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Symmetry, as wide or as narrow as you may define

its meaning, is one idea by which man through the

ages has tried to comprehend and create order,

beauty and perfection.

Hermann Weyl



Noncommutative space-time

• Standard space-time = a manifold M;

points x ∈M ↔ finite number of real coordinates xµ ∈ R4.

• Usual quantum mechanics:[
xi, xj

]
= 0 ,

[
pi, pj

]
= 0 ,[

xi, pj
]

= i~δij .

• This picture of space-time is likely to break down at very short distances

∼ Planck length λP ≈ 1.6× 10−33 cm.

• A possible approach to description of physics at short distances is
QFT on a NC space-time

• The generalization of commutation relations for the canonical operators

of the type

xµ → x̂µ : [x̂µ, x̂ν] 6= 0 ,

was suggested long ago, in particular, by

Snyder (1947); Heisenberg (1954);

Gol’fand (1962)



• The first physical application: particle noncommutativity in the lowest

Landau level
Peierls (1933)

− Point particle moving on a plane (x, y) with external magnetic field B

perpendicular to the plane

L =
1

2
mv2 +

e

c
~v · ~A− V with ~A = (0, Bx)

− Set m to zero (strong magnetic field)

L0 =
eB

c
xẏ − V (x, y)

which is of the form pq̇ − h(p, q)⇒
(
eB
c x, y

)
form a canonical pair, i.e.

{x, y}PB =
c

eB
− Upon quantization

[x̂, ŷ] = −i~ c

eB
⇒

Induced noncommutativity of coordinates!



• Practical motivation: the hope that QFTs in NC space-time have an

improved UV-behaviour.

Snyder (1947)
Grosse, Klimčik and Prešnajder (1996)

Filk (1996)
Chaichian, Demichev and Prešnajder (1998)

• Physical motivations:

– black hole formation in the process of measurement at small dis-

tances (∼ λP ) ⇒ additional uncertainty relations for coordinates

Doplicher, Fredenhagen and Roberts (1994)

– open string + D-brane theory in the background with antisymmet-

ric tensor (NOT induced!)

Seiberg and Witten (1999)



• boundary conditions for open string in constant B-field background:[
gmn(∂ − ∂̄)Xn + 2πα′Bmn(∂ + ∂̄)Xn|

]
z=z̄

= 0

• corresponding propagator

< Xm(z, z̄)Xn(w, w̄) > = −α′(gmnlog|z − w| − gmnlog|z − w̄|
+ Gmnlog|z − w̄|2 +

1

2πα′
θmnlog(−

z − w̄
z̄ − w

)

• in the limit when both z and w approach the real axis: z = z̄ → τ1,

w = w̄ → τ2, the propagator becomes:

< Xm(τ1)X
n(τ2) >= −α′Gmnlog(τ1 − τ2)2 +

i

2
θmnsign(τ1 − τ2)

implying the commutation relation:

[Xm, Xn] = iθmn,

θmn = −(2πα′)
(

1
g+2πα′BB

1
g−2πα′B

)

• Induced noncommutativity? See gravitational and gauge anomalies

Álvarez-Gaumé and Witten (1984)

Green and Schwartz (1984)



NC space-time and field theory; ?-product

Heisenberg-like commutation relations

[X̂µ, X̂ν] = iθµν ,

θµν - constant antisymmetric matrix =⇒ Lorentz invariance violated

QFT → NC-QFT : Φ(x) → Φ̂(X̂) .

S(cl)[Φ] =
∫
d4x

[
1

2
(∂µΦ)(∂µΦ)−

1

2
m2Φ2 −

λ

4!
Φ4

]
,

⇓

S(θ)[Φ̂] = Tr
[
1

2
(∂̂µΦ̂)(∂̂µΦ̂) −

1

2
m2Φ̂2 −

λ

4!
Φ̂4

]
.

Field theory formulation be based on operator (e.g. Weyl) symbols

Φ(x) = functions on the commutative counterpart of the space-time



Weyl-Moyal correspondence

Φ̂(X̂)←→ Φ(x)

Φ̂(X̂) =
∫
eiαX̂φ(α)dα, Φ(x) =

∫
eiαxφ(α)dα,

where α and x are real variables. Then, using the Baker-Campbell-

Hausdorff formula:

Φ̂(X̂)Ψ̂(X̂) =
∫
eiαX̂φ(α)eiβX̂ψ(β)dαdβ =

∫
ei(α+β)X̂−1

2αµβν[X̂µ,X̂ν]φ(α)ψ(β)dαdβ

Hence the Moyal ?-product is defined:

Φ̂(X̂)Ψ̂(X̂)←→ (Φ ?Ψ)(x),

(Φ ?Ψ)(x) ≡

Φ(x)e
i
2θµν

←−
∂
∂xµ

−→
∂
∂yνΨ(y)


x=y

.

Thus, all the multiplications (e.g. in the Lagrangian) must be replaced

by the ?-product

Sθ[Φ] =
∫
d4x

[
1

2
(∂µΦ) ? (∂µΦ)−

1

2
m2Φ ?Φ−

λ

4!
Φ ?Φ ?Φ ?Φ

]



Space-time symmetry of NC QFT

• θµν antisymmetric constant matrix ⇒ Lorentz invariance violated

(for a dimension of space-time D > 2).

• Translational invariance preserved.

• On 4-dimensional space there exists a frame in which the antisymmetric

matrix θµν takes the form:

θµν =


0 θ′ 0 0
−θ′ 0 0 0
0 0 0 θ
0 0 −θ 0

 .

Lorentz group broken to SO(1,1)× SO(2) subgroup.

Álvarez-Gaumé, Barbón and Zwicky (2001)

• Problem with the representations: both SO(1,1) and SO(2) being

Abelian groups, they have only one-dimensional unitary irreducible repre-

sentations and thus no spinor, vector etc. representations!



Twist deformation of the Poincaré algebra

Chaichian, Kulish, Nishijima and A.T. (2004)

Chaichian, Prešnajder and A.T. (2004)

• Action of NC QFT written with ?-product, though it violates Lorentz

symmetry, it is invariant under the twisted Poincaré algebra

• Deform the universal enveloping of the Poincaré algebra U(P) with

Abelian twist element F ∈ U(P)⊗ U(P)

Drinfel’d (1983)

Reshetikhin (1990)

F = exp

(
i

2
θµνPµ ⊗ Pν

)
• Commutation relations of Poincaré generators not changed:

[Pµ, Pν] = 0 ,

[Mµν, Pα] = −i(ηµαPν − ηναPµ) ,
[Mµν,Mαβ] = −i(ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα)

Essential physical implication: the representations of the twisted

Poincaré algebra are the same as the ones of usual Poincaré algebra



• The twist deforms the action of U(P) in the tensor product of repre-

sentations, defined by the coproduct

∆0 : U(P)→ U(P)⊗ U(P) , ∆0(Y ) = Y ⊗ 1 + 1⊗ Y ,

∆0(Y ) 7→∆t(Y ) = F∆0(Y )F−1

Namely the coproduct of the Lorentz algebra generators is changed:

∆t(Mµν) = e
i
2θ
αβPα⊗Pβ∆0(Mµν)e

− i
2θ
αβPα⊗Pβ .

• The twist also deforms the multiplication in the algebra of representa-

tions of the Poincaré algebra, i.e. algebra of fields Aθ:

mt(φ(x)⊗ ψ(x)) = m ◦ F−1(φ(x)⊗ ψ(x)) =: φ(x) ? ψ(x)

i.e., with the realization on Minkowski space Pµ = i∂µ

φ(x) ? ψ(x) = m ◦ e−
i
2θ
µνPµ⊗Pν(φ(x)⊗ ψ(x)) = m ◦ e

i
2θ
µν∂µ⊗∂ν(φ(x)⊗ ψ(x))

= φ(x)e
i
2θ
µν←−∂µ

−→
∂νψ(x)



• The twisted Poincaré symmetry exists provided that, in a Lagrangian:

(i) we consider ?-products among functions instead of the usual one and

(ii) we take the proper action of generators specified by the twisted co-

product.

• As a byproduct with major physical implications, the representation

content of NC QFT, invariant under the twist-deformed Poincaré algebra,

is identical to the one of the corresponding commutative theory with usual

Poincaré symmetry ⇒ representations (fields) are classified according to

their MASS and SPIN.

• New concept of relativistic invariance: while symmetry under usual

Lorentz transformations guarantees the relativistic invariance of a the-

ory, in NC QFT the concept of relativistic invariance should be replaced

by the requirement of invariance of the theory under twisted Poincaré

transformations.



Precursors

-in the context of NC string theory, using R-matrix

Watts (1999)

- mostly in the context of braided field theory, using the dual language of

Hopf algebras

Oeckl (2000)

Developments

- differential calculus, twisted diffeomorphisms and NC gravity
Wess (2004)

Aschieri, Blohmann, Dimitrijevic, Meyer, Schupp and Wess (2005)
Aschieri, Dimitrijevic, Meyer and Wess (2005)

Álvarez-Gaumé, Meyer and Vázquez-Mozo (2006)

- supersymmetric twisted Poincaré algebra
Kobayashi and Sasaki (2005)

Zupnik (2005)
Ihl and Saemann (2005)

- global counterpart of the twisted Poincaré algebra

Gonera, Kosinski, Maslanka and Giller (2005)

...



Some known implications...

Twisted Poincaré symmetry and spin-statistics relation

• R-matrix relates the coproduct ∆t and ∆op
t = τ ◦∆t, τ - flip operator:

R∆t = ∆op
t R, R =

∑
R1 ⊗R2 ⇒ R = F21F−1 = exp(−iθµνPµ ⊗ Pν)

• Concept of permutation changes

P → Ψ(R) = P R = PF−2

but Ψ−1 = Ψ⇒ ”symmetric braiding” ≡ no braiding!

Chari and Pressley (book 1994)

Chaichian and Demichev (book 1996)

• spin-statistics relation all right (as long as the theory can be quantized)
A.T. (2006,2007)

Bu, Kim, Lee, Vac and Yee (2006)



Twisted tensor product of two copies of Aθ

(a1 ⊗ 1)(1⊗ a2) = a1 ⊗ a2, but (1⊗ a2)(a1 ⊗ 1) = (R2a1)⊗ (R1a2),

a1, a2 ∈ Aθ

⇒ xµyν − yνxµ := (xµ ⊗ 1)(1⊗ yν)− (1⊗ yν)(xµ ⊗ 1)

= (xµ ⊗ xν)− (R2x
µ)⊗ (R1y

ν) = (xµ ⊗ xν)− (xµ ⊗ xν) + iθµν

⇒ φ(x) ? φ(y)

Oeckl (2000)

• Implications on the axiomatic formulation, Whightman functions defined

with ?-product etc.



Global counterpart of twisted Poincaré algebra
Oeckl (2000)

Gonera, Kosinski, Maslanka and Giller (2005)

- DUALITY between universal enveloping algebra of the Poincaré algebra

U(P) and the algebra of functions on the Poincaré group, F (P ), generated

by Λµν and aµ, such that

Λµν

(
eiω

αβMαβ

)
=

(
Λαβ(ω)

)µ
ν
, Λµν

(
eia

αPα
)
= 0

aµ
(
eiω

αβMαβ

)
= 0 , aµ

(
eia

αPα
)
= aµ ,

- DUALITY survives the twist, between twisted Poincaré algebra Ut(P)

(twisted coproduct) and Fθ(P ) (twisted multiplication), BUT

[aµ, aν] = iθµν − iΛµαΛνβθ
αβ ,

[Λµν , a
α] = [Λµα,Λ

ν
β] = 0, Λµα, a

µ ∈ Fθ(P ) .

- The ”coordinates” xµ, generating the algebra of functions with ?-

product Cθ, transform by the coaction of the quantum matrix group:

δ : Cθ → Fθ(P )⊗ Cθ
(x′)µ = δ(xµ) = Λµα ⊗ xα + aµ ⊗ 1 , such that [x′µ, x

′
ν] = iθµν.



(x′)µ = Λµα ⊗ xα + aµ ⊗ 1

[aµ, aν] = iθµν − iΛµαΛνβθ
αβ , aµ ∈ Fθ(P )

- consider Lorentz transformation mixing commutative and noncommu-

tative directions

θµν =


0 0 0 0
0 0 0 0
0 0 0 θ
0 0 −θ 0

 and Λ12 = Λ
(
eω

12(β)M12

)
=


1 0 0 0
0 cosβ sinβ 0
0 − sinβ cosβ 0
0 0 0 1


- then[

a2
(
eω

12(β)M12

)
, a3

(
eω

12(β)M12

)]
= [a2, a3] = i θ (1− cosβ) ,[

a1
(
eω

12(β)M12

)
, a3

(
eω

12(β)M12

)]
= [a1, a3] = −i θ sinβ ,

By imposing a Lorentz transformation mixing commutative and non-

commutative directions we get accompanying noncommuting translations

showing up as the internal mechanism by which the twisted Poincaré sym-

metry keeps the commutator [xµ, xν] = iθµν invariant.



What is a noncommutative field?

Transformation rules for fields under twisted Poincaré algebra

Chaichian, Kulish, A.T., Zhang and Zhang (2007)

Chaichian, Nishijima, Salminen and A.T. (2008)

- Relativistic classical fields: action of the Poincaré group on them defined

by the method of induced representations

Φ = φ⊗ v , Φ ∈ Γ(V ) = (C∞(R)1,3 ⊗C V )L,

L = Spin(1,3), V − Lorentz-module

Φ(Λexp(iPx)) = ρ(Λ)Φ(exp(iPx)), φ(x) = Φ(exp(iPx))

- transformation rule for commutative relativistic classical fields

under Poincaré group:

(Λ exp(iPa) · φ)(x) = ρ(Λ)φ(Λ−1x+ a), Λexp(iPa) ∈ G = Spin(1,3)n(R)1,3

Essential for the construction: Group algebra of L is a Hopf subalgebra

of the group algebra of G under the co-multiplication ∆0

(∆0(g) = g × g, g ∈ G).



Noncommutative classical fields: construction by induced representations

fails since enveloping algebra of Lorentz subalgebra is not a Hopf subal-

gebra of U(P)

- illuminating example (only θ23 = −θ32 = θ 6= 0)

∆t(M01) = ∆0(M01) = M01 ⊗ 1 + 1⊗M01,

∆t(M23) = ∆0(M23) = M23 ⊗ 1 + 1⊗M23,

∆t(M02) = ∆0(M02) +
θ

2
(P0 ⊗ P3 − P3 ⊗ P0),

∆t(M03) = ∆0(M03)−
θ

2
(P0 ⊗ P2 − P2 ⊗ P0),

∆t(M12) = ∆0(M12) +
θ

2
(P1 ⊗ P3 − P3 ⊗ P1),

∆t(M13) = ∆0(M13)−
θ

2
(P1 ⊗ P2 − P2 ⊗ P1) .

then M02,M03,M12,M13 cannot act by twisted coproduct on the field

Φ = φ⊗ v

since v ∈ V − Lorentz module and does not admit the action of Pµ!



Two ways out:

• take V as U(P)-module with trivial action of all the generators Pµ

Chaichian, Kulish, A.T., Zhang and Zhang (2007)

- problems with the finite twisted Poincaré transformations still remain!

• keep V as L-module, but forbid all the transformations requiring the

action of the generators Pµ on v

⇒ Only transformations under the stability group of θ-matrix allowed

Chaichian, Nishijima, Salminen and A.T. (2008)

Meaning of the twisted Poincaré symmetry in NC QFT : invariance with

respect to the stability group of θµν, while the quantum fields still carry

representations of the full Lorentz group and the Hilbert space of states

has the richness of particle representations of the commutative QFT.



Physical application: A realization of the Cohen-Glashow

Very Special Relativity

• VSR: symmetry under certain subgroups of Poincaré group, which con-

tain space-time translations and at least a 2-parametric proper subgroup

of the Lorentz transformations, isomorphic to that generated by Kx+ Jy

and Ky − Jx, where J and K are the generators of rotations and boosts,

respectively.

• VSR groups: T (2) (T1 = Kx+Jy, T2 = Ky−Jx), E(2), HOM(2), SIM(2)

- when supplemented with T , P or CP , they will be enlarged to the full

Lorentz group;

- ALL VSR groups have only one-dimensional representations!

• Motivation: the hope that at very high energy scales VSR provides the

symmetry of a (most probably nonlocal) ”master theory”, which gives in

the low-energy limit the well-known theories of particle physics.

Cohen and Glashow (2006)• Problems:

-phenomenological construction is not unique;

-the representation content of the ”master theory” is poorer than that of

the low-energy limit.



Realization of VSR on the noncommutative space-time

Sheikh-Jabbari and A.T. (2008)

• The only VSR group that admits a realization on NC space-time is T (2)

⇒ LIGHT-LIKE NONCOMMUTATIVITY (θµνθµν = 0)!

θµν =


0 0 0 0
0 0 θ θ′

0 −θ 0 0
0 −θ′ 0 0

 (in light-cone coordinates) stable under T (2)

• The realization of E(2), HOM(2), SIM(2) on noncommutative space-

time necessarily violates translational symmetry.

• Advantages:

- unique realization of VSR as NC QFT on space-time with light-like NCty

- representation content of ”master theory” identical to the low-energy

limit due to the twisted Poincaré symmetry

- spin-statistics relation, CPT theorem valid

- low-energy limit of string theory

- (perturbative) unitarity all right

- quantization all right (light-cone coordinates).



Is the concept of twist a symmetry principle in constructing NC field

theories, i.e. any symmetry that NC field theories may enjoy, be it space-

time or internal symmetry, global or local, should be formulated as a

twisted symmetry?



Twisted gauge symmetry?

• NC gauge theories - traditional approach

Hayakawa (1999)

The NC QED action:

SNC QED =
∫
d4x

− 1

4
Fµν ? F

µν + Ψ̄ ? ( 6D −m)Ψ + Lgauge + Lghost


where

Fµν = ∂µAν − ∂νAµ − i(Aµ ? Aν −Aν ? Aµ) ,
DµΨ = ∂µΨ− iAµ ?Ψ .

NC gauge group elements:

U(x) = exp ?{iλ} ≡ 1 + ıλ−
1

2
λ ? λ + .... ,

U(x) ? U(x)−1 = U(x)−1 ? U(x) = 1 .

Gauge transformations:

Aµ → A′µ(x) = U(x) ? Aµ ? U
−1(x) + iU(x) ? ∂µU(x)−1 ,

Ψ(x)→ Ψ′(x) = U(x) ?Ψ(x) .



• Remark: only NC U(n) groups close (not, e.g., SU(n))

• No-go theorem - strong restrictions on model building!
Terashima (2000)

Chaichian, Prešnajder, Sheikh-Jabbari and A.T. (2001)

(i) the local NC u(n) algebra only admits the irreducible n × n matrix-

representation. Hence the gauge fields are in the n×n matrix form, while

the matter fields can only be in fundamental, adjoint or singlet states;

(ii) for any NC gauge group consisting of several simple-group factors, the

matter fields can transform nontrivially under at most two group factors.

• Applications:

- NC Standard Model
Chaichian, Prešnajder, Sheikh-Jabbari and A.T. (2001)

Chaichian, Kobakhidze and A.T. (2004)

- NC MSSM

Arai, Saxell and A.T. (2006)



• Attempt to twist gauge transformations: extend the Poincaré algebra

by semidirect product with the gauge generators and apply the Abelian

twist F = e

(
i
2θ
µνPµ⊗Pν

)
also to the coproduct of the gauge generators

Vassilevich (2006)

Aschieri, Dimitrijevic, Meyer, Schraml and Wess (2006)

- infinitesimal gauge transformation of the individual fields the usual form

(without ?-product):

δαΦ(x) = α(x)Φ(x) , α(x) = iαa(x)Ta , [Ta, Tb] = ifabcTc

- claim

δα(Φ1(x) ?Φ2(x)) = iαa(x)
[
(Φ1(x)T

(1)
a )?Φ2(x) + Φ1(x)?(T

(2)
a Φ2(x))

]
- consequences: any gauge algebra would close and any representation

is allowed, just as in the commutative case, i.e. contradiction with the

no-go theorem!



• Contradiction with the gauge principle:

δα(Φ1(x) ?Φ2(x)) = iαa(x)
[
(Φ1(x)T

(1)
a ) ?Φ2(x) + Φ1(x) ? (T (2)

a Φ2(x))
]
.

is valid only if one assumes that, once δαΦ(x) = α(x)Φ(x), then also

δα((−i)nPµ1...PµnΦ(x)) = δα(∂µ1...∂µnΦ(x)) = α(x)(∂µ1...∂µnΦ(x))

which is true only when the ”local” parameter αa is global!

δα(Φ1 ?Φ2) = m? ◦∆t(α(x))(Φ1(x)⊗Φ2(x))

= m ◦ F−1F∆0(α(x))F−1(Φ1(x)⊗Φ2(x))

= m ◦∆0(α)F−1(Φ1(x)⊗Φ2(x))

= m ◦∆0(α)e

(
i
2θ
µν∂µ⊗∂ν

)
(Φ1(x)⊗Φ2(x))

= m ◦ (δα ⊗ 1 + 1⊗ δα)
[
Φ1 ⊗Φ2 +

i

2
θµν (∂µΦ1 ⊗ ∂νΦ2) + · · ·

]

Chaichian and A.T. (2006)

However

δα(Dµ1...DµnΦ(x)) = α(x)(Dµ1...DµnΦ(x))



• Propose a Non-Abelian twist element of U(P n G):

T = exp
(
−
i

2
θµνDµ ⊗Dν +O(θ2)

)
,

a power series expansion, such that T would satisfy the twist conditions:

(T ⊗ 1)(∆0 ⊗ id)T = (1⊗ T )(id⊗∆0)T , (ε⊗ id)T = 1 = (id⊗ ε)T

Chaichian, A.T. and Zet (2006)

- No possible second order terms fulfill the twist condition ⇒ a non-

Abelian twist element, which would generalize the Abelian twist in a gauge

covariant manner cannot exist, i.e. Poincaré symmetry and internal gauge

symmetry cannot be unified under a common twist

- situation is reminiscent of the Coleman-Mandula no-go theorem

COULD SUPERSYMMETRY PROVIDE THE SOLUTION?

• Attempts to gauge the twisted Poincaré algebra into a noncommutative

theory of gravity

Chaichian, Oksanen, A.T. and Zet (2009)



Some problems to be attacked and clarified

• Dirac quantization condition for magnetic monopole (nonperturbative

topological vs. perturbative)

eµ =
n~
2
c

- first attempts in

Chaichian, Ghosh, Langvick and A.T. (2009)

• Looking really at the solutions of NC Gravity, to find out about the

singularity of solutions, Schwarzschild, Reissner-Nordström, black holes...

and repeat the same arguments for the consistency of emergence of the

noncommutativity of space-time based on QM and the NEW way of black

hole formation.

• FQHE

QHE description by NC Chern-Simons theory Susskind (2000)

Hellerman and van Raamsdonk (2001)Field theoretical approach to FQHE.

Froehlich (1992), (1993), (1995)



• Formulation of noncommutative field theories with finite-range nonlo-

cality with the hope of removing the UV/IR mixing.

• Consistency of the NC QFT with noncommutative time?

- path integral formulation
Fujikawa (2004)

- operator formulation - interaction picture, Tomonaga-Schwinger equa-

tion
Chaichian, Nishijima, Salminen and A.T. (2008)

- operator formulation - Heisenberg picture, Yang-Feldman formalism

Meinander, Salminen and A.T. (in preparation)


