(4)$ R-symmetry group: The $SU(2) \times SU(2)$ subgroup is manifest while the transformations from the coset $SU(4)/[SU(2) \times SU(2)]$ are given by

$$\begin{split} \delta_{\lambda} q^{+a} &= -i [\lambda^{0(ab)} - \lambda^{++(ab)} \hat{\nabla}^{--} - 2\lambda^{--(ab)} \theta^{++\alpha} \hat{\nabla}^{0}_{\alpha} + 4\lambda^{0(ab)} \theta^{0\alpha} \hat{\nabla}^{0}_{\alpha}] q^{+}_{b} \\ \delta_{\lambda} \bar{q}^{+}_{a} &= -i [\lambda^{0}_{(ab)} - \lambda^{++}_{(ab)} \hat{\nabla}^{--} - 2\lambda^{--}_{(ab)} \theta^{++\alpha} \hat{\nabla}^{0}_{\alpha} + 4\lambda^{0}_{(ab)} \theta^{0\alpha} \hat{\nabla}^{0}_{\alpha}] \bar{q}^{+b}, \\ \delta_{\lambda} V^{++}_{L} &= \frac{4\pi}{k} \kappa^{ab} q^{+}_{a} \bar{q}^{+}_{b}, \qquad \delta_{\lambda} V^{++}_{R} = \frac{4\pi}{k} \kappa^{ab} \bar{q}^{+}_{a} q^{+}_{b}, \end{split}$$

where $\kappa_{(ab)} = 4\lambda_{(ab)}^{--}(\theta^0\theta^{++}) - 8\lambda_{(ab)}^0(\theta^0)^2$ and $\hat{\nabla}^{--}$ and $\hat{\nabla}^0_{\alpha}$ are gauge-covariant analyticity-preserving derivatives:

$$\hat{\nabla}^0_\alpha = \nabla^0_\alpha + \theta^{--}_\alpha W^{++}, \quad \hat{\nabla}^{--} = \nabla^{--} + 2\theta^{\alpha - -} \nabla^0_\alpha + (\theta^{--})^2 W^{++},$$

ABJM model in $\mathcal{N} = 3$ harmonic superspace

Non-abelian generalization: $V_L^{++} \in SU(n)_L$, $V_R^{++} \in SU(n)_R$ q^{+a} are in the bifundamental representation,

$$\nabla^{++}q^{+a} = \mathcal{D}^{++}q^{+a} + V_L^{++}q_a^+ - q_a^+ V_R^{++}.$$

non-Abelian $\mathcal{N} = 6$ supersymmetric action:

$$S_{\mathcal{N}=6} = S_{hyp} + S_{gauge},$$

$$S_{hyp} = \operatorname{tr} \int d\zeta^{(-4)} \bar{q}^{+a} \nabla^{++} q_{a}^{+},$$

$$S_{gauge} = S_{CS}[V_{L}^{++}] - S_{CS}[V_{R}^{++}],$$

$$CS[V^{++}] = \frac{ik}{4\pi} \operatorname{tr} \sum_{n=2}^{\infty} \int d^{9}z du_{1} \dots du_{n} \frac{V^{++}(z, u_{1}) \dots V^{++}(z, u_{n})}{(u_{1}^{+}u_{2}^{+}) \dots (u_{n}^{+}u_{1}^{+})}.$$

Hidden $\mathcal{N} = 3$ supersymmetry:

 S_{c}

loscow 2009 9 / 13

Features of the $\mathcal{N}=3$ superfield formulation of the ABJM theory

- No any superfield potential in the model!
- Standard ABJM action is restored upon reduction to component fields.
- The scalar field potential appears solely owing to the elimination of auxiliary fields.
- The $SO(6) \simeq SU(4)$ R-symmetry explicitly demonstrated.
- It is checked that when the gauge group is $SU(2) \times SU(2)$ the supersymmetry is raised up to $\mathcal{N} = 8$, reproducing the BLG model.
- Various generalizations of the ABJM model are analyzed within the $\mathcal{N} = 3$ superfield formulation. In particular, the models with the gauge groups $U(m) \times U(n)$, $O(n) \times USp(2m)$ are shown to be admissible for this theory.

Higgs effect: "M2 to D2"

In components: [S. Mukhi, C. Papageorgakis, JHEP 0805 (2008) 085]

- There are 8 scalars f^I , $I = 1, \ldots, 8$.
- Give vev to f^8 : $\langle f^8 \rangle = a = const.$
- One can gauge away this scalar f^8 , leaving only 7 scalars f^i , $i = 1, \ldots, 7$.
- The gauge symmetry is partly fixed.
- The corresponding degree of freedom appears as a dynamical vector field:

$$\{A^L_{\mu}, A^R_{\mu}\} \longrightarrow A_{\mu}$$

$$\varepsilon^{\mu\nu\rho}(A^L_{\mu}\partial_{\nu}A^L_{\rho} - A^R_{\mu}\partial_{\nu}A^R_{\rho}) \longrightarrow F_{\mu\nu}F^{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

- As a result, the $\mathcal{N} = 8$, d = 3 SYM theory appears with 7 scalar fields, 8 fermions and 1 gauge superfield.
- In other words, the M2 brane turns into D2 brane.

Abelian Higgs effect in $\mathcal{N} = 3$ superspace

General procedure:

- **(**) Convert two hypermultiplets q^{+a} into one complex ω -hypermultiplet.
- **②** Gauge away the imaginary part of ω , resulting in the real ω -hypermultiplet.
- **③** Give vev to the ω superfield: $\langle \omega \rangle = a$.
- The $U(1) \times U(1)$ gauge symmetry is partly fixed to U(1).
- **3** Two Chern-Simons vector superfields V_L^{++} , V_R^{++} turn into one dynamical V^{++} .
- The resulting action is

$$S = \int d\zeta^{(-4)} [(D^{++}\omega)^2 - \frac{k^2}{16\pi^2} \frac{1}{(a+\omega)^2} W^{++} W^{++}].$$
 (1)

 As a result, we have SYM action non-minimally interacting with ω-hypermultiplet.

Open problems:

- To study quantum aspects of the ABJM theory in $\mathcal{N}=3$ harmonic superspace (to construct the low-energy effective action, correlation functions, e.t.c).
- Non-abelian Higgs effect in $\mathcal{N} = 3$ harmonic superspace.
- Are there $\mathcal{N}=4,5,6$ unconstrained superfield formulations of the ABJM theory?