$\mathcal{N}=3$ Superfield Formulation of the ABJM and BLG Models

Igor B. Samsonov ${ }^{1}$
${ }^{1}$ Tomsk Polytechnic University, Tomsk, Russia

4-th International Sakharov Conference on Physics, 18 May 2009

References

I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B.S., B.M. Zupnik, JHEP 0903 (2009) 096, arXiv:0811.4774 [hep-th].

Motivations: A model for multiple M2 branes

Very well known example:

- In the bulk of D3 brane we have four-dimensional gauge theory with 16 supersymmetries $\Rightarrow \mathcal{N}=4$ Abeian gauge theory.
- Stack of D3 branes $\Rightarrow \mathcal{N}=4 \mathrm{SYM}$ with gauge group $S U(n)$.
- $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ correspondence: Correlation functions of composite operators in $\mathcal{N}=4 \mathrm{SYM}$ are related to the corresponding functions of the IIB supergravity in $A d S_{5} \times S^{5}$ background.

Motivations: A model for multiple M2 branes

Very well known example:

- In the bulk of D3 brane we have four-dimensional gauge theory with 16 supersymmetries $\Rightarrow \mathcal{N}=4$ Abeian gauge theory.
- Stack of D3 branes $\Rightarrow \mathcal{N}=4$ SYM with gauge group $S U(n)$.
- $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ correspondence: Correlation functions of composite operators in $\mathcal{N}=4 \mathrm{SYM}$ are related to the corresponding functions of the IIB supergravity in $A d S_{5} \times S^{5}$ background.

Analogous recent achievements for M2 brane

- In the bulk of M2 brane lives a three-dimensional superconformal gauge theory with 16 supersymmetries $\Rightarrow \mathcal{N}=8, d=3$ Chern-Simons-matter gauge theory, or, Bagger-Lambert-Gustavsson (BGL) theory [J. Bagger, N. Lambert, Phys. Rev. D75 (2007) 045020; D77 (2008) 065008; JHEP 0802 (2008) 105; A. Gustavsson, JHEP 0804 (2008) 083; Nucl. Phys. B807 (2009) 315; Nucl. Phys. B811 (2009) 66].
- Stack of M 2 branes $\Rightarrow \mathcal{N}=6, d=3$ Chern-Simons-matter theory with gauge group $S U(n) \times S U(n)$, or, Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, JHEP 0810 (2008) 091]
- $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ correspondence: Chern-Simons-matter model with $\mathcal{N}=6$ supersymmetry have dual gravitation description in terms of superstrings on $A d S_{4} \times C P^{3}$ in low-energy limit.

Review of ABJM and BLG models

Definition:

- ABJM model is a $d=3 \mathcal{N}=6$ superconformal Chern-Simons-matter theory with gauge group $S U(n)_{L} \times S U(n)_{R}$.
- BLG model is a $d=3 \mathcal{N}=8$ superconformal Chern-Simons-matter theory with gauge group $S O(4)=S U(2) \times S U(2)$.

Note: The ABJM model reduces to BLG theory when the gauge group is $S U(2) \times S U(2) . \Rightarrow$ BLG model is a particular case of ABJM theory.

Field content:

- 4 complex scalars: $f^{I}, \bar{f}_{I}, I=1,2,3,4$ (index of $S U(4)$) in bifundamental representation;
- 4 complex spinors: $\psi_{\alpha}^{I}, \bar{\psi}_{I \alpha}, \alpha=1,2$ (index of $S U(2)$) in bifundamental representation;
- 2 vector fields: A_{μ}^{L}, A_{μ}^{R} in the adjoint representations of $S U(n)_{L}$ and $S U(n)_{R}$ respectively.

Review of ABJM and BLG models

The ABJM action

$$
\begin{aligned}
S^{A B J M} & =S_{\text {mat }}+S_{C S}+S_{\text {int }}, \\
S_{\text {mat }} & =\frac{k}{2 \pi} \operatorname{tr} \int d^{3} x\left(-\nabla^{\mu} f^{I} \nabla_{\mu} \bar{f}_{I}+i \bar{\psi}_{I} \gamma^{\mu} \nabla_{\mu} \psi^{I}\right), \\
S_{C S} & =\frac{k}{2 \pi} \operatorname{tr} \int d^{3} x \varepsilon^{\mu \nu \rho}\left(\frac{1}{2} A_{\mu}^{L} \partial_{\nu} A_{\rho}^{L}+\frac{1}{3} A_{\mu}^{L} A_{\nu}^{L} A_{\rho}^{L}-\frac{1}{2} A_{\mu}^{R} \partial_{\nu} A_{\rho}^{R}-\frac{1}{3} A_{\mu}^{R} A_{\nu}^{R} A\right. \\
S_{\text {int }} & \sim \operatorname{tr} \int d^{3} x\left(\sum \bar{\psi} \psi \bar{f} f+\sum f \bar{f} f \bar{f} f \bar{f}\right) .
\end{aligned}
$$

$\mathcal{N}=6$ supersymmetry (on-shell)

$$
\begin{aligned}
\delta f^{I} & =-i \epsilon^{[I J] \alpha} \bar{\psi}_{J \alpha} \\
\delta \psi^{I} & =\gamma^{\mu} \epsilon^{[I J]} \nabla_{\mu} \bar{f}_{J}+\delta_{3} \psi, \quad\left(\delta_{3} \psi \sim \epsilon f f\right) \\
\delta A_{\mu}^{L} & =\epsilon^{[I J]} \gamma_{\mu} \bar{\psi}_{I} \bar{f}_{J}-\epsilon_{[I J]} f^{I} \psi^{J} \gamma_{\mu} \\
\delta A_{\mu}^{R} & =\epsilon^{[I J]} \bar{f}_{I} \gamma_{\mu} \bar{\psi}_{J}-\epsilon_{[I J]} \psi^{I} \gamma_{\mu} f^{J} .
\end{aligned}
$$

Here $\nabla_{\mu} f^{I}=\partial_{\mu} f^{I}+i A_{\mu}^{L} f^{I}-i f^{I} A_{\mu}^{R}, k$ is the Chern-Simons level.

Review of ABJM and BLG models

Our goal:

To develop an unconstrained $\mathcal{N}=3$ superfield formulation of the ABJM model. Such a formulation should

- make manifest the symmetries of the ABJM theory,
- explain the structure of the scalar potential.

Known superfield formulations of the ABJM theory

- In terms of $\mathcal{N}=1$ superfields: A. Mauri, A.C. Petkou, Phys. Lett. B666 (2008) 527;
- In terms of $\mathcal{N}=2$ superfields: M. Benna, I. Klebanov, T. Klose, M. Smedback, JHEP 0809 (2008) 027;
- In terms of on-shell $\mathcal{N}=6$ and $\mathcal{N}=8$ superfields: M. Cederwall, JHEP 0809 (2008) 116, JHEP 0810 (2008) 070;
I.A. Bandos, Phys. Lett. B669 (2008) 105.

$\mathcal{N}=3$ harmonic superspace

Standard $\mathcal{N}=3$ superspace:

$$
\left.\left\{x_{\mu}, \theta_{\alpha}^{A}\right\}, \quad A=1,2,3 \text { (index of } S O(3)\right) .
$$

Harmonic $\mathcal{N}=3$ superspace:

Coordinates:

$$
\left\{x^{\mu}, \theta_{\alpha}^{++}, \theta_{\alpha}^{--}, \theta_{\alpha}^{0}, u_{i}^{ \pm}\right\}
$$

Harmonics:
$u_{i}^{ \pm} \in S U(2), \quad u^{+i} u_{i}^{+}=0, u^{-i} u_{i}^{-}=0, u^{+i} u_{i}^{-}=1$.
Harmonic derivarives: $\quad \mathcal{D}^{++}, \quad \mathcal{D}^{--}, \quad \mathcal{D}^{0}=\left[\mathcal{D}^{++}, \mathcal{D}^{--}\right]$.
Grassmann derivatives: $D_{\alpha}^{++}, \quad D_{\alpha}^{--}, \quad D_{\alpha}^{0}$.
Superfields
(1) q-hypermultiplet: $q^{+}\left(x_{\mu}, \theta_{\alpha}^{++}, \theta_{\alpha}^{0}, u_{i}^{ \pm}\right)$

$$
q^{+}: \quad\left\{f^{i}, \bar{f}_{i}, \psi_{\alpha}^{i}, \bar{\psi}_{i \alpha}\right\}, \quad i=1,2 .
$$

(2) Vector superfield: $V^{++}\left(x_{\mu}, \theta_{\alpha}^{++}, \theta_{\alpha}^{0}, u_{i}^{ \pm}\right)$

$$
V^{++}: \quad\left\{A_{\mu}, \phi^{(i j)}, \lambda_{\alpha}, \lambda_{\alpha}^{(i j)}\right\} .
$$

ABJM model in $\mathcal{N}=3$ harmonic superspace

For the ABJM model we need:

- 2 hypermultiplet superfields, $q^{+a}, a=1,2$
- 2 vector superfield, V_{L}^{++}, V_{R}^{++}.

The action in the Abelian case

$$
\begin{aligned}
S_{\mathcal{N}=6} & =S_{\text {hyp }}+S_{\text {gauge }} \\
S_{h y p} & =\int d \zeta^{(-4)} \bar{q}^{+a}\left(\mathcal{D}^{++}+V_{L}^{++}-V_{R}^{++}\right) q_{a}^{+} \\
S_{\text {gauge }} & =S_{C S}\left[V_{L}^{++}\right]-S_{C S}\left[V_{R}^{++}\right], \quad S_{C S}\left[V^{++}\right]=\frac{i k}{8 \pi} \int d \zeta^{(-4)} V^{++} W^{++}
\end{aligned}
$$

Here $W^{++}=-\frac{1}{4}\left(D^{++}\right)^{2} V^{--}$is a superfield strength corresponding to the gauge superfield $V^{++} ; V^{--}$is expressed through V^{++}from the equation $D^{++} V^{--}=D^{--} V^{++}$.

- No any superfield potential $S_{i n t} \sim g \int d \zeta^{(-4)}\left(\bar{q}^{+a} q_{a}^{+}\right)^{2}$ is admissible!

ABJM model in $\mathcal{N}=3$ harmonic superspace

Symmetries of the action $S_{\mathcal{N}=6}$:

- Manifest $\mathcal{N}=3$ supersymmetry;
- Hidden $\mathcal{N}=3$ supersymmetry with parameters $\epsilon^{\alpha(a b)}$:

$$
\begin{aligned}
\delta_{\epsilon} q^{+a} & =i \epsilon^{\alpha(a b)}\left[\nabla_{\alpha}^{0}+\theta^{--\alpha}\left(W_{L}^{++}-W_{R}^{++}\right)\right] q_{b}^{+}, \\
\delta_{\epsilon} V_{L}^{++} & =\delta_{\epsilon} V_{R}^{++}=\epsilon^{\alpha(a b)} \theta_{\alpha}^{0} \bar{q}_{a}^{+} q_{b}^{+} .
\end{aligned}
$$

- $S O(6) \simeq S U(4)$ R-symmetry group: The $S U(2) \times S U(2)$ subgroup is manifest while the transformations from the coset $S U(4) /[S U(2) \times S U(2)]$ are given by

$$
\begin{aligned}
\delta_{\lambda} q^{+a} & =-i\left[\lambda^{0(a b)}-\lambda^{++(a b)} \hat{\nabla}^{--}-2 \lambda^{--(a b)} \theta^{++\alpha} \hat{\nabla}_{\alpha}^{0}+4 \lambda^{0(a b)} \theta^{0 \alpha} \hat{\nabla}_{\alpha}^{0}\right] q_{b}^{+} \\
\delta_{\lambda} \bar{q}_{a}^{+} & =-i\left[\lambda_{(a b)}^{0}-\lambda_{(a b)}^{++} \hat{\nabla}^{--}-2 \lambda_{(a b)}^{---} \theta^{++\alpha} \hat{\nabla}_{\alpha}^{0}+4 \lambda_{(a b)}^{0} \theta^{0 \alpha} \hat{\nabla}_{\alpha}^{0}\right] \bar{q}^{+b},
\end{aligned}
$$

$$
\delta_{\lambda} V_{L}^{++}=\frac{4 \pi}{k} \kappa^{a b} q_{a}^{+} \bar{q}_{b}^{+}, \quad \delta_{\lambda} V_{R}^{++}=\frac{4 \pi}{k} \kappa^{a b} \bar{q}_{a}^{+} q_{b}^{+}
$$

where $\kappa_{(a b)}=4 \lambda_{(a b)}^{--}\left(\theta^{0} \theta^{++}\right)-8 \lambda_{(a b)}^{0}\left(\theta^{0}\right)^{2}$ and $\hat{\nabla}^{--}$and $\hat{\nabla}_{\alpha}^{0}$ are gauge-covariant analyticity-preserving derivatives:

$$
\hat{\nabla}_{\alpha}^{0}=\nabla_{\alpha}^{0}+\theta_{\alpha}^{--} W^{++}, \quad \hat{\nabla}^{--}=\nabla^{--}+2 \theta^{\alpha--} \nabla_{\alpha}^{0}+\left(\theta^{--}\right)^{2} W^{++} .
$$

ABJM model in $\mathcal{N}=3$ harmonic superspace

Non-abelian generalization: $V_{L}^{++} \in S U(n)_{L}, V_{R}^{++} \in S U(n)_{R}$ q^{+a} are in the bifundamental representation,

$$
\nabla^{++} q^{+a}=\mathcal{D}^{++} q^{+a}+V_{L}^{++} q_{a}^{+}-q_{a}^{+} V_{R}^{++} .
$$

non-Abelian $\mathcal{N}=6$ supersymmetric action:

$$
\begin{aligned}
S_{\mathcal{N}=6} & =S_{\text {hyp }}+S_{\text {gauge }}, \\
S_{\text {hyp }} & =\operatorname{tr} \int d \zeta^{(-4)} \bar{q}^{+a} \nabla^{++} q_{a}^{+}, \\
S_{\text {gauge }} & =S_{C S}\left[V_{L}^{++}\right]-S_{C S}\left[V_{R}^{++}\right], \\
S_{C S}\left[V^{++}\right] & =\frac{i k}{4 \pi} \operatorname{tr} \sum_{n=2}^{\infty} \int d^{9} z d u_{1} \ldots d u_{n} \frac{V^{++}\left(z, u_{1}\right) \ldots V^{++}\left(z, u_{n}\right)}{\left(u_{1}^{+} u_{2}^{+}\right) \ldots\left(u_{n}^{+} u_{1}^{+}\right)} .
\end{aligned}
$$

Hidden $\mathcal{N}=3$ supersymmetry:

$$
\begin{aligned}
\delta q^{+a} & =i \epsilon^{\alpha(a b)}\left[\nabla_{\alpha}^{0} q_{b}^{+}+\theta_{\alpha}^{--}\left(W_{L}^{++} q_{b}^{+}-q_{b}^{+} W_{R}^{++}\right)\right], \\
\delta V_{L}^{++} & =\epsilon^{\alpha(a b)} \theta_{\alpha}^{0} q_{a}^{+} \bar{q}_{b}^{+}, \quad \delta V_{R}^{++}=\epsilon^{\alpha(a b)} \theta_{\alpha}^{0} \bar{q}_{a}^{+} q_{b}^{+} .
\end{aligned}
$$

ABJM model in $\mathcal{N}=3$ harmonic superspace

Features of the $\mathcal{N}=3$ superfield formulation of the ABJM theory

- No any superfield potential in the mode!!
- Standard ABJM action is restored upon reduction to component fields.
- The scalar field potential appears solely owing to the elimination of auxiliary fields.
- The $S O(6) \simeq S U(4)$ R-symmetry explicitly demonstrated.
- It is checked that when the gauge group is $S U(2) \times S U(2)$ the supersymmetry is raised up to $\mathcal{N}=8$, reproducing the BLG model.
- Various generalizations of the ABJM model are analyzed within the $\mathcal{N}=3$ superfield formulation. In particular, the models with the gauge groups $U(m) \times U(n), O(n) \times U S p(2 m)$ are shown to be admissible for this theory.

Application

Higgs effect: "M2 to D2"

In components: [S. Mukhi, C. Papageorgakis, JHEP 0805 (2008) 085]

- There are 8 scalars $f^{I}, I=1, \ldots, 8$.
- Give vev to $f^{8}:\left\langle f^{8}\right\rangle=a=$ const.
- One can gauge away this scalar f^{8}, leaving only 7 scalars $f^{i}, i=1, \ldots, 7$.
- The gauge symmetry is partly fixed.
- The corresponding degree of freedom appears as a dynamical vector field:

$$
\begin{aligned}
\left\{A_{\mu}^{L}, A_{\mu}^{R}\right\} & \longrightarrow A_{\mu} \\
\varepsilon^{\mu \nu \rho}\left(A_{\mu}^{L} \partial_{\nu} A_{\rho}^{L}-A_{\mu}^{R} \partial_{\nu} A_{\rho}^{R}\right) & \longrightarrow F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} .
\end{aligned}
$$

- As a result, the $\mathcal{N}=8, d=3$ SYM theory appears with 7 scalar fields, 8 fermions and 1 gauge superfield.
- In other words, the M2 brane turns into D2 brane.

Application

Abelian Higgs effect in $\mathcal{N}=3$ superspace

General procedure:
(1) Convert two hypermultiplets q^{+a} into one complex ω-hypermultiplet.
(2) Gauge away the imaginary part of ω, resulting in the real ω-hypermultiplet.
(Give vev to the ω superfield: $\langle\omega\rangle=a$.
(0) The $U(1) \times U(1)$ gauge symmetry is partly fixed to $U(1)$.
(- Two Chern-Simons vector superfields V_{L}^{++}, V_{R}^{++}turn into one dynamical V^{++}.
(- The resulting action is

$$
\begin{equation*}
S=\int d \zeta^{(-4)}\left[\left(D^{++} \omega\right)^{2}-\frac{k^{2}}{16 \pi^{2}} \frac{1}{(a+\omega)^{2}} W^{++} W^{++}\right] \tag{1}
\end{equation*}
$$

(1) As a result, we have SYM action non-minimally interacting with ω-hypermultiplet.

Conclusions

Open problems:

- To study quantum aspects of the ABJM theory in $\mathcal{N}=3$ harmonic superspace (to construct the low-energy effective action, correlation functions, e.t.c).
- Non-abelian Higgs effect in $\mathcal{N}=3$ harmonic superspace.
- Are there $\mathcal{N}=4,5,6$ unconstrained superfield formulations of the ABJM theory?

