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Yang-Mills field Lagrangian

L = −1
4
F aµνF

a
µν (1)

Yang-Mills field stress tensor

F aµν = ∂µAν − ∂νAµ + gtabcAbµA
c
ν (2)

gauge transformation

δAµ = ∂µη
a + gtabcAbµη

c (3)
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The Lagrangian is singular

free propagators do not exist

Afree =
∫
d4k

1
4
Aµ(k)(k2gµν − kµkν)Aν(k) (4)

Canonical quantization:

A0 is not a canonical variable → Yang-Mills theory is a constrained
system.

A gauge condition

F (Aµ) = 0

Gribov ambiguity.

The condition F (Aµ) = 0 must separate a unique representative in
a gauge equivalent classs.
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Abelian case

∂iAi = 0

Ãi = Ai + ∂iη

∂iÃi = 0→ ∆η = 0 (5)

If η → 0 at spatial infinity η = 0.

Non-Abelian case

Ãai = Aai + ∂iη
a + gtabcAbiη

c

Ãai = 0→ ∆ηa + gtabc∂i(A
b
iη
c) = 0 (6)

This equation has nontrivial solutions fastly decreasing at spatial
infinity.
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In perturbation theory

∆ηa + gtabc∂i(A
b
iη
c) = 0→ ηa = 0

No ambiguity

There is no gauge condition which globally selects a unique

representative in a gauge equivalent class.

Higgs model in the unitary gauge Ba = 0
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In perturbation theory

∆ηa + gtabc∂i(A
b
iη
c) = 0→ ηa = 0

No ambiguity

There is no gauge condition which globally selects a unique

representative in a gauge equivalent class.

Higgs model in the unitary gauge Ba = 0
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The model (SU(2))

L = −1

4
F a
µνF

a
µν + (Dµϕ)∗(Dµϕ)− (Dµχ)∗(Dµχ)

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)] (7)

χ has a negative energy.

c =

(
ic1 + c2√

2
,
c0 − ic3√

2

)
(8)

ϕ, χ are commuting, e, b are anticommuting

S =

∫
exp

{
iÃ
}
dµdϕdχdbde =∫

exp

{
i

∫
d4x(−1

4
F a
µνF

a
µν)

}
(detD−2)2(detD2)2dµ =∫

exp

{
i

∫
d4x(−1

4
F a
µνF

a
µν)

}
dµ (9)
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shift

ϕ→ ϕ+ g−1m̂; χ→ χ− g−1m̂; m̂ = (0,m) (10)

The terms quadratic in m compensate → no mass term for the

Yang-Mills field.

L̃ = L+ g−1[Dµϕ+Dµχ]∗Dµm̂+ h.c. (11)

The Lagrangian L̃ is invariant with respect to the ”shifted” gauge

transformations.

δϕ±0 =
g

2
ϕ±a η

a

δϕ+
a = −g

2
εabcϕ+

b η
c − g

2
ϕ+

0 η
a

δϕ−a = −mηa − g

2
εabcϕ−b η

c − g

2
ϕ−0 η

a (12)

ϕ±α =
ϕα ± χα√

2
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L̃ is also invariant with respect to the supersymmetry

transformations:

δϕ(x) = iεb(x)

δχ(x) = −iεb(x)

δe(x) = ε[ϕ(x) + χ(x)]

δb(x) = 0 (13)

This symmetry is crucial for the unitarity of the model.

possible gauges:

∂iA
a
i = 0

ϕ−a = 0 (no ambiguity)



~10

'

&

$

%

The equation (ϕΩ)−a = 0 at the surface ϕ−a = 0 has no nontrivial

solutions fastly decreasing at spatial infinity

Effective action in the gauge ϕ−a = 0

Ã =

∫
d4x{−1

4
F a
µνF

a
µν + ∂µϕ

+
0 ∂µϕ

−
0 +mϕ+

a ∂µA
a
µ

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)]

+
mg

4
A2
µϕ

+
0 +

g2

8
A2
µϕ

+
0 ϕ

−
0 + g∂µϕ

−
0 A

a
µϕ

+
a +

g

2
ϕ−0 ϕ

+
a ∂µA

a
µ} (14)
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The construction of the canonical formalism is straightforward.

The canoncal momentum for Aa0 is nonzero:

pa0 = mϕ+
a (1 +

g

2m
ϕ−0 ) (15)

The Hamiltonian:

ÃH =

∫
d4x{pai Ȧai + pa0Ȧ

a
0 + pϕϕ̇0 + pχχ̇0

−(pai )
2

2
+

(pa0)2

2(1 + g/(2m)ϕ−0 )2
−
p2
ϕ

2
+
p2
χ

2
+

+Aa0∂ip
a
i −

pa0∂iA
a
i

1 + g/(2m)ϕ−0
− 1

4
F a
ikF

a
ik + . . .} (16)

Integration over canonical momenta produces a nontrivial Jacobian∏
x

(1 +
g

2m
ϕ−0 )3
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The scattering matrix in terms of the integral over trajectories in

the coordinate space is:

S =

∫
exp

{
iÃ
}∏

x

(1 +
g

2m
ϕ−0 )3dAµdϕ

+
αdϕ

−
0 db

αdeα (17)
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PHYSICAL UNITARITY.

The scattering matrix (17) acts in the space which contains many

unphysical exitations. Nevertheless the supersymmetry of the

effective action provides the unitarity of this S-matrix in the

subspace which includes only physical vectors.

Invariance with respect to the supersymmetry transformations via

Noether theorem leads to the existence of the conserved charge Q,

which may be used to select the physical subspace:

Q|ψ >= 0→ Q0|ψ >as= 0 (18)

The vectors |ψ >as may be presented in the form:

|ψ >as= |ψ >tr +|N >, < N |N >= 0

< ψ|O|ψ >as=< ψ|O|ψ >tr (19)

for any observable O.
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The gauge condition ϕ−a = 0 breaks ”old” supersummetry.

However there exists Ω(η) such that∫
d4xλa(x)∂iA

a
i (x) =

∫
d4xλa(x)(ϕΩ)−a (x) (20)

For the free theory

ηa(x) =
−ϕ−a (x) + ∂iA

a
i (x)

m

Therefore the function ηa changes under the supersymmetry

transformations

ηa(x)→ ηa(x)− i
√

2εba(x)

m
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The supersymmetry transformations in the gauge ϕ−a = 0 to zero

order in g

Ãaµ(x) = Aaµ(x)− ∂µηa(x)→ Ãaµ(x) + i

√
2ε∂µb̃

a(x)

m

ẽα(x)→ ẽα(x) + ε
√

2ϕ̃+
α (x)

ϕ̃−0 (x)→ ϕ̃−0 (x) + i
√

2εb̃0(x) (21)

Invariance with respect to these supersymmetry transformations

generates a conserved charge which for the asymptotic states may

be presented as Q0 = Q̃0
0 +Q0

0

Q̃0
0 =
√

2

∫
d3x{m−1(∂iA0 − ∂0Ai)

a(∂ib
a)− ϕ+

a ∂0b
a} (22)

Q0
0 =
√

2

∫
d3x{∂0ϕ

+
0 b0 + ∂0b0ϕ

+
0 } (23)
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Q0
0 and Q̃0

0 are nilpotent, anticommuting and independent. Hence

Q0|ψ >as= 0→ Q̃0
0|ψ >as= 0, Q0

0|ψ >as= 0

Q̃0
0 coincides with the BRST charge for the Lorentz gauge

condition, introduced via the Lagrange multiplier
∫
d4xϕ+

a ∂µA
a
µ, if

one identifies ba = ca, ea = c̄a

Any vector annihilated by Q̃0
0 has a form

|ψ >= |ψ̃ > +|Ñ >

the vector |ψ̃ > contains only three dimensionally transversal

components of the Yang-Mills field and the exitations coresponding

to ϕ±0 , b
0, e0 and |Ñ > has a zero norm.



~17

'

&

$

%

Any vector annihilated by Q0
0 has a form

|ψ >= |ψ̂ > +|N̂ >

where the vector |ψ̂ > does not contain the exitations

corresponding to ϕ±0 , b
0, e0 and |N̂ > is a zero norm vector

Hence

|ψ >as= |ψ >tr +|N >, < ψ|O|ψ >as=< ψ|O|ψ >tr

After factorization with respect to zero norm vectors, the space of

|ψ >as coincides with |ψ >tr.
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For perturbative calculations the Lorentz gauge ∂µAµ is more

convenient.

A generating functional for gauge invariant Green functions:

Z(Jµ) =

∫
exp{i(A+

∫
d4xJµFµ)}δ(ϕ−a )∆−dAµdϕ

−
αϕ

+
αdbαdeα

(24)

where Fµ denotes a gauge invariant functional, A is the gauge

invariant action and the factor ∆− is the gauge invariant functional

defined by the equation

∆−

∫
dΩδ(∂µA

Ω
µ ) = 1

at the surface ϕ−a = 0∏
x

(a+
g

2
ϕ−0 )−3 =

∫
dΩδ(ϕ−Ω

a )|ϕ−a =0
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Multiplying the integral (24) by ”one”

∆L

∫
δ(∂µA

Ω
µ )dΩ = 1

and making change of variables

Aµ → AΩ
µ , ϕ→ ϕΩ, b→ bΩ, e→ eΩ, we get the generating

functional in the Lorentz gauge:

Z(Jµ =

∫
exp

{
i(A+

∫
d4xJµFµ)

}
∆Lδ(∂µAµ)dAµdϕαdbαdeα

(25)

The transition is legitimate only in perturbation theory as beyond

the perturbation theory ∆L may be singular.
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Problems

Perturbative renormalization directly in the gauge ϕ−a = 0? Mixed

propagator Aaµ, ϕ
+
b at large k decreases as k−1. It leads to

appearance of the infinite number of divergent diagrams differing

by the number of ϕ−0 lines. But the degree of divergency of all

these diagrams is limited by 2. A similar situation exists in the

supersymmetric gauge theories in a manifestly supersymmetric

gauge. The number of divergent diagrams is infinite, but the

number of counterterms is finite due to supersymmetry. Does the

supersymmetry in this case restricts the number of counterterms?
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Conclusion

1.The Yang-Mills theory allows unambigous Lorentz invariant

quantization.

2.The ghost field Lagrangian in a covariant gauge may be gauge

invariant.

3. It simplifies regularization and renormalization.

4.This method may be useful for supersymmetric gauge theories.


