Universal BPS Structure of stationary supergravity solutions

K.S. Stelle

Imperial College London
$4^{\text {th }}$ International Sakharov Conference FIAN, Moscow, 21 May 2009
G. Bossard, H. Nicolai \& K.S.S.
0809.5218 and 0902.4438 [hep-th]

Outline

- Introduction: timelike dimensional reductions
- Gravitational and vector charges
- Characteristic equation
- Supersymmetry 'Dirac equation’
- BPS Geology
- Almost Iwasawa decompositions
- Arithmetic subgroups?
- Conclusions

Stationary solutions and timelike dimensional reduction

The search for supergravity solutions with assumed Killing symmetries can be recast as a Kaluza-Klein problem. Consider a $D=4$ theory with a nonlinear bosonic symmetry \bar{G} (e.g. E_{7} for maximal $N=8$ supergravity). Scalar fields take their values in a target space $\bar{\Phi}=\bar{G} / \bar{H}$, where \bar{H} is the corresponding linearly realized subgroup, generally the maximal compact subgroup of \bar{G} (e.g. $\mathrm{SU}(8)$ for $N=8 \mathrm{SG}$).

Searching for stationary solutions to such a theory amounts to assuming further that a solution possesses a timelike Killing vector field $\kappa_{\mu}(x)$.

- We assume that the solution spacetime is asymptotically flat or asymptotically Taub-NUT and that there is a 'radial' function r which is divergent in the asymptotic region, $g^{\mu \nu} \partial_{\mu} r \partial_{\nu} r \sim 1+\mathcal{O}\left(r^{-1}\right)$.
- The Killing vector κ will be assumed to have

$$
W:=-g_{\mu \nu} \kappa^{\mu} \kappa^{\nu} \sim 1+\mathcal{O}\left(r^{-1}\right)
$$

- We assume asymptotic hypersurface orthogonality,

$$
\kappa^{\nu}\left(\partial_{\mu} \kappa_{\nu}-\partial_{\nu} \kappa_{\mu}\right) \sim \mathcal{O}\left(r^{-2}\right)
$$

- In any vielbein frame, the curvature will fall off as $R_{a b c d} \sim \mathcal{O}\left(r^{-3}\right)$.
- Lie derivatives with respect to κ are assumed to vanish on all fields.

The $D=3$ theory dimensionally reduced with respect to the timelike Killing vector κ will have an Abelian principal bundle structure, with a metric

$$
d s^{2}=-W\left(d t+\hat{B}_{i} d x^{i}\right)^{2}+W^{-1} \gamma_{i j} d x^{i} d x^{j}
$$

where t is a coordinate adapted to the Killing vector κ and γ is the metric on the 3 -dimensional hypersurface Σ_{3} at constant t. If the $D=4$ theory has Abelian vector fields \mathcal{A}_{μ}, they similarly reduce to $D=3$ as

$$
4 \sqrt{4 \pi G} \mathcal{A}_{\mu} d x^{\mu}=U\left(d t+\hat{B}_{i} d x^{i}\right)+\hat{A}_{i} d x^{i}
$$

Comparison to spacelike dimensional reductions

The timelike $D=3$ reduced theory will have a G / H^{*} coset space structure similar to the G / H coset space structure of a $D=3$ theory similarly reduced on a spacelike Killing vector. Thus, for a spacelike reduction of maximal supergravity one obtains an $\mathrm{E}_{8} / \mathrm{SO}(16)$ theory continuing on in the sequence of dimensional reductions originating in $D=11$. Julia As for the analogous spacelike reduction, the $D=3$ theory has the possibility of exchanging $D=3$ Abelian vector fields for scalars by dualization, contributing to the appearance of an enlarged $D=3$ bosonic 'duality' symmetry. The resulting $D=3$ theory contains $D=3$ gravity coupled to a G / H^{*} nonlinear sigma model.

- However, although the numerator group G is the same for a timelike reduction to $D=3$ as that obtained for a spacelike reduction, the divisor group H^{*} is a noncompact form of the spacelike divisor group H. Breitenlohner, Gibbons \& Maison 1988
- The origin of this $H \rightarrow H^{*}$ change is the appearance of negative-sign kinetic terms for scalars descending from $D=4$ vectors under the timelike reduction.

Some examples of G / H^{*} and G / H theories in $D=3$

G/H	G / H^{*}	\bar{G} / \bar{H}	$3+1$ dimensional theory
$S L(n+2)$	$S L(n+2)$	GL(n)/SO(n)	$n+4$ dimensional
$S O(n+2)$	$S O(n, 2)$		Einstein gravity with n Killing vectors
$S U(2,1)$	$S U(2,1)$	$U(1) / U(1)$	Einstein-Maxwell ($N=2$ supergravity)
$\overline{S(U(2) \times U(1))}$	$\overline{S(U(1,1) \times U(1))}$		
SO(8,2)	$\mathrm{SO}(8,2)$	$\underline{S O}(6) \times S O(2,1)$	$N=4$ supergravity
$\overline{S O(8) \times S O(2)}$	$\overline{S O(6,2) \times S O(2)}$	$\mathrm{SO}(6) \times \mathrm{SO}(2)$	-4 supergravity
$\mathrm{SO}(8,8)$	SO(8,8)	$S O(6,6) \times S O(2,1)$	$N=4$ supergravity
$\overline{S O(8) \times S O(8)}$	$\overline{S O(6,2) \times S O(2,6)}$	$\underline{S O(6) \times S O(6) \times S O(2)}$	+ supersym. Maxwell (10 dim. supergravity)
$E_{8(+8)} / S O(16)$	$E_{8(+8)} / S O^{*}(16)$	$E_{7+7 / 1} / S U(8)$	$N=8$ supergravity (11 dim. supergravity)

The $D=3$ classification of extended supergravity stationary solutions via timelike reduction generalizes the $D=3$ supergravity systems obtained from spacelike reduction. de Wit, Tollsten \& Nicolai

Charges

Define the Komar two-form $K \equiv \partial_{\mu} \kappa_{\nu} d x^{\mu} \wedge d x^{\nu}$. This is invariant under the action of the timelike isometry and, by the asymptotic hypersurface orthogonality assumption, is asymptotically horizontal. This condition is equivalent to a requirement that the scalar field B dual to the Kaluza-Klein vector arising by dimensional reduction out of the metric vanish like $\mathcal{O}\left(r^{-1}\right)$ as $r \rightarrow \infty$. In this case, one can define the Komar mass and NUT charge by (where s^{*} indicates a pull-back to a section) Bossard, Nikoli \& k.s.s.

$$
m \equiv \frac{1}{8 \pi} \int_{\partial \Sigma} s^{*} \star K \quad n \equiv \frac{1}{8 \pi} \int_{\partial \Sigma} s^{*} K
$$

The Maxwell field also defines charges. Using the Maxwell field equation $d \star \mathcal{F}=0$, where $\mathcal{F} \equiv \delta \mathcal{L} / \delta F$ is a linear combination of the two-form field strengths F depending on the four-dimensional scalar fields, and using the Bianchi identity $d F=0$ one obtains conserved electric and magnetic charges

$$
q \equiv \frac{1}{2 \pi} \int_{\partial \Sigma} s^{*} \star \mathcal{F} \quad p \equiv \frac{1}{2 \pi} \int_{\partial \Sigma} s^{*} F
$$

Now consider these charges from the three-dimensional point of view in order to clarify their transformation properties under the three dimensional duality group G (in a simple Maxwell-Einstein example, $G=\operatorname{SU}(2,1))$.
The three-dimensional theory is described in terms of a coset representative $\mathcal{V} \in G / H^{*}$. The Maurer-Cartan form $\mathcal{V}^{-1} d \mathcal{V}$ decomposes as

$$
\mathcal{V}^{-1} d \mathcal{V}=Q+P \quad, \quad Q \equiv Q_{\mu} d x^{\mu} \in \mathfrak{h}^{*}, \quad P \equiv P_{\mu} d x^{\mu} \in \mathfrak{g} \ominus \mathfrak{h}^{*}
$$

Then the three-dimensional equations of motion can be rewritten as $d \star \mathcal{V} P \mathcal{V}^{-1}=0$, so the \mathfrak{g}-valued Noether current is $\star \mathcal{V} P \mathcal{V}^{-1}$. Since the three-dimensional theory is Euclidean, one cannot properly speak of a conserved charge. Nevertheless, since $\star \mathcal{V} P \mathcal{V}^{-1}$ is d-closed, the integral of this 2 -form on a given homology cycle does not depend on the representative of the cycle.

As a result, for stationary solutions, the integral of this three-dimensional current, over any space-like closed surface containing in its interior all the singularities and topologically non-trivial subspaces of a solution, defines a $\mathfrak{g} \ominus \mathfrak{h}^{*}$-valued charge matrix \mathscr{C}

$$
\mathscr{C} \equiv \frac{1}{4 \pi} \int_{\partial \Sigma} \star \mathcal{V} P \mathcal{V}^{-1}
$$

This transforms in the adjoint representation of G according to the standard non-linear action. For asymptotically flat solutions, \mathcal{V} goes to the identity matrix asymptotically and the charge matrix \mathscr{C} in that case is given by the asymptotic value of the one-form P :

$$
P=\mathscr{C} \frac{d r}{r^{2}}+\mathcal{O}\left(r^{-2}\right)
$$

Now set up some general notation for the relevant group structure. Let \mathfrak{g}_{4} be the algebra of the $D=4$ symmetry group \bar{G} and let \mathfrak{h}_{4} be the algebra of its $D=4$ divisor group $\bar{H} . \mathfrak{s l}(2, \mathbb{R}) \cong \mathfrak{s o}(2,1)$ is the algebra of the Ehlers group (i.e. the $D=3$ duality group of pure $D=4$ gravity); $\mathfrak{s o (2)}$ is the algebra of its divisor group. Let \mathfrak{l}_{4} be the \mathfrak{h}_{4} representation carried by the electric and magnetic charges q and p. Then \mathscr{C} can be decomposed into three irreducible representations with respect to $\mathfrak{s o}(2) \oplus \mathfrak{h}_{4}$ according to

$$
\mathfrak{g} \ominus \mathfrak{h}^{*} \cong(\mathfrak{s l}(2, \mathbb{R}) \ominus \mathfrak{s o}(2)) \oplus \mathfrak{h}_{4} \oplus\left(\mathfrak{g}_{4} \ominus \mathfrak{h}_{4}\right)
$$

The metric induced by the Cartan-Killing metric of \mathfrak{g} on this coset space is positive definite for the first and last terms, and negative definite for l_{4}.
One associates the $\mathfrak{s l}(2, \mathbb{R}) \ominus \mathfrak{s o}(2)$ component with the Komar mass and the Komar NUT charge, and one associates the \mathfrak{l}_{4} component with the electromagnetic charges. The remaining $\mathfrak{g}_{4} \ominus \mathfrak{h}_{4}$ charges come from the Noether current of the four-dimensional theory.

Characteristic equation

Breitenlohner, Gibbons and Maison proved that if G is simple, all the non-extremal single-black-hole solutions of a given theory lie on the H^{*} orbit of a Kerr solution. Moreover, all static solutions regular outside the horizon with a charge matrix satisfying $\operatorname{Tr} \mathscr{C}^{2}>0$ lie on the H^{*}-orbit of a Schwarzschild solution.
(Turning on and off angular momentum requires consideration of the $D=2$ duality group generalizing the Geroch A_{1}^{1} group, and will be considered in future work.)
Using Weyl coordinates, the coset representative \mathcal{V} associated to the Schwarzschild solution with mass m can be written in terms of the non-compact generator \mathbf{h} of the Ehlers $\mathfrak{s l}(2, \mathbb{R})$ only, i.e.

$$
\mathcal{V}=\exp \left(\frac{1}{2} \ln \frac{r-m}{r+m} \mathbf{h}\right) \quad \rightarrow \quad \mathscr{C}=m \mathbf{h}
$$

For the maximal $N=8$ theory with symmetry $\mathrm{E}_{8(8)}$ (and also for the exceptional 'magic' $N=2$ supergravity Gunaydin, Sierra \& Townsend with symmetry $\mathrm{E}_{8(-24)}$), one finds

$$
\mathbf{h}^{5}=5 \mathbf{h}^{3}-4 \mathbf{h}
$$

- Consequently, the charge matrix \mathscr{C} satisfies in all cases

$$
\mathscr{C}^{5}=5 c^{2} \mathscr{C}^{3}-4 c^{4} \mathscr{C}
$$

where $c^{2} \equiv \frac{1}{k} \operatorname{Tr} \mathscr{C}^{2}$ is the extremality parameter (vanishing for extremal static solutions) and $k \equiv \operatorname{Tr} \mathbf{h}^{2}>0$.

- Moreover, for all but the two exceptional E_{8} cases, a stronger constraint is actually satisfied by the charge matrix \mathscr{C} :

$$
\mathscr{C}^{3}=c^{2} \mathscr{C}
$$

The characteristic equations select acceptable orbits of solutions, i.e. orbits not exclusively containing solutions with naked singularities. They determine \mathscr{C} in terms of the mass and NUT charge and the $D=4$ electromagnetic charges.

Supersymmetry 'Dirac equation'

Extremal solutions have $c^{2}=0$, implying that the charge matrix \mathscr{C} becomes nilpotent: $\mathscr{C}^{5}=0$ in the E_{8} cases and $\mathscr{C}^{3}=0$ otherwise.
For \mathcal{N} extended supergravity theories, one finds
$H^{*} \cong \operatorname{Spin}^{*}(2 \mathcal{N}) \times H_{0}$ and the charge matrix \mathscr{C} transforms as a Weyl spinor of $\operatorname{Spin}^{*}(2 \mathcal{N})$ valued in a representation of \mathfrak{h}_{0}. Define the $\operatorname{Spin}^{*}(2 \mathcal{N})$ fermionic oscillators

$$
a_{i}:=\frac{1}{2}\left(\Gamma_{2 i-1}+i \Gamma_{2 i}\right) \quad a^{i} \equiv\left(a_{i}\right)^{\dagger}=\frac{1}{2}\left(\Gamma_{2 i-1}-i \Gamma_{2 i}\right)
$$

for $i, j, \cdots=1, \ldots, \mathcal{N}$. These obey standard anticommutation relations

$$
\left\{a_{i}, a_{j}\right\}=\left\{a^{i}, a^{j}\right\}=0 \quad, \quad\left\{a_{i}, a^{j}\right\}=\delta_{i}^{j}
$$

Using this creation/annihilation oscillator basis, the charge matrix \mathscr{C} can be represented as a state

$$
|\mathscr{C}\rangle \equiv\left(w+Z_{i j} a^{i} a^{j}+\Sigma_{i j k l} a^{i} a^{j} a^{k} a^{\prime}+\cdots\right)|0\rangle
$$

From the requirement that dilatino fields be left invariant under an unbroken supersymmetry of a BPS solution, one derives a 'Dirac equation' for the charge state vector,

$$
\left(\epsilon_{\alpha}^{i} a_{i}+\Omega_{\alpha \beta} \epsilon_{i}^{\beta} a^{i}\right)|\mathscr{C}\rangle=0
$$

where $\left(\epsilon_{\alpha}^{i}, \epsilon_{i}^{\alpha}\right)$ is the asymptotic (for $r \rightarrow \infty$) value of the Killing spinor and $\Omega_{\alpha \beta}$ is a symplectic form on $\mathbb{C}^{2 n}$ in cases with n / N preserved supersymmetry.
This condition turns out to be equivalent to the algebraic requirement that \mathscr{C} be a pure spinor of $\operatorname{Spin}^{*}(2 \mathcal{N})$ For BPS solutions, it has the consequence that the characteristic equations can be explictly solved in terms of rational functions.
Note that $c^{2}=0$ is a weaker condition than the supersymmetry Dirac equation. Extremal and BPS are not always synonymous conditions, although they coincide for $\mathcal{N} \leq 5$ pure supergravities. They are not synomymous for $\mathcal{N}=6 \& 8$ or for theories with vector matter coupling.

BPS Geology

Analysis of the 'Dirac equation' or nilpotency degree of the charge matrix \mathscr{C} leads to a decomposition of the moduli space \mathcal{M} of supergravity solutions into strata of various BPS degrees. Letting \mathcal{M}_{0} be the non-BPS stratum, \mathcal{M}_{1} being the $\frac{1}{2}$ BPS stratum, etc., the dimensions of the strata for pure supergravity theories turn out to be

	$\mathcal{N}=2$	$\mathcal{N}=3$	$\mathcal{N}=4$	$\mathcal{N}=5$	$\mathcal{N}=6$	$\mathcal{N}=8$
$\operatorname{dim}\left(\mathcal{M}_{0}\right)$	4	8	14	22	34	58
$\operatorname{dim}\left(\mathcal{M}_{1}\right)$	3	7	13	21	33	57
$\operatorname{dim}\left(\mathcal{M}_{2}\right)$			8	16	26	46
$\operatorname{dim}\left(\mathcal{M}_{4}\right)$					17	29

'Almost Iwasawa' decomposition

Earlier analysis of the orbits of the $D=4$ symmetry groups \bar{G} Cremmer, Lü, Pope \& k.s.s. heavily used the Iwasawa decomposition

$$
g=u_{(g, Z)} \exp \left(\ln \lambda_{(g, Z)} z\right) b_{(g, Z)}
$$

with $u_{(g, Z)} \in \bar{H}$ and $b_{(g, Z)} \in \mathfrak{B}_{Z}$ where $\mathfrak{B}_{Z} \subset \bar{G}$ is the 'parabolic' (Borel) subgroup that leaves the charges Z invariant up to a multiplicative factor $\lambda_{(g, Z)}$. This multiplicative factor can be compensated for by 'trombone' transformations combining Weyl scalings with compensating dilational coordinate transformations, leading to a formulation of active symmetry transformations that map solutions into other solutions with unchanged asymptotic values of the spacetime metric and scalar fields.

- The $D=3$ structure is characterized by the fact that the Iwasawa decomposition breaks down for noncompact divisor groups H^{*}.
- The Iwasawa decomposition does, however work "almost everywhere" in the $D=3$ solution space. The places where it fails are precisely the extremal suborbits of the duality group

Arithmetic subgroups?

Since the work of Hull \& Townsend, there has been a 'folk' expectation that all Cremmer-Julia type duality symmetries should be reduced to arithmetic subgroups like $E_{8}(\mathbb{Z})$ as a result of Dirac charge quantization. However, consider the explicit transformations of the pure gravity charge matrix

$$
\mathscr{C} \equiv\left(\begin{array}{cc}
m & n \\
n & -m
\end{array}\right) \in \mathfrak{s l l}(2, \mathbb{R}) \ominus \mathfrak{s o}(2)
$$

yielding

$$
\begin{aligned}
m^{\prime} & =\frac{\left(\alpha^{2}-\gamma^{2}+\beta^{2}-\delta^{2}\right) c+\left(\alpha^{2}-\gamma^{2}-\beta^{2}+\delta^{2}\right) m+2(\alpha \beta-\gamma \delta) n}{\sqrt{2\left(\alpha^{2}+\gamma^{2}+\beta^{2}+\delta^{2}\right)+2\left(\alpha^{2}+\gamma^{2}-\beta^{2}-\delta^{2}\right) \frac{m}{c}+4(\alpha \beta+\gamma \delta)}} \\
n^{\prime} & =\frac{2(\alpha \gamma+\beta \delta) c+2(\alpha \gamma-\beta \delta) m+2(\alpha \delta+\beta \gamma) n}{\sqrt{2\left(\alpha^{2}+\gamma^{2}+\beta^{2}+\delta^{2}\right)+2\left(\alpha^{2}+\gamma^{2}-\beta^{2}-\delta^{2}\right) \frac{m}{c}+4(\alpha \beta+\gamma \delta)}}
\end{aligned}
$$

It is very hard to see how such transformations can be discretized in such a way as to preserve a Dirac type quantization rule.

Conclusions

The understanding of duality group orbits for stationary supergravity solutions has been deepened in the following ways.

- The Noether charge matrix \mathscr{C} satisfies a characteristic equation $\mathscr{C}^{5}=5 c^{2} \mathscr{C}^{3}-4 c^{4} \mathscr{C}$ in the maximal E_{8} cases and $\mathscr{C}^{3}=c^{2} \mathscr{C}$ in the non-maximal cases, where $c^{2} \equiv \frac{1}{k} \operatorname{Tr} \mathscr{C}^{2}$ is the extremality parameter.
- Extremal solutions are characterized by $c^{2}=0$, and \mathscr{C} becomes nilpotent ($\mathscr{C}^{5}=0$ viz. $\mathscr{C}^{3}=0$) on the corresponding suborbits.
- BPS solutions have a charge matrix \mathscr{C} satisfying an algebraic 'supersymmetry Dirac equation' which encodes the general properties of such solutions. This is a stronger condition than the $c^{2}=0$ extremality condition.
- The orbits of the $D=3$ duality group G are not always acted upon transitively by G. This is related to the failure of the Iwasawa decomposition for noncompact divisor groups H^{*}. The Iwasawa failure set corresponds to the extremal suborbits.

