Quantum strings in $A d S_{5} \times S^{5}$ and gauge-string duality

Arkady Tseytlin

- Historical remarks: E.S. Fradkin
- Brief review of recent work on gauge-string duality
- Quantum string corrections to dimension of "short" operators
[R. Roiban, AT, in progress]

E.S. Fradkin

- broad spectrum of interests and important results remarkable sense of what is new and important boldly moving into new subjects and "crossing boundaries"
- quantum field theory; quantum gauge theory; quantum gravity; supersymmetry and supergravity; conformal field theories; higher spin theories
string theory
some of our joint papers:
-Quantization of Two-Dimensional Supergravity and Critical Dimensions for String Models. Phys.Lett.B106:63,1981
- On Quantized String Models. Annals of Phys.143:413,1982.
\bullet Quantized Strings And QCD. in Nara Symposium, 0284, 1982.
-Quantum String Theory Effective Action. Nucl.Phys.B261:1,1985.
-Effective Action Approach to Superstring Theory. Phys.Lett.B160:69,1985.
\bullet Nonlinear Electrodynamics from Quantized Strings. Phys.Lett.B163:123,1985.

Some history:

- 1980 - met at seminar in this hall
- 1981 - Polyakov' talk here; our first string-theory paper string theory for gauge theory (WL representation in QCD)
-1981-83 - superstring developments, Witten's talk here string theory as quantum gravity
-1984-85 - our work on effective field theory from string theory (eff. action from string path integral, dilaton, Born-Infeld, etc.)
-1997-98 - AdS/CFT duality:
unification of many ideas and methods Fradkin worked on:
- $\mathcal{N}=4$ super Yang-Mills theory $=4 d$ CFT
- string theory in curved $A d S_{5}$ space:
higher-spin theories in $A d S$,
SYM vs 4d conformal supergravity, etc.
... he would be excited to work on this remarkable subject...

Some of Fradkin's related earlier work:

- $N=4$ SYM conformal anomaly in curved space:

Conformal anomaly in Weyl Theory and anomaly free Superconformal Theories
E.S. Fradkin, A.A. Tseytlin, Phys.Lett.B134:187,1984.

- Higher spins in $A d S$ space:

On the Gravitational Interaction of Massless Higher Spin Fields
E.S. Fradkin, M.A. Vasiliev, Phys.Lett.B189:89,1987.

- Integrability of a string-theory sigma model:

Quantum R matrix in the relativistic string model
in a space of constant curvature.
E.S. Fradkin, R.R. Metsaev. Mod.Phys.Lett.A5:1329,1990.

- 4-d CFT methods:

New developments in D-dimensional conformal quantum field theory
E.S. Fradkin , M.Ya. Palchik, Phys.Rept.300:1-112,1998.

AdS/CFT:

progress largely using limited tools of
supergravity + classical probe actions
To go beyond: understand quantum string theory in $A d S_{5} \times S^{5}$

Problems for string theory:

- find spectrum of states: energies/dimensions as functions of $\lambda=g_{\mathrm{YM}}^{2} N_{c}$
- construct vertex operators: closed and open (?) strings
- compute their correlation functions - scattering amplitudes
- compute expectation values of Wilson loops
- generalizations to simplest less supersymmetric cases
"tree-level" $A d S_{5} \times S^{5}$ superstring $=$ planar $\mathcal{N}=4 \mathrm{SYM}$
Recent remarkable progress in quantitative understanding interpolation from weak to strong 't Hooft coupling based on/checked by perturbative gauge theory (4-loop in λ) and perturbative string theory (2 -loop in $\frac{1}{\sqrt{\lambda}}$) "data" and (strong evidence of) exact integrability string energies $=$ dimensions of local $\operatorname{Tr}(\ldots)$ operators

$$
E(\sqrt{\lambda}, C, m, \ldots)=\Delta(\lambda, C, m, \ldots)
$$

C - "charges" of $S O(2,4) \times S O(6): S_{1}, S_{2} ; J_{1}, J_{2}, J_{3}$
m - windings, folds, cusps, oscillation numbers, ...
Operators: $\operatorname{Tr}\left(\Phi_{1}^{J_{1}} \Phi_{2}^{J_{2}} \Phi_{3}^{J_{3}} D_{+}^{S_{1}} D_{\perp}^{S_{2}} \ldots F_{m n} \ldots \Psi \ldots\right)$
Solve supersymmetric 4-d CFT
$=$ Solve string in curved R-R background (2-d CFT):
compute $E=\Delta \quad$ for any $\lambda \quad$ (and any C, m)

Problem: perturbative expansions are opposite
$\lambda \gg 1$ in perturbative string theory
$\lambda \ll 1$ in perturbative gauge theory
weak-coupling expansion convergent - defines $\Delta(\lambda)$
need to go beyond perturbation theory: integrability

Last 7 years - remarkable progress for subclass of states: "semiclassical" string states with large quantum numbers dual to "long" SYM operators (canonical dim. $\Delta_{0} \gg 1$) [BMN 02, GKP 02, FT 03,...]
$E=\Delta$ - same (in some cases !) dependence on C, m, \ldots coefficients $=$ "interpolating" functions of λ

Current status:

1. "Long" operators = strings with large quantum numbers:

Asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)
2. "Short" operators = general quantum string states:
partial progress based on improving ABA by
"Luscher corrections" [Janik et al 08]
generalize ABA to TBA [Arutyunov, Frolov 08]
very recent (complete ?) proposal for underlying "Y-system"
[Gromov, Kazakov, Vieira 09]

To justify from first principles need better understanding of quantum $A d S_{5} \times S^{5}$ superstring theory

1. Solve string theory on a plane $R^{1,1} \rightarrow$
relativistic 2d S-matrix \rightarrow asymptotic BA for the spectrum
2. Generalize to finite-energy closed strings - the theory on $R \times S^{1}$
\rightarrow TBA (cf. integrable sigma models)

Superstring theory in $A d S_{5} \times S^{5}$
bosonic coset $\frac{S O(2,4)}{S O(1,4)} \times \frac{S O(6)}{S O(5)}$
generalized to supercoset $\frac{P S U(2,2 \mid 4)}{S O(1,4) \times S O(5)} \quad$ [Metsaev, AT 98]

$$
\begin{aligned}
S= & T \int d^{2} \sigma\left[G_{m n}(x) \partial x^{m} \partial x^{n}+\bar{\theta}\left(D+F_{5}\right) \theta \partial x\right. \\
& +\bar{\theta} \theta \bar{\theta} \theta \partial x \partial x+\ldots]
\end{aligned}
$$

tension $T=\frac{\mathrm{R}^{2}}{2 \pi \alpha^{\prime}}=\frac{\sqrt{\lambda}}{2 \pi}$
Conformal invariance: $\quad \beta_{m n}=R_{m n}-\left(F_{5}\right)_{m n}^{2}=0$
Classical (Luscher-Pohlmeyer 76) integrability of coset σ-model true for $A d S_{5} \times S^{5}$ superstring [Bena, Polchinski, Roiban 02]
Progress in understanding of implications of (semi)classical integrability [Kazakov, Marshakov, Minahan, Zarembo 04,...]

Reformulation in terms of currents with Virasoro conditions solved:
"Pohlmeyer reduction" [Grigoriev, AT 07; Roiban, AT 09]

1-loop quantum superstring corrections
[Frolov, AT; Park, Tirziu, AT, 02-04, ...]
used as an input data to fix 1-loop term in strong-coupling expansion of the phase $\theta(\lambda)$ in ABA [Beisert, AT 05; Hernandez, Lopez 06]

2-loop quantum superstring corrections
[Roiban, Tirziu, AT; Roiban, AT 07]

- check of finiteness of the GS superstring
- implicit check of integrability of quantum string theory
- non-trivial confirmation of BES phase in ABA
[Benna, Benvenuti, Klebanov, Scardicchio 07;
Basso, Korchemsky, Kotansky 07]

Gauge states vs string states: principles of comparison

1. compare states with same global $S O(2,4) \times S O(6)$ charges
e.g., (S, J) - "sl(2) sector" $-\operatorname{Tr}\left(D_{+}^{S} \Phi^{J}\right)$
2. assume no "level crossing" while changing λ
$\min /$ max energy (S, J) states should be in correspondence
Gauge theory:
$\Delta \equiv E=S+J+\gamma(S, J, m, \lambda)$,
$\gamma=\sum_{k=1}^{\infty} \lambda^{k} \gamma_{k}(S, J, m)$
fix S, J, \ldots and expand in λ;
then may expand in large/small S, J, \ldots
Semiclassical string theory:
$E=S+J+\gamma(\mathcal{S}, \mathcal{J}, m, \sqrt{\lambda})$,
$\gamma=\sum_{k=-1}^{\infty} \frac{1}{(\sqrt{\lambda})^{k}} \widetilde{\gamma}_{k}(\mathcal{S}, \mathcal{J}, m)$
fix semiclassical parameters $\mathcal{S}=\frac{S}{\sqrt{\lambda}}, \mathcal{J}=\frac{J}{\sqrt{\lambda}}, m$
To match in general will need to resum - beyond ABA

Summary: \quad planar $\mathcal{N}=4$ SYM $\quad \lambda=g_{\mathrm{YM}}^{2} N_{c}$

- cusp anomalous dimension: $\operatorname{Tr}\left(\bar{\Phi} D_{+}^{S} \Phi\right), \Delta=S+f(\lambda) \ln S+\ldots$

$$
\begin{aligned}
& f(\lambda \ll 1)=\frac{\lambda}{2 \pi^{2}}\left[1-\frac{\lambda}{48}+\frac{11 \lambda^{2}}{2^{8} \cdot 45}-\left(\frac{73}{630}+\frac{4(\zeta(3))^{2}}{\pi^{6}}\right) \frac{\lambda^{3}}{2^{7}}+O\left(\lambda^{4}\right)\right] \\
& f(\lambda \gg 1)=\frac{\sqrt{\lambda}}{\pi}\left[1-\frac{3 \ln 2}{\sqrt{\lambda}}-\frac{K}{(\sqrt{\lambda})^{2}}-O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right]+O\left(e^{-\frac{1}{2} \sqrt{\lambda}}\right)
\end{aligned}
$$

BES integral equation: any number of terms in expansions known

- anomalous dimension of Konishi operator: $\operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right), \Delta=2+\gamma$

$$
\begin{aligned}
\gamma(\lambda \ll 1)= & \frac{12 \lambda}{(4 \pi)^{2}}\left[1-\frac{4 \lambda}{(4 \pi)^{2}}+\frac{28 \lambda^{2}}{(4 \pi)^{4}}\right. \\
& \left.+[-208+48 \zeta(3)-120 \zeta(5)] \frac{\lambda^{3}}{(4 \pi)^{6}}+O\left(\lambda^{4}\right)\right] \\
\gamma(\lambda \gg 1)= & 2 \sqrt{\sqrt{\lambda}}\left[1+\frac{b}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

b - leading correction to mass of "lightest" $A d S_{5} \times S^{5}$ string state higher order terms? integral equation for γ ?

Dimensions of short operators
 = energies of quantum string states:

progress in understanding spectrum of conformal dimensions
of planar $N=4 \mathrm{SYM}$ or spectrum of strings in $A d S_{5} \times S^{5}$
based on quantum integrability
Spectrum of states with large quantum numbers solution of ABA equations
key example: cusp anomaly function
Recent proposal of how to extend this to "short" states with any quantum numbers - TBA or "Y-system" approach so far not checked/compared to direct quantum string results

Aim: compute leading $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ correction to dimension of "lightest" massive string state dual to
Konishi operator in SYM theory

- data for checking future (numerical) prediction of "Y-system"

Konishi operator:

operators (long multiplet) related to singlet $[0,0,0]_{(0,0)}^{2}$ by susy

$$
\Delta=\Delta_{0}+\gamma(\lambda), \quad \Delta_{0}=2, \frac{5}{2}, 3, \ldots, 10
$$

- same anomalous dimension γ
singlet eigen-state of anom. dim. matrix with lowest eigenvalue examples:
$\operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right), \quad i=1,2,3, \quad \Delta_{0}=2$
$\operatorname{Tr}\left(\left[\Phi_{1}, \Phi_{2}\right]^{2}\right)$ in $s u(2)$ sector $\Delta_{0}=4$
$\operatorname{Tr}\left(\Phi_{1} D_{+}^{2} \Phi_{1}\right)$ in $s l(2)$ sector $\Delta_{0}=4$
Weak-coupling expansion of $\gamma(\lambda): \quad \lambda=g_{\mathrm{YM}}^{2} N_{c}$

$$
\begin{aligned}
\gamma(\lambda) & =12\left[\frac{\lambda}{(4 \pi)^{2}}-4 \frac{\lambda^{2}}{(4 \pi)^{4}}+28 \frac{\lambda^{3}}{(4 \pi)^{6}}\right. \\
& \left.+[-208+48 \zeta(3)-120 \zeta(5)] \frac{\lambda^{4}}{(4 \pi)^{8}}+\ldots .\right]
\end{aligned}
$$

[Fiamberti,Santambrogio,Sieg,Zanon; Bajnok,Janik; Velizhanin 08]

Finite radius of convergence $\left(N_{c}=\infty\right)$ - if we could sum up and then re-expand at large λ - what to expect? (cf. $f(\lambda)$)

AdS/CFT duality: Konishi operator dual to
"lightest" among massive $A d S_{5} \times S^{5}$ string states
large $\sqrt{\lambda}=\frac{\mathrm{R}^{2}}{\alpha^{\prime}}$:

- "small" string at center of $A d S_{5}$ - in nearly flat space

$$
\begin{aligned}
& \lambda \gg 1: \Delta(\Delta-4)=4 \sqrt{\lambda}+a+O\left(\frac{1}{\sqrt{\lambda}}\right) \\
& \Delta-2=2 \sqrt{\sqrt{\lambda}}\left[1+\frac{b}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right], \quad b=\frac{1}{8}(a+4)
\end{aligned}
$$

$a=$ first correction to mass of dual string state
Evidence below: $\quad a=-4, \quad b=0$

Flat space case:
$m^{2}=\frac{4(n-1)}{\alpha^{\prime}}, \quad n=\frac{1}{2}(N+\bar{N})=1,2, \ldots, \quad N=\bar{N}$
$n=1$: massless IIB supergravity (BPS) level
1.c. vacuum $\mid 0>:(8+8)^{2}=256$ states
$n=2$: first massive level (many states, highly degenerate)
$\left[\left(a_{-1}^{i}+S_{-1}^{a}\right) \mid 0>\right]^{2}=[(8+8) \times(8+8)]^{2}$
in $S O(9)$ reps:
$([2,0,0,0]+[0,0,1,0]+[1,0,0,1])^{2}=(44+84+128)^{2}$
e.g. $44 \times 44=1+36+44+450+495+910$
$84 \times 84=1+36+44+84+126+495+594+924+1980+2772$
switching on $A d S_{5} \times S^{5}$ background fields lifts degeneracy states with "lightest mass" at first excited string level should correspond to Konishi multiplet
string spectrum in $A d S_{5} \times S^{5}$:
long multiplets $\mathcal{A}_{[k, p, q]\left(j, j^{\prime}\right)}^{\Delta}$ of $\operatorname{PSU}(2,2 \mid 4)$
highest weight states: $[k, p, q]\left(j, j^{\prime}\right)$ labels of $S O(6) \times S O(4)$

Remarkably, flat-space string spectrum can be re-organized in multiplets of $S O(2,4) \times S O(6) \subset P S U(2,2 \mid 4)$
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
$S O(4) \times S O(5) \subset S O(9)$ rep.
lifted to $S O(4) \times S O(6)$ rep. of $S O(2,4) \times S O(6)$

Konishi long multiplet
$\widehat{T}_{1}=(1+Q+Q \wedge Q+\ldots)[0,0,0]_{(0,0)}$
determines the KK "floor" of 1-st excited string level
$H_{1}=\sum_{J=0}^{\infty}[0, J, 0]_{(0,0)} \times \widehat{T}_{1}$

One expects for scalar massive state in $A d S_{5}$
$\left(-\nabla^{2}+m^{2}\right) \Phi+\ldots=0$
$\Delta(\Delta-4)=(m \mathrm{R})^{2}+O\left(\alpha^{\prime}\right)=4(n-1) \frac{\mathrm{R}^{2}}{\alpha^{\prime}}+O\left(\alpha^{\prime}\right)$
$\Delta=2+\sqrt{(m \mathrm{R})^{2}+4+O\left(\alpha^{\prime}\right)}$

$$
\Delta(\lambda \gg 1)=\sqrt{4(n-1) \sqrt{\lambda}}+\ldots
$$

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:
$n=2: \quad \Delta=2 \sqrt{\sqrt{\lambda}}+\ldots$

Subleading corrections?

Comparison between gauge and string theory states non-trivial:

GT $(\lambda \ll 1)$: operators built out of free fields, canonical dimension Δ_{0} determines states that can mix ST $(\lambda \gg 1)$: near-flat-space string states built out of free oscillators, level n determines states that can mix
meaning of Δ_{0} at strong coupling?
meaning of n at weak coupling?

1. relate states with same global charges;
2. assume "non-intersection principle" [Polyakov 01]:
no level crossing for states with same quantum numbers as λ changes from strong to weak coupling

Approaches to computation of corrections to string masses:
(i) semiclassical approach:
identify short string state as small-spin limit of
semiclassical string state

- reproduce the structure of strong-coupling corrections
to short operators
[Frolov, AT 03; Tirziu, AT 08]
(ii) vertex operator approach:
use $A d S_{5} \times S^{5}$ string sigma model perturbation theory to find leading terms in anomalous dimension of corresponding vertex operator
[Polyakov 01; AT 03]
(iii) space-time effective action approach:
use near-flat-space expansion and NSR vertex operators to reconstruct $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ corrections to corresponding massive string state equation of motion [Burrington, Liu 05]
(iv) "light-cone" quantization approach:
start with light-cone gauge $A d S_{5} \times S^{5}$ string action and compute corrections to energy of corresponding flat-space oscillator string state [Metsaev, Thorn, AT 00]

Semiclassical expansion: spinning strings

$$
E=E\left(\frac{J}{\sqrt{\lambda}}, \sqrt{\lambda}\right)=\sqrt{\lambda} \mathcal{E}_{0}(\mathcal{J})+\mathcal{E}_{1}(\mathcal{J})+\frac{1}{\sqrt{\lambda}} \mathcal{E}_{2}(\mathcal{J})+\ldots
$$

in "short" string limit $\mathcal{J} \ll 1$

$$
\mathcal{E}_{n}=\sqrt{\mathcal{J}}\left(a_{0 n}+a_{1 n} \mathcal{J}+a_{2 n} \mathcal{J}^{2}+\ldots\right)
$$

expansion valid for $\sqrt{\lambda} \gg 1$ and $\mathcal{J}=\frac{J}{\sqrt{\lambda}}$ fixed: $J \sim \sqrt{\lambda} \gg 1$
but if knew all terms in this expansion - could express \mathcal{J} in terms of J, fix J to finite value and re-expand in $\sqrt{\lambda}$
$E=\sqrt{\sqrt{\lambda}} J\left[a_{00}+\frac{a_{10} J+a_{01}}{\sqrt{\lambda}}+\frac{a_{20} J^{2}+a_{11} J+a_{02}}{(\sqrt{\lambda})^{2}}+\ldots\right]$
to trust the coeff of $\frac{1}{(\sqrt{\lambda})^{n}}$ need coeff of up to n-loop terms e.g. classical a_{10} and 1-loop a_{01} sufficient to fix $\frac{1}{\sqrt{\lambda}}$ term cf. "fast string" expansion $\mathcal{J} \gg 1$ for fixed J positive powers of $\sqrt{\lambda}$ - need to resum

Example: circular rotating string in S^{5} with $J_{1}=J_{2}=J$:
cf. Konishi descendant with $J_{1}=J_{2}=2: \quad \operatorname{Tr}\left(\left[\Phi_{1}, \Phi_{2}\right]^{2}\right)$
try represent it by "short" classical string with same charges flat space $R_{t} \times R^{4}$: circular string solution

$$
\begin{gathered}
x_{1}+i x_{2}=a e^{i(\tau+\sigma)}, \quad x_{3}+i x_{4}=a e^{i(\tau-\sigma)} \\
E=\sqrt{\frac{4}{\alpha^{\prime}} J}, \quad J=\frac{a^{2}}{\alpha^{\prime}}
\end{gathered}
$$

this solution can be directly embedded into
$R_{t} \times S^{5}$ in $A d S_{5} \times S^{5} \quad$ [Frolov, AT 03] :
string on small sphere inside $S^{5}: \quad X_{1}^{2}+\ldots+X_{6}^{2}=1$

$$
\begin{aligned}
& X_{1}+i X_{2}=a e^{i(\tau+\sigma)}, \quad X_{3}+i X_{4}=a e^{i(\tau-\sigma)}, \\
& X_{5}+i X_{6}=\sqrt{1-2 a^{2}}, \quad t=\kappa \tau \\
& \mathcal{J}=\mathcal{J}_{1}=\mathcal{J}_{2}=a^{2}, \quad \mathcal{E}^{2}=\kappa^{2}=4 \mathcal{J}
\end{aligned}
$$

Remarkably, exact E_{0} is just as in flat space

$$
E_{0}=\sqrt{\lambda} \mathcal{E}=\sqrt{4 \sqrt{\lambda} J}, \quad J=\sqrt{\lambda} \mathcal{J}
$$

[cf. another (unstable) branch of $J_{1}=J_{2}$ solution with $\mathcal{J}>\frac{1}{2}$:
$\left.E_{0}=\sqrt{J^{2}+\lambda}=\sqrt{\lambda}\left(1+\frac{J^{2}}{2 \sqrt{\lambda}}+\ldots\right)\right]$
1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies ($n=0,1,2, \ldots$)
Bosons (2 massless + massive):

$$
\begin{array}{lll}
A d S_{5}: & 4 \times & \omega_{n}^{2}=n^{2}+4 \mathcal{J} \\
S^{5}: & 2 \times & \omega_{n \pm}^{2}=n^{2}+4(1-\mathcal{J}) \pm 2 \sqrt{4(1-\mathcal{J}) n^{2}+4 \mathcal{J}^{2}}
\end{array}
$$

Fermions:

$$
\begin{array}{r}
4 \times \quad \omega_{n \pm}^{2 f}=n^{2}+1+\mathcal{J} \pm \sqrt{4(1-\mathcal{J}) n^{2}+4 \mathcal{J}} \\
E_{1}=\frac{1}{2 \kappa} \sum_{n=-\infty}^{\infty}\left[4 \omega_{n}+2\left(\omega_{n+}+\omega_{n-}\right)-4\left(\omega_{n+}^{f}+\omega_{n-}^{f}\right)\right]
\end{array}
$$

expand in small \mathcal{J} and do sums (UV divergences cancel)

$$
E_{1}=\frac{1}{\sqrt{\mathcal{J}}}\left[-\mathcal{J}-[3+\zeta(3)] \mathcal{J}^{2}-\frac{1}{4}[5+6 \zeta(3)+30 \zeta(5)] \mathcal{J}^{3}+\ldots\right]
$$

$$
E=E_{0}+E_{1}=2 \sqrt{\sqrt{\lambda} J}\left[1-\frac{1}{2 \sqrt{\lambda}}-\frac{3}{4}[1+2 \zeta(3)] \frac{J}{(\sqrt{\lambda})^{2}}+\ldots\right]
$$

if we could interpolate to fininte $J=J_{1}=J_{2}=2$ that would suggest for Konishi state

$$
E=2 \sqrt{\sqrt{\lambda}}\left[1-\frac{1}{2 \sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
$$

But: above valid for large E and J; need to account for quantization of c.o.m. modes - re-interpret as

$$
\begin{aligned}
& E(E-4)=4 \sqrt{\lambda}(J-1)-4+O\left(\frac{1}{\sqrt{\lambda}}\right) \\
& J=2: \quad E-2=2 \sqrt{\sqrt{\lambda}}\left[1+0 \times \frac{1}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

same result will be found by different methods below

Spectrum of quantum string states

from target space anomalous dimension operator
Flat space: $k^{2}=m^{2}=\frac{4(n-1)}{\alpha^{\prime}}$
e.g. leading Regge trajectory $(\partial x \bar{\partial} x)^{S / 2} e^{i k x}, \quad n=S / 2$
spectrum in (weakly) curved background:
solve marginality $(1,1)$ conditions on vertex operators
e.g. scalar anomalous dimension operator $\widehat{\gamma}(G)$ on $T(x)=\sum c_{n \ldots m} x^{n} \ldots x^{m}$ or on coefficients $c_{n \ldots m}$ differential operator in target space found from β-function for the corresponding perturbation

$$
\begin{aligned}
& I=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} z\left[G_{m n}(x) \partial x^{m} \bar{\partial} x^{n}+T(x)\right] \\
& \beta_{T}=-2 T-\frac{\alpha^{\prime}}{2} \widehat{\gamma} T+O\left(T^{2}\right) \\
& \widehat{\gamma}=\Omega^{m n} D_{m} D_{n}+\ldots+\Omega^{m \ldots k} D_{m} \ldots D_{k}+\ldots \\
& \Omega^{m n}=G^{m n}+O\left(\alpha^{\prime 3}\right), \quad \Omega^{\cdots} \sim \alpha^{\prime n} R_{\ldots}^{p}
\end{aligned}
$$

Solve $-\widehat{\gamma} T+m^{2} T=0$: diagonalize $\widehat{\gamma}$
similarly for massless (graviton, ...) and massive states
e.g. $\beta_{m n}^{G}=\alpha^{\prime} R_{m n}+O\left(\alpha^{3}\right)$
gives Lichnerowitz operator as anomalous dimension operator
$(\widehat{\gamma} h)_{m n}=-D^{2} h_{m n}+2 R_{m k n l} h^{k l}-2 R_{k(m} h_{n)}^{k}+O\left(\alpha^{\prime 3}\right)$
Massive string states in curved background:

$$
\begin{aligned}
& \int d^{D} x \sqrt{g}\left[\Phi_{\ldots}\left(-D^{2}+m^{2}+X\right) \Phi_{\ldots}+\ldots\right] \\
& m^{2}=\frac{4}{\alpha^{\prime}}(n-1), \quad X=R_{\ldots}+O\left(\alpha^{\prime}\right)
\end{aligned}
$$

case of $A d S_{5} \times S^{5}$ background

$$
R_{m n}-\frac{1}{96}\left(F_{5} F_{5}\right)_{m n}=0, \quad R=0, \quad F_{5}^{2}=0
$$

Find leading-order term in X ?

How to find $\widehat{\gamma}$: Effective action approach
derive equation of motion for a massive string field in curved background from quadratic effective action S reconstructed from flat-space NSR S-matrix
Example: totally symmetric NS-NS 10-d tensor

- state on leading Regge trajectory in flat space
symmetric tensor $\Phi_{\mu_{1} \ldots \mu_{2 n}} \quad\left(m^{2}=\frac{4(n-1)}{\alpha^{\prime}}\right)$
in metric + RR background

$$
\begin{aligned}
& L=R-\frac{1}{2 \cdot 5!} F_{5}^{2}+O\left(\alpha^{\prime 3}\right) \\
& -\frac{1}{2}\left(D_{\mu} \Phi D^{\mu} \Phi+m^{2} \Phi^{2}\right)+\sum_{k \geq 1}\left(\alpha^{\prime}\right)^{k-1} \Phi X_{k}\left(R, F_{5}, D\right) \Phi+\ldots
\end{aligned}
$$

assumption: $\alpha^{\prime} n R \ll 1$, i.e. $n \ll \sqrt{\lambda}$:
small massive string in the middle of $A d S_{5}$:
near-flat-space expansion should be applicable
then eq. for Φ to leading α^{\prime} order [Burrington, Liu 05]

$$
\begin{aligned}
& {\left[-D^{2}+m^{2}+X_{1}+O\left(\alpha^{\prime}\right)\right] \Phi_{\mu_{1} \cdots \mu_{2 n}}=0} \\
& \Phi X_{1} \Phi=c_{1} \Phi_{\mu_{1} \mu_{2} \cdots \mu_{2 n}} R^{\mu_{1} \nu_{1} \mu_{2} \nu_{2}} \Phi_{\nu_{1} \nu_{2}} \mu_{3} \cdots \mu_{2 n} \\
& \quad+c_{2} \Phi_{\mu_{1} \cdots \mu_{2 n}} F^{\mu_{1} \nu_{1} \alpha_{3} \cdots \alpha_{5}} F^{\mu_{2} \nu_{2}}{ }_{\alpha_{3} \cdots \alpha_{5}} \Phi_{\nu_{1} \nu_{2}} \mu_{3} \cdots \mu_{2 n} \\
& \quad+c_{3} \Phi_{\mu_{1} \mu_{2} \cdots \mu_{2 n}} F^{\mu_{1} \alpha_{2} \cdots \alpha_{5}} F^{\nu_{1}}{ }_{\alpha_{2} \cdots \alpha_{5}} \Phi_{\nu_{1}}{ }_{2} \cdots \mu_{2 n} \\
& c_{1}=n^{2}, \quad c_{2}=-\frac{1}{4!}, \quad c_{3}=-\frac{1}{4 \times 4!}
\end{aligned}
$$

check: reproduces eq for graviton perturbation around
$R_{\mu \nu}-\frac{1}{4 \times 4!}\left(F_{5} F_{5}\right)_{\mu \nu}=0$
$A d S_{5} \times S^{5}$ background: $R_{a b}=-\frac{4}{\mathrm{R}^{2}} g_{a b}, R_{m n}=\frac{4}{\mathrm{R}^{2}} g_{m n}$
$\mu, \nu, \ldots=0,1, \ldots 9 ; \quad a, b, \ldots$ in $A d S_{5}$ and m, n, \ldots in S^{5}

$$
\begin{aligned}
L & =\frac{1}{2} \Phi_{\mu_{1} \cdots \mu_{2 n}}\left(-D^{2}+m^{2}\right) \Phi^{\mu_{1} \cdots \mu_{2 n}} \\
& +\frac{n^{2}}{\mathrm{R}^{2}}\left(\Phi_{a_{1} a_{2} \mu_{3} \cdots \mu_{2 n}} \Phi^{a_{1} a_{2} \mu_{3} \cdots \mu_{2 n}}-\Phi_{m_{1} m_{2} \mu_{3} \cdots \mu_{2 n}} \Phi^{m_{1} m_{2} \mu_{3} \cdots \mu_{2 n}}\right)+\ldots
\end{aligned}
$$

background is direct product - can consider particular tensor with S indices in $A d S_{5}$ and K indices in S^{5} :
end up with anomalous dimension operator

$$
\begin{aligned}
& {\left[-D^{2}+\left(m^{2}+\frac{K^{2}-S^{2}}{2 R^{2}}\right)\right] \Phi=0, \quad D^{2}=D_{A d S_{5}}^{2}+D_{S_{5}}^{2}} \\
& m^{2}=\frac{4}{\alpha^{\prime}}(n-1)=\frac{2}{\alpha^{\prime}}(S+K-2), \quad 2 n=S+K
\end{aligned}
$$

symmetric transverse traceless tensor - highest-weight state -
Young table labels $(\Delta, S, 0 ; J, K, 0), \quad J \geqslant K$
extract $A d S_{5}$ radius R and set $\sqrt{\lambda}=\frac{\mathrm{R}^{2}}{\alpha^{\prime}}$

$$
\begin{aligned}
& \left(-D_{A d S_{5}}^{2}+M^{2}\right) \Phi=0 \\
& M^{2}=2 \sqrt{\lambda}(S+K-2)+\frac{1}{2}\left(K^{2}-S^{2}\right)+J(J+4)-K
\end{aligned}
$$

For symmetric traceless rank S tensor in $A d S_{5}$:

$$
\begin{aligned}
& \Delta-2=\sqrt{M^{2}+S+4} \\
& =\sqrt{2 \sqrt{\lambda}(S+K-2)+\frac{1}{2}(S+K-2)(K-S)+J(J+4)+4+O\left(\frac{1}{\sqrt{\lambda}}\right)}
\end{aligned}
$$

To summarize:

condition of marginality of $(1,1)$ vertex operator for $\left(\Delta, S_{1}, S_{2} ; J_{1}, J_{2}, J_{3}\right)=(\Delta, S, 0 ; J, K, 0)$ state

$$
\begin{aligned}
0= & -\sqrt{\lambda}(S+K-2) \\
& +\frac{1}{2}\left[\Delta(\Delta-4)+\frac{1}{2} S(S-2)-\frac{1}{2} K(K-2)-J(J+4)\right]+O\left(\frac{1}{\sqrt{\lambda}}\right)
\end{aligned}
$$

BPS level: $n=\frac{1}{2}(S+K)=1$
$S=2, K=0: \Delta=4+J ;$ etc.
First massive level: $n=\frac{1}{2}(S+K)=2$
minimal dimension shift
$S=4, K=J=0$:
dual to $\Delta_{0}=6$ Konishi state $[0,0,0]_{(2,2)}$

$$
\Delta-\Delta_{0}=2 \sqrt{\sqrt{\lambda}+O\left(\frac{1}{\sqrt{\lambda}}\right)}=2 \sqrt{\sqrt{\lambda}}\left[1+0 \times \frac{1}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
$$

what about other states in Konishi multiplet?

Vertex operator approach [Polyakov 01; AT 03]

 calculate anomalous dimensions from "first principles" superstring theory in $A d S_{5} \times S^{5}$:$$
\begin{gathered}
I=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma\left[\partial N_{p} \bar{\partial} N^{p}+\partial n_{k} \bar{\partial} n_{k}+\text { fermions }\right] \\
N_{+} N_{-}-N_{u} N_{u}^{*}-N_{v} N_{v}^{*}=1, \quad n_{x} n_{x}^{*}+n_{y} n_{y}^{*}+n_{z} n_{z}^{*}=1 \\
N_{ \pm}=N_{0} \pm i N_{5}, \quad N_{u}=N_{1}+i N_{2}, \ldots, \quad n_{x}=n_{1}+i n_{2}, \ldots
\end{gathered}
$$

construct marginal $(1,1)$ operators in terms of N_{p} and n_{k}
e.g. vertex operator for dilaton sugra mode

$$
\begin{aligned}
& \mathrm{V}_{J}(\xi)=\left(N_{+}\right)^{-\Delta}\left(n_{x}\right)^{J}\left[-\partial N_{p} \bar{\partial} N^{p}+\partial n_{k} \bar{\partial} n_{k}+\text { fermions }\right] \\
& N_{+} \equiv N_{0}+i N_{5}=\frac{1}{z}\left(z^{2}+x_{m} x_{m}\right) \sim e^{i t} \\
& n_{x} \equiv n_{1}+i n_{2} \sim e^{i \varphi} \\
& \quad 0=2-2+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)-J(J+4)]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)
\end{aligned}
$$

i.e. $\Delta=4+J$ (BPS)
candidate operators for states on leading Regge trajectory:

$$
\begin{aligned}
\mathrm{V}_{J}(\xi)=\left(N_{+}\right)^{-\Delta}\left(\partial n_{x} \bar{\partial} n_{x}\right)^{J / 2}, & n_{x} \equiv n_{1}+i n_{2} \\
\mathrm{~V}_{S}(\xi)=\left(N_{+}\right)^{-\Delta}\left(\partial N_{u} \bar{\partial} N_{u}\right)^{S / 2}, & N_{u} \equiv N_{1}+i N_{2}
\end{aligned}
$$

+ fermionic terms
$+\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ terms from diagonalization of anom. dim. op. how they mix with ops with same charges and dimension? in general $\left(\partial n_{x} \bar{\partial} n_{x}\right)^{J / 2}$ mixes with singlets

$$
\left(n_{x}\right)^{2 p+2 q}\left(\partial n_{x}\right)^{J / 2-2 p}\left(\bar{\partial} n_{x}\right)^{J / 2-2 q}\left(\partial n_{m} \partial n_{m}\right)^{p}\left(\bar{\partial} n_{k} \partial n_{k}\right)^{q}
$$

ops. for states on leading Regge trajectory

$$
O_{\ell, s}=f_{k_{1} \ldots k_{\ell} m_{1} \ldots m_{2 s}} n_{k_{1} \ldots n_{k_{\ell}} \partial n_{m_{1}} \bar{\partial} n_{m_{2}} \ldots \partial n_{m_{2 s-1}} \bar{\partial} n_{m_{2 s}},{ }^{2} \text { in }}
$$

their renormalization studied before [Wegner 90]
simplest case: $f_{k_{1} \ldots k_{\ell}} n_{k_{1} \ldots} \ldots n_{k_{\ell}}$ with traceless $f_{k_{1} \ldots k_{\ell}}$
same anom. dim. $\widehat{\gamma}$ as its highest-weight rep $V_{J}=\left(n_{x}\right)^{J}$

$$
\widehat{\gamma}=2-\frac{1}{2 \sqrt{\lambda}} J(J+4)+\ldots
$$

scalar spherical harmonic that solves Laplace eq. on S^{5} similarly for $A d S_{5}$ or $S O(2,4)$ model: replacing n_{x}^{J} and $\partial n_{m} \bar{\partial} n_{m}$ with $N_{+}^{-\Delta}$ and $\partial N^{p} \bar{\partial} N_{p}$, with $J=-\Delta$ and $g=\frac{1}{\sqrt{\lambda}} \rightarrow-\frac{1}{\sqrt{\lambda}}$
e.g. dimension of $n_{x}^{J} \partial n_{m} \bar{\partial} n_{m}$:
$\widehat{\gamma}=-\frac{1}{2 \sqrt{\lambda}} J(J+4)+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)$
dimension of $N_{+}^{-\Delta} \partial N^{p} \bar{\partial} N_{p}$:
$\widehat{\gamma}=\frac{1}{2 \sqrt{\lambda}} \Delta(\Delta-4)+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)$

Example of scalar higher-level operator:

$$
N_{+}^{-\Delta}\left[\left(\partial n_{k} \bar{\partial} n_{k}\right)^{r}+\ldots\right], \quad r=1,2, \ldots
$$

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

$$
\begin{aligned}
0 & =-2(r-1)+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)+2 r(r-1)] \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left[\frac{2}{3} r(r-1)\left(r-\frac{7}{2}\right)+4 r\right]+\ldots
\end{aligned}
$$

$r=1$: ground level
fermionic contributions should make $r=1$ exact zero of $\widehat{\gamma}$
$r=2$: first excited level
candidate for singlet Konishi state $\Delta_{0}=2$

$$
\begin{aligned}
& \Delta(\Delta-4)=4 \sqrt{\lambda}-4+O\left(\frac{1}{\sqrt{\lambda}}\right) \\
& \Delta-\Delta_{0}=2 \sqrt{\sqrt{\lambda}}\left[1+0 \times \frac{1}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

same as for $(S=4, K=0)$ Konishi state with $\Delta_{0}=6$

Operators with two spins J, K in S^{5} :

$$
\begin{aligned}
V_{K, J} & =N_{+}^{-\Delta} \sum_{u, v=0}^{K / 2} c_{u v} M_{u v} \\
M_{u v} & \equiv n_{y}^{J-u-v} n_{x}^{u+v}\left(\partial n_{y}\right)^{u}\left(\partial n_{x}\right)^{K / 2-u}\left(\bar{\partial} n_{y}\right)^{v}\left(\bar{\partial} n_{x}\right)^{K / 2-v}
\end{aligned}
$$

highest and lowest eigen-values of 1-loop anom. dim. matrix

$$
\begin{aligned}
& \widehat{\gamma}_{\text {min }}=2-K+\frac{1}{2 \sqrt{\lambda}}\left[\Delta(\Delta-4)-\frac{1}{2} K(K+10)-J(J+4)-2 J K\right]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right) \\
& \widehat{\gamma}_{\text {max }}=2-K+\frac{1}{2 \sqrt{\lambda}}\left[\Delta(\Delta-4)-\frac{1}{2} K(K+6)-J(J+4)\right]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)
\end{aligned}
$$

fermions may alter terms linear in K
$K=4$: first massive level - Konishi state identify operators with right representations

- more evidence for $b=0$
[R.Roiban, AT, in progress]

Conclusion

Beginning of understanding quantum string spectrum in $\operatorname{AdS} S_{5} \times S^{5}$
$=$ spectrum of "short" SYM operators
more progress expected soon
aiding/checking integrability approach

