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Stationary solutions and timelike dimensional reduction
The search for supergravity solutions with assumed Killing
symmetries can be recast as a Kaluza-Klein problem. Consider a
D = 4 theory with a nonlinear bosonic symmetry Ḡ (e.g. E7 for
maximal N = 8 supergravity). Scalar fields take their values in a
target space Φ̄ = Ḡ/H̄, where H̄ is the corresponding linearly
realized subgroup, generally the maximal compact subgroup of Ḡ
(e.g. SU(8) for N = 8 SG).

Searching for stationary solutions to such a theory amounts to
assuming further that a solution possesses a timelike Killing vector
field κµ(x).

• We assume that the solution spacetime is asymptotically flat
or asymptotically Taub-NUT and that there is a ‘radial’
function r which is divergent in the asymptotic region,
gµν∂µr∂νr ∼ 1 +O(r−1).

• The Killing vector κ will be assumed to have
W := −gµνκ

µκν ∼ 1 +O(r−1).
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• We assume asymptotic hypersurface orthogonality,
κν(∂µκν − ∂νκµ) ∼ O(r−2).

• In any vielbein frame, the curvature will fall off as
Rabcd ∼ O(r−3).

• Lie derivatives with respect to κ are assumed to vanish on all
fields.

The D = 3 theory dimensionally reduced with respect to the
timelike Killing vector κ will have an Abelian principal bundle
structure, with a metric

ds2 = −W (dt + B̂idx i )2 + W−1γijdx idx j

where t is a coordinate adapted to the Killing vector κ and γ is the
metric on the 3-dimensional hypersurface Σ3 at constant t. If the
D = 4 theory has Abelian vector fields Aµ , they similarly reduce
to D = 3 as

4
√

4πGAµdxµ = U(dt + B̂idx i ) + Âidx i
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Comparison to spacelike dimensional reductions
The timelike D = 3 reduced theory will have a G/H∗ coset space
structure similar to the G/H coset space structure of a D = 3
theory similarly reduced on a spacelike Killing vector. Thus, for a
spacelike reduction of maximal supergravity one obtains an
E8/SO(16) theory continuing on in the sequence of dimensional
reductions originating in D = 11. Julia As for the analogous
spacelike reduction, the D = 3 theory has the possibility of
exchanging D = 3 Abelian vector fields for scalars by dualization,
contributing to the appearance of an enlarged D = 3 bosonic
‘duality’ symmetry. The resulting D = 3 theory contains D = 3
gravity coupled to a G/H∗ nonlinear sigma model.

I However, although the numerator group G is the same for a
timelike reduction to D = 3 as that obtained for a spacelike
reduction, the divisor group H∗ is a noncompact form of the
spacelike divisor group H. Breitenlohner, Gibbons & Maison 1988

I The origin of this H → H∗ change is the appearance of
negative-sign kinetic terms for scalars descending from D = 4
vectors under the timelike reduction. 5 / 18



Some examples of G/H∗ and G/H theories in D = 3

*

The D = 3 classification of extended supergravity stationary
solutions via timelike reduction generalizes the D = 3 supergravity
systems obtained from spacelike reduction. de Wit, Tollsten & Nicolai
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Charges
Define the Komar two-form K ≡ ∂µκνdxµ ∧ dxν . This is invariant
under the action of the timelike isometry and, by the asymptotic
hypersurface orthogonality assumption, is asymptotically
horizontal. This condition is equivalent to a requirement that the
scalar field B dual to the Kaluza-Klein vector arising by dimensional
reduction out of the metric vanish like O(r−1) as r →∞. In this
case, one can define the Komar mass and NUT charge by (where
s∗ indicates a pull-back to a section) Bossard, Nikolai & K.S.S.

m ≡ 1

8π

∫

∂Σ
s∗ ? K n ≡ 1

8π

∫

∂Σ
s∗K

The Maxwell field also defines charges. Using the Maxwell field
equation d ? F = 0, where F ≡ δL/δF is a linear combination of
the two-form field strengths F depending on the four-dimensional
scalar fields, and using the Bianchi identity dF = 0 one obtains
conserved electric and magnetic charges

q ≡ 1

2π

∫

∂Σ
s∗ ? F p ≡ 1

2π

∫

∂Σ
s∗F
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Now consider these charges from the three-dimensional point of
view in order to clarify their transformation properties under the
three dimensional duality group G (in a simple Maxwell-Einstein
example, G = SU(2, 1)).

The three-dimensional theory is described in terms of a coset
representative V ∈ G/H∗. The Maurer–Cartan form V−1dV
decomposes as

V−1dV = Q + P , Q ≡ Qµdxµ ∈ h∗ , P ≡ Pµdxµ ∈ g	 h∗

Then the three-dimensional equations of motion can be rewritten
as d ? VPV−1 = 0, so the g-valued Noether current is ?VPV−1.

Since the three-dimensional theory is Euclidean, one cannot
properly speak of a conserved charge. Nevertheless, since ?VPV−1

is d-closed, the integral of this 2-form on a given homology cycle
does not depend on the representative of the cycle.
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As a result, for stationary solutions, the integral of this
three-dimensional current, over any space-like closed surface
containing in its interior all the singularities and topologically
non-trivial subspaces of a solution, defines a g	 h∗-valued charge
matrix C

C ≡ 1

4π

∫

∂Σ
?VPV−1

This transforms in the adjoint representation of G according to the
standard non-linear action. For asymptotically flat solutions, V
goes to the identity matrix asymptotically and the charge matrix C
in that case is given by the asymptotic value of the one-form P:

P = C
dr

r2
+O(r−2)
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Now set up some general notation for the relevant group structure.

Let g4 be the algebra of the D = 4 symmetry group Ḡ and let h4

be the algebra of its D = 4 divisor group H̄. sl(2,R) ∼= so(2, 1) is
the algebra of the Ehlers group (i.e. the D = 3 duality group of
pure D = 4 gravity); so(2) is the algebra of its divisor group. Let
l4 be the h4 representation carried by the electric and magnetic
charges q and p. Then C can be decomposed into three
irreducible representations with respect to so(2)⊕ h4 according to

g	 h∗ ∼=
(
sl(2,R)	 so(2)

)
⊕ l4 ⊕

(
g4 	 h4

)

The metric induced by the Cartan-Killing metric of g on this coset
space is positive definite for the first and last terms, and negative
definite for l4.

One associates the sl(2,R)	 so(2) component with the Komar
mass and the Komar NUT charge, and one associates the l4
component with the electromagnetic charges. The remaining
g4 	 h4 charges come from the Noether current of the
four-dimensional theory.
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Characteristic equation

Breitenlohner, Gibbons and Maison proved that if G is simple, all
the non-extremal single-black-hole solutions of a given theory lie
on the H∗ orbit of a Kerr solution. Moreover, all static solutions
regular outside the horizon with a charge matrix satisfying
Tr C 2 > 0 lie on the H∗-orbit of a Schwarzschild solution.
(Turning on and off angular momentum requires consideration of
the D = 2 duality group generalizing the Geroch A1

1 group, and
will be considered in future work.)

Using Weyl coordinates, the coset representative V associated to
the Schwarzschild solution with mass m can be written in terms of
the non-compact generator h of the Ehlers sl(2,R) only, i.e.

V = exp

(
1

2
ln

r −m

r + m
h

)
→ C = mh

11 / 18



For the maximal N = 8 theory with symmetry E8(8) (and also for
the exceptional ‘magic’ N = 2 supergravity Gunaydin, Sierra & Townsend with
symmetry E8(−24)), one finds

h5 = 5h3 − 4h
I Consequently, the charge matrix C satisfies in all cases

C 5 = 5c2C 3 − 4c4C

where c2 ≡ 1
k Tr C 2 is the extremality parameter (vanishing

for extremal static solutions) and k ≡ Tr h2 > 0.
I Moreover, for all but the two exceptional E8 cases, a stronger

constraint is actually satisfied by the charge matrix C :

C 3 = c2C

The characteristic equations select acceptable orbits of solutions,
i.e. orbits not exclusively containing solutions with naked
singularities. They determine C in terms of the mass and NUT
charge and the D = 4 electromagnetic charges.
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Supersymmetry ‘Dirac equation’
Extremal solutions have c2 = 0, implying that the charge matrix C
becomes nilpotent: C 5 = 0 in the E8 cases and C 3 = 0 otherwise.

For N extended supergravity theories, one finds
H∗ ∼= Spin∗(2N )× H0 and the charge matrix C transforms as a
Weyl spinor of Spin∗(2N ) valued in a representation of h0. Define
the Spin∗(2N ) fermionic oscillators

ai :=
1

2

(
Γ2i−1 + iΓ2i

)
ai ≡ (ai )

† =
1

2

(
Γ2i−1 − iΓ2i

)

for i , j , · · · = 1, . . . ,N . These obey standard anticommutation
relations

{ai , aj} = {ai , aj} = 0 , {ai , a
j} = δji

Using this creation/annihilation oscillator basis, the charge matrix
C can be represented as a state

|C 〉 ≡
(

W + Zija
iaj + Σijkla

iajakal + · · ·
)
|0〉
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From the requirement that dilatino fields be left invariant under an
unbroken supersymmetry of a BPS solution, one derives a ‘Dirac
equation’ for the charge state vector,

(
εiαai + Ωαβε

β
i ai
)
|C 〉 = 0

where (εiα, ε
α
i ) is the asymptotic (for r →∞) value of the Killing

spinor and Ωαβ is a symplectic form on C2n in cases with n/N
preserved supersymmetry.

This condition turns out to be equivalent to the algebraic
requirement that C be a pure spinor of Spin∗(2N ) For BPS
solutions, it has the consequence that the characteristic equations
can be explictly solved in terms of rational functions.

Note that c2 = 0 is a weaker condition than the supersymmetry
Dirac equation. Extremal and BPS are not always synonymous
conditions, although they coincide for N ≤ 5 pure supergravities.
They are not synomymous for N = 6 & 8 or for theories with
vector matter coupling.
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BPS Geology

Analysis of the ‘Dirac equation’ or nilpotency degree of the charge
matrix C leads to a decomposition of the moduli space M of
supergravity solutions into strata of various BPS degrees.
Letting M0 be the non-BPS stratum, M1 being the 1

2 BPS
stratum, etc., the dimensions of the strata for pure supergravity
theories turn out to be

N = 2 N = 3 N = 4 N = 5 N = 6 N = 8

dim(M0) 4 8 14 22 34 58

dim(M1) 3 7 13 21 33 57

dim(M2) 8 16 26 46

dim(M4) 17 29
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‘Almost Iwasawa’ decomposition
Earlier analysis of the orbits of the D = 4 symmetry groups Ḡ
Cremmer, Lü, Pope & K.S.S. heavily used the Iwasawa decomposition

g = u(g ,Z) exp
(

lnλ(g ,Z) z
)

b(g ,Z)

with u(g ,Z) ∈ H̄ and b(g ,Z) ∈ BZ where BZ ⊂ Ḡ is the ‘parabolic’
(Borel) subgroup that leaves the charges Z invariant up to a
multiplicative factor λ(g ,Z). This multiplicative factor can be
compensated for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate transformations,
leading to a formulation of active symmetry transformations that
map solutions into other solutions with unchanged asymptotic
values of the spacetime metric and scalar fields.

I The D = 3 structure is characterized by the fact that the
Iwasawa decomposition breaks down for noncompact divisor
groups H∗.

I The Iwasawa decomposition does, however work “almost
everywhere” in the D = 3 solution space. The places where it
fails are precisely the extremal suborbits of the duality group.
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Arithmetic subgroups?
Since the work of Hull & Townsend, there has been a ‘folk’
expectation that all Cremmer-Julia type duality symmetries should
be reduced to arithmetic subgroups like E8(Z) as a result of Dirac
charge quantization. However, consider the explicit
transformations of the pure gravity charge matrix

C ≡




m n

n −m


 ∈ sl(2,R)	 so(2)

yielding

solution with negative mass −µ|b|. The cylinder is closed at one end by adding the

trivial stratum M1 consisting only of the point (m, n) = (0, 0).

In this way one obtains an action of SL(2,R) on the Taub–NUT solutions defined

from the left action on SL(2,R)/R through the map (m, n) =
(

1−b2√
1+b2

µ, 2b√
1+b2

µ
)
. This

map has as inverse

µ =
1

2

√
(c + m)2 + n2 b =

2nc

(c + m)2 + n2
. (5.53)

For a general element of SL(2,R), g ≡
0
BBB@

α β

γ δ

1
CCCA, with αδ − βγ = 1, one obtains the

following transformation of the solution’s charges:

m′ =
(α2 − γ2 + β2 − δ2)c + (α2 − γ2 − β2 + δ2)m + 2(αβ − γδ)n√
2(α2 + γ2 + β2 + δ2) + 2(α2 + γ2 − β2 − δ2)m

c
+ 4(αβ + γδ)n

c

n′ =
2(αγ + βδ)c + 2(αγ − βδ)m + 2(αδ + βγ)n√

2(α2 + γ2 + β2 + δ2) + 2(α2 + γ2 − β2 − δ2)m
c

+ 4(αβ + γδ)n
c

. (5.54)

To derive these formulas, one first expresses (µ, b) via (m, n), then works out the non-

linear action of SL(2,R) in order to obtain

µ′ = (α + βb)µ , b′ =
γ + δb

α + βb
(5.55)

and finally expresses (m′, n′) in terms of the new parameters (µ′, b′) as functions of (m, n).

This construction extends trivially to non-vanishing angular momentum by taking a Kerr

solution as the reference solution. The action is the same with the value of (a/c) kept

fixed.

In order to see explicitly that the ‘active action’ (5.54) is actually the same as the ab-

stract formula (5.44), we must perform an Iwasawa decomposition of the general SL(2,R)

element g, but with C from (5.51) rather than h as the diagonal element, as in (5.42).

After some algebra we arrive at

(
α β

γ δ

)
=

1√
1 + b2

(
1 −b

b 1

)
1

2c

(
(c + m)λ + (c−m)λ−1 n(λ− λ−1)

n(λ− λ−1) (c−m)λ + (c + m)λ−1

)

× 1

2c

(
2c− ne (c + m)e

(−c + m)e 2c + ne

)
(5.56)

where the matrix in the middle is just exp
[
c−1(ln λ)C

]
, the matrix on the left is the

SO(2) rotation u(g,C ), and the matrix to the right is the parabolic element p(g,C ) that

64

It is very hard to see how such transformations can be discretized
in such a way as to preserve a Dirac type quantization rule.
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Conclusions
The understanding of duality group orbits for stationary
supergravity solutions has been deepened in the following ways.

I The Noether charge matrix C satisfies a characteristic
equation C 5 = 5c2C 3 − 4c4C in the maximal E8 cases and
C 3 = c2C in the non-maximal cases, where c2 ≡ 1

k Tr C 2 is
the extremality parameter.

I Extremal solutions are characterized by c2 = 0, and C
becomes nilpotent (C 5 = 0 viz. C 3 = 0) on the corresponding
suborbits.

I BPS solutions have a charge matrix C satisfying an algebraic
‘supersymmetry Dirac equation’ which encodes the general
properties of such solutions. This is a stronger condition than
the c2 = 0 extremality condition.

I The orbits of the D = 3 duality group G are not always acted
upon transitively by G . This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H∗.
The Iwasawa failure set corresponds to the extremal suborbits.
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