ApJ, 671, 2139 (2007); ApJ, 688, 555 (2008)

Astrophysical Magnetic Reconnection:

a Status Report

Dmitri A. Uzdensky

Princeton University

and the NSF Center for Magnetic Self-Organization

4th Sakharov Conference, May 22, 2009

- Magnetic Reconnection from Heavens to Earth
- Reconnection Theory: an Overview
- Condition for transition to Fast Collisionless Reconnection
- Astrophysical Applications:
 - Solar/Stellar Coronal Heating
 - Black-hole Accretion Disk Coronae
- Summary

Magnetic Reconnection on the Rise!

P. Cassak 2008

RECONNECTION: INTRODUCTION

Q: What is magnetic reconnection?

Magnetic reconnection is a rapid rearrangement of the magnetic field **topology**.

- Reconnection leads to a rapid, violent release of magneticallystored energy and its transformation into:
 - heat plasma thermal energy
 - bulk-motion kinetic energy
 - nonthermal particle acceleration cosmic rays

RECONNECTION IN ASTROPHYSICS: Flaring Young Stars

Chandra X-ray Image of Orion Nebula (COUP – Chandra Orion Ultradeep Project)

RECONNECTION IN ASTROPHYSICS: Regular Solar/Stellar Flares

Smaller Flares: $L \leq R_*$ — usual stellar (e.g., solar) flares.

SOHO UV (He)

Solar flares are the most energetic events in Solar System.

RECONNECTION IN ASTROPHYSICS: Star–Disk Interaction

Largest Flares: $L \sim 20R_* \Rightarrow$ Star–Disk Magnetic Loops ?

RECONNECTION IN ASTROPHYSICS: Magnetar (SGR) Flares

- Magnetars: neutron stars with 10^{15} G fields.
- Soft Gamma Repeaters (SGRs): magnetars exhibiting powerful (up to $10^{44} 10^{46}$ ergs in ~ 0.3 sec) γ -ray flares.

Reconnection current sheet

RECONNECTION IN SOLAR CORONA: Solar Flares

SUN-EARTH CONNECTION

Illustration by Steele Hill

Reconnection in Earth's Magnetosphere

credit: Patricia Reiff

RECONNECTION IN THE LAB: Sawtooth Crashes in Tokamaks

RECONNECTION IN THE LAB:

Magnetic Reconnection Experiment (MRX)

MRX at Princeton Plasma Physics Laboratory (M. Yamada)

Other reconnection experiments throughout the world:

- LAPD (UCLA, Stenzel & Gekelman)
- Lebedev Physics Inst. (A. Frank)
- Univ. of Tokyo (TS-3, TS-4, Y. Ono)
- Swarthmore (SSX, M. Brown)
- MIT (VTF, J. Egedal)

MAGNETIC RECONNECTION:

WHAT WE KNOW

RECONNECTION: MAIN QUESTIONS

- Where and when reconnection takes place ? (reconnection onset problem)
- How rapid is it? (reconnection rate problem)
- Where does the energy go?
 - heat (thermal energy) vs. bulk motion (kinetic energy) ?
 - electrons vs. ions ?
 - thermal (heat) vs. non-thermal (particle acceleration) ?

FAST RECONNECTION: The Magic of Fast Reconnection

Often in Astrophysics, "Reconnection" is a magic word invoked whenever needed.

FAST RECONNECTION: The Magic of Fast Reconnection

Often in Astrophysics, "Reconnection" is a magic word invoked whenever needed.

Most Popular Reconnection Mechanism:

 $\mathbf{0}_{\mathbf{1}}$

FAST MAGNETIC RECONNECTION: UNDER WHAT CONDITIONS?

WHY IS RECONNECTION DIFFICULT: NO RECONNECTION IN IDEAL MHD

Q: What makes reconnection special, non-trivial? Reconnection is a change in magnetic field topology.

But ideal MHD preserves the identity of field lines, does not allow magnetic field topology to change.

 \Rightarrow Reconnection requires a (local) violation of ideal MHD.

Reconnection Needs Thin Current Layers

- Often in Space and Astrophysics, the Lundquist number $S = LV_A/\eta \gg 1 \Rightarrow$ ideal MHD is fine on large scales L.
- But notice:
 - resistive diffusion term $\sim \nabla^2 {\bf B}$
 - advection term $\sim \nabla \mathbf{B}$
- Hence, ideal MHD breaks down on small enough scales. Reconnection occurs in thin current sheets.

• Current sheets form naturally in complex magnetic systems (Syrovatskii 1971, 1978).

SWEET–PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

SWEET–PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

- <u>Ohm's Law:</u>
- Equation of motion:
- Mass Conservation:

 $\eta = v_{\rm rec}\delta$ $u = V_A \equiv B_0 / \sqrt{4\pi\rho}$ $v_{\rm rec} L = u \,\delta$

SWEET–PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

- <u>Ohm's Law:</u>
- Equation of motion:
- Mass Conservation:

 $\eta = v_{\rm rec}\delta$

$$u = V_A \equiv B_0 / \sqrt{4\pi\rho}$$

 $v_{
m rec}\,L=u\,\delta$

• Sweet-Parker Scaling: $\frac{v_{\text{rec}}}{V_A} = \frac{\delta_{\text{SP}}}{L} = \frac{1}{\sqrt{S}} \ll 1$ $S \equiv \frac{LV_A}{\eta} \gg 1$

Sweet–Parker Reconnection: Too Slow for Solar Flares!

- Typical Solar Corona parameters:
 - $\begin{array}{ll} L \ \sim \ 10^9 10^{10} \, {\rm cm} & B \ \sim \ 100 \, {\rm G} \\ n_e \ \sim \ 10^9 10^{10} \, {\rm cm}^{-3} & T \ \sim \ 2 \cdot \ 10^6 \, {\rm K} \\ V_A \ \sim \ 10^8 \, {\rm cm/sec} & \tau_A \ \sim \ 10 \ 100 \, {\rm sec} \end{array}$
- Lundquist number:

$$S = \frac{LV_A}{\eta} \sim 10^{12}$$

• Sweet–Parker timescale:

 $\tau_{\rm rec} \sim \tau_A \sqrt{S} \sim {\rm months} \gg \tau_{\rm flare} \sim 15 \, {\rm min}$

Thus, Sweet–Parker reconnection is too slow!

PETSCHEK'S (1964) FAST RECONNECTION MODEL

(Petschek 1964):

Sweet–Parker reconnection is slow because plasma has to flow out through a narrow current channel.

A family of models with

$$S^{-1/2} < \frac{v_{\text{rec}}}{V_A} < \frac{1}{\log S}$$

- fast enough to explain solar flares!

Two Basic Reconnection Configurations: Sweet–Parker and Petschek

• Astronomical systems are astronomically large:

 $L \gg \rho_i, d_i, \delta_{SP}$

(e.g., solar flares: $L \sim 10^9$ cm $\gg d_i \sim \delta_{SP} \sim 10^2 - 10^3$ cm)

- $\Rightarrow \delta > \delta_{SP}$ is not enough for rapid reconnection !
- *Petschek's* (1964) idea is especially important in Spaceand Astrophysics.

Fast Reconnection \Leftrightarrow Petschek Reconnection

NO FAST RECONNECTION IN COLLISIONAL PLASMAS

However,

- Numerical Simulations (e.g., Biskamp 1986; Uzdensky & Kulsrud 1998, 2000; Erkaev et al. 2001; Malyshkin et al. 2005)
- Analytical Work (Kulsrud 2001; Malyshkin et al. 2005)
- Laboratory Experiments (Ji et al. 1998)

show: Reconnection in collisional plasmas is $\mathbf{SLOW}!$

(Uzdensky & Kulsrud 2000)

No Fast Reconnection in Collisional Plasma

A Digression:

Break-up of SP Layer into a Chain of Plasmoids

- Long Sweet-Parker current layers are tearing unstable for S > 10⁴ (Bulanov, Syrovatskii, & Sakai; Loureiro et al. 2007, 2009) ⇒ bursty reconnection.
- 2D Resistive-MHD Simulations (Samtaney, Loureiro, Uzdensky, Schekochihin, & Cowley 2009)

D. Uzdensky

FAST RECONNECTION means COLLISIONLESS RECONNECTION

Q: Is Fast Reconnection Possible in Collisionless Plasmas?

FAST RECONNECTION means COLLISIONLESS RECONNECTION

 $\underline{\mathbf{Q:}}$ Is Fast Reconnection Possible in Collisionless Plasmas?

YES !!!

FAST RECONNECTION means COLLISIONLESS RECONNECTION

<u>Q</u>: Is Fast Reconnection Possible in Collisionless Plasmas? YES !!!

Two candidates for fast Petschek-like collisionless reconnection:

- Hall-MHD reconnection involving two-fluid laminar configuration (e.g., Mandt et al. 1994; Shay et al. 1998; Birn et al. 2001; Bhattacharjee et al. 2001; Breslau & Jardin 2003; Cassak et al. 2005)
- Spatially-localized anomalous resistivity due to plasma micro-instabilities (e.g., Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Erkaev et al. 2001; Kulsrud 2001; Biskamp & Schwarz 2001; Malyshkin et al. 2005)

Signatures of both mechanisms observed in MRX.

Fast Reconnection = Collisionless Reconnection

Condition for Collisionless Reconnection

• Collisional (resistive) reconnection scale — Sweet–Parker layer thickness:

$$\delta_{\rm SP} = LS^{-1/2} = \sqrt{L\eta/V_A}$$

• Collisionless reconnection scale — ion skin depth:

$$d_i \equiv \frac{c}{\omega_{pi}} = c \sqrt{\frac{m_i}{4\pi n_e e^2}}$$

• Collisionless Reconnection Condition:

 $\delta_{\mathsf{SP}} < d_i$

Reconnection in the Lab:

Magnetic Reconnection Experiment (MRX)

MRX at Princeton Plasma Physics Laboratory:

Experimental evidence for transition to fast collisionless reconnection:

FAST COLLISIONLESS RECONNECTION: HALL EFFECT

• Numerical simulations: Hall effect enables Petschek-like structure with $v_{\text{rec}} \leq 0.1 V_A$ (e.g., Shay et al. 1998).

Condition for Collisionless Reconnection

• Collisional (resistive) reconnection scale — Sweet–Parker reconnection layer thickness:

$$\delta_{\mathsf{SP}} = \sqrt{L\eta/V_A}$$

• Collisionless reconnection scale — ion skin depth:

$$d_i \equiv \frac{c}{\omega_{pi}} = c \sqrt{\frac{m_i}{4\pi n_e e^2}}$$

• Collisionless Reconnection Condition:

 $\delta_{\mathsf{SP}} < d_i$

• Using collisional resistivity (Yamada et al. 2006):

$$\frac{\delta_{\rm SP}}{d_i} \sim (\frac{L}{\lambda_{e,\rm mfp}})^{1/2} \; [\frac{m_e}{m_i}]^{1/4}$$

• Then, fast reconnection requires

$$L < \lambda_{e, mfp} \sqrt{m_i/m_e} \simeq 40 \, \lambda_{e, mfp}$$

MOVING FORWARD....

(Uzdensky 2006, 2007)

Next Crucial Step: Taking It All Seriously !!

• Classical collisional electron mean-free path:

$$\lambda_{e,\mathsf{mfp}} \simeq 7 \cdot 10^7 \mathrm{cm} \ n_{10}^{-1} T_7^2$$

(here $n_{10}\equiv n_e/10^{10}\,{
m cm^{-3}}$ and $T_7\equiv T_e/10^7\,{
m K}$)

• Criterion for Collisionless Reconnection:

$$L < L_c(n,T) \equiv 40 \,\lambda_{e,mfp} \simeq 3 \cdot 10^9 \text{cm} \ n_{10}^{-1} T_7^2$$
MOVING FORWARD....

(Uzdensky 2006, 2007)

Next Crucial Step: Taking It All Seriously !!

• Classical collisional electron mean-free path:

$$\lambda_{e,\mathsf{mfp}} \simeq 7 \cdot 10^7 \mathrm{cm} \ n_{10}^{-1} T_7^2$$

(here $n_{10}\equiv n_e/10^{10}\,{
m cm^{-3}}$ and $T_7\equiv T_e/10^7\,{
m K}$)

• Criterion for Collisionless Reconnection:

$$L < L_c(n,T) \equiv 40 \,\lambda_{e,mfp} \simeq 3 \cdot 10^9 \text{cm} \ n_{10}^{-1} T_7^2$$

• Central Electron Temperature:

$$T_e = \frac{B_0^2 / 8\pi}{2k_B n_e} \simeq 1.3 \cdot 10^8 \,\mathrm{K} \, B_2^2 \, n_{10}^{-1}$$

(here $B_2 \equiv B_0 / 100 \, \text{G}$)

• Collisionless reconnection condition: final form:

$$L < L_c(n, B_0) \simeq 5 \cdot 10^{11} \,\mathrm{cm} \, n_{10}^{-3} \, B_2^4$$

Astrophysical applications:

SELF-REGULATED MARGINALLY COLLISIONLESS ASTROPHYSICAL CORONAE

- The Sun
- Accreting Black Holes

I. SOLAR CORONA

SOLAR CORONA

TRACE -171° A

• Typical Solar Corona parameters:

$$\begin{array}{ll} L \ \sim \ 10^9 - 10^{10} \, {\rm cm} & B \ \sim \ 100 \, {\rm G} \\ n_e \ \sim \ 10^9 - 10^{10} \, {\rm cm}^{-3} & T \ \sim \ 2 \cdot 10^6 \, {\rm K} \end{array}$$

Critical Density for Collisionless Reconnection

(Uzdensky 2006, 2007)

MAIN IDEA: coronal heating is a self-regulating process keeping plasma marginally collisionless.

EXAMPLE:

- Consider a reconnecting structure set up by loop dynamics: *L* and *B*₀ are fixed.
- Critical density for fast collisionless reconnection:

$$n < n_c \sim 2 \cdot 10^{10} \,\mathrm{cm}^{-3} \,B_{1.5}^{4/3} \,L_9^{-1/3}$$

- Plasma density acts as a reconnection switch:
 - $-\underline{n_e > n_c}$: no reconnection \Rightarrow no heating: plasma gradually cools via radiation/thermal conduction, density scale-height decreases, n_e drops.
 - $-\underline{n_e < n_c}$: rapid collisionless reconnection commences, energy is released.

Self-Regulation of Coronal Heating

(Uzdensky 2006, 2007)

- Key feedback: coronal energy release ⇒ chromospheric evaporation ⇒ coronal density rises.
- $n > n_c$ in post-flare loops \Rightarrow subsequent magnetic dissipation is suppressed.

Thus, although highly intermittent and inhomogeneous, corona is working to keep itself roughly at the critical density $n_c(L, B_0)$.

\Rightarrow Self-Regulation of Coronal Heating !

<u>Q:</u>

Similar processes be at work in coronae of other stars (*Cassak et al. 2008*) and accretion disks (*Goodman & Uzdensky 2008*).

ACCRETION DISK CORONA

Marginally Collisionless Coronae of Black-Hole Accretion Disks

(Goodman & Uzdensky 2008)

- Observational Evidence:
 - Moderate optical depth: $\tau = n_e \sigma_T H \sim 1$.
 - Quasi-relativistic $\bar{e}\text{-s:}$ $\theta_e=T_e/m_ec^2\sim 0.1-0.5$
- Spitzer resistivity: $\eta_{\text{Spitzer}} \simeq cr_e \, \theta_e^{-3/2} \log \Lambda$
- Lundquist number:

$$S = \frac{HV_A}{\eta} \simeq \left(\frac{R_{\mathsf{BH}}}{r_e \log \Lambda}\right) f^{1/2} \dot{m}^{1/2} \tau^{-1/2} \theta_e^{3/2} h \, r^{1/4} \sim 10^{17}$$

- Sweet–Parker reconnection layer thickness: $\delta_{SP} \sim HS^{-1/2}$
- Ion collisionless skin-depth: $d_i = c/\omega_{pi} \sim [(m_p/m_e) r_e H/\tau]^{1/2}$
- Coronal collisionality parameter:

$$\frac{\delta_{\rm SP}}{d_i} \sim \left[\frac{m_e \log \Lambda}{m_p}\right]^{1/2} (f\dot{m})^{-1/4} \, \tau^{3/4} \, \theta_e^{-3/4} \, r^{3/8}$$

BH ADCe are marginally collisionless: $\delta_{SP} \sim d_i$.

Self-Regulation of Coronal Heating

Two Reconnection Regimes:

- $\underline{\delta_{SP}} > d_i$: slow collisional Sweet–Parker reconnection
- $\underline{\delta_{SP}} < d_i$: fast collisionless reconnection

Uzdensky 2007

applications: solar/stellar coronae, accretion disk coronae

FUTURE DIRECTIONS

OF MAGNETIC RECONNECTION RESEARCH

FUTURE DIRECTIONS I

- Time-dependent, non-stationary reconnection in very large systems susceptable to secondary tearing instability (both collisional and collisionless):
 - resistive-MHD reconnection in long current layers (S > 10⁴)
 (e.g., Bulanov et al. 1978; Loureiro et al. 2007, 2009; Lapenta 2008; Bhattacharjee et al. 2009; Samtaney et al. 2009)
 - collisionless reconnection
 - what is the effect of secondary plasmoids on the time-averaged reconnection rate?
 - what is the effect of secondary plasmoids on non-thermal particle acceleration
 - now accessible to numerical simulations!
- Interaction between two fundamental plasma processes: reconnection and turbulence,

e.g., externally-driven resistive-MHD turbulence

OPEN QUESTIONS I:

Collisional (resistive-MHD) regime

Is it really slow? How slow?

What are the effects of:

- 1. Actual Spitzer resistivity instead of constant uniform resistivity?
- 2. Ohmic heating and realistic e-thermal conduction?
- 3. Compressibility: small $\beta_{upstream}$?
- 4. Viscosity (anisotropic)?
- 5. Secondary tearing instability in very long current layers (for S > 10⁴)? (e.g., Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)
- 6. MHD turbulence? (e.g., Lazarian & Vishniac 1999)
- 7. Additional (astro-)physical effects:
 - weakly-ionized plasma (ISM, molecular clouds) (Zweibel 1989);
 - radiative (e.g., Compton) cooling (black-hole coronae);
 - Compton resistivity (radiation drag; black-hole coronae and jets);
 - pair creation (black holes and magnetars)

More lab studies, especially in large-S limit!

OPEN QUESTIONS II:

collisionless reconnection

- 1. Physical nature of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom} ? Reconnection rate in terms of basic plasma parameters? Where is η_{anom} excited: central diffusion region/separatrices? (Malyshkin et al. 2005)
- 3. How do two-fluid effects and anomalous resistivity interact?
- 4. What are the effects of B_z and $\beta_{upstream}$ on triggering η_{anom} ? on Hall reconnection?
- 5. What system parameters affect reconnection rate in two-fluid regime?
- 6. Is collisionless reconnection laminar or bursty?
 What is time-averaged reconnection rate?
 (Bhattacharjee 2004; Daughton et al. 2006; Karimabadi et al. 2007)
- 7. How is the released energy partitioned between: E_{kin} , $E_{e,th}$, $E_{i,th}$, and $E_{non-therm}$?

SUMMARY

• What is the physically-relevant resistivity η ?

• Physical Mechanism: when

$$v_d = rac{j}{en_e} > v_c \sim v_{ ext{thermal}} \,,$$

plasma instabilities are excited \Rightarrow developed microturbulence. Scattering of electrons by waves enhances resistivity.

 \bullet As the layer's thickness δ decreases down to critical thickness

$$\delta_c \equiv \frac{cB_0}{4\pi j_c},$$
 where $j_c \equiv en_e v_c,$

anomalous resistivity $\eta = \eta(j)$ turns on.

- Anomalous resistivity $\eta = \eta(j)$ is localized near the center.
- Simulations: strongly-localized resistivity ⇒ Petschek-like configuration (also theory by Kulsrud 2001; Malyshkin et al. 2005).
- Dual role of anomalous resistivity:
 - direct: $\eta_{\text{anom}} \gg \eta_{\text{coll}}$
 - *indirect:* enables Petschek mechanism
- Resulting rate plausible for solar flares (e.g., Uzdensky 2003).

• Electron equation of motion \Rightarrow Generalized Ohm's law:

$$\mathbf{E} = -\frac{1}{c} \left[\mathbf{v}_e \times \mathbf{B} \right] + \eta \mathbf{j} = \underbrace{-\frac{1}{c} \left[\mathbf{v} \times \mathbf{B} \right] + \eta \mathbf{j}}_{resistive \ MHD} + \underbrace{\frac{\mathbf{j} \times \mathbf{B}}{n_e ec}}_{Hall \ term}$$
$$[\mathbf{j} = n_e e \left(\mathbf{v}_{\mathbf{j}} - \mathbf{v}_{\mathbf{e}} \right)]$$

• Hall-term spatial scale:

$$d_i \equiv \frac{c}{\omega_{pi}} = c \sqrt{\frac{m_i}{4\pi n_e e^2}}.$$

 Two-fluid effects: on scales < d_i, ions are no longer tied to field lines but electrons still are ⇒ ions and electrons move separately:

• Reconnection layer thickness $\delta \simeq d_i \ (\gg \delta_{SP})$. But this is not sufficient since still $d_i \ll L$!

Role of Central Temperature (Uzdensky 2007)

- $\lambda_{mfp} \sim T_e^2 \implies \text{important to determine } T_e.$
- Two temperatures: ambient $(T_{cor} \sim 2 \cdot 10^6 K)$ and central layer $T_e \gg T_{cor}$
- T_e is not measured directly in solar corona. How to estimate it?
- Pressure balance by itself is not enough: degeneracy between T_e and n_e .
- T_e is determined by balance btw heating and cooling
- Ohmic heating + advective cooling: $T_e = T_e^{\text{equipartition}}$
- Radiative heat losses: small for the solar corona
- Heat losses by electron thermal conduction: $\tau_{cond} \ge \tau_A$ for the collisional regime.
- Thus, Joule heat is deposited but does not have enough time to escape if the collisionality requirement is met.
- Density will not increase by more than a factor of a few above the ambient level, but T_e may become much higher, reaching the equipartition level.

Requirements for Solar Corona Models

Numerical simulations of solar corona should include ALL of the following:

- flux emergence and photospheric footpoint motions;
- physically-motivated prescription for transition from slow to fast reconnection (a subgrid model for a large-scale MHD simulation);
- mass exchange between corona and solar surface (e.g., chromospheric evaporation and plasma precipitation);
- optically-thin radiative cooling and thermal conduction (including by nonthermal *e*-s) along **B**.

II. OTHER STARS

CORONAE OF OTHER STARS

EUVE observations of 107 flares in 37 sun-like (F,G,K) and M-type stars:

(Cassak, Mullan, & Shay 2008)

RECONNECTION IN ASTROPHYSICS: Pulsar Wind

Close to pulsar (light cylinder): $L_{magn} \gg L_{particles}$ Far from pulsar (termination shock): $L_{magn} \ll L_{particles}$

<u>Q:</u> How is magnetic energy transferred to particles? Reconnection in pulsar wind.

RECONNECTION IN ASTROPHYSICS: GIANT SGR FLARES

Reconnection in Magnetar Magnetospheres as a model for giant flares in Soft Gamma Repeaters

(Thompson, Lyutikov & Kulkarni 2002; Lyutikov 2003, 2006):

- twisted internal magnetic field breaks the NS crust
- sheared crust motion twists up the external magnetosphere
- subsequent reconnection in the magnetosphere leads to a flare

CURRENT SHEETS IN ASTROPHYSICS: STAR–DISK MAGNETIC INTERACTION

(van Ballegooijen 1994; Lynden-Bell & Boily 1994; Lovelace, Romanova, & Bisnovatyi-Kogan 1995; Hayashi, Shibata, & Matsumoto 1996; Goodson, Winglee, & Bohm 1999; Uzdensky, Königl & Litwin 2002; Uzdensky 2002, 2004)

STAR–DISK MAGNETIC INTERACTION RECONNECTION CYCLES

Cycles of Opening and Reconnection:

Goodson et al. (1999)

RECONNECTION in ASTROPHYSICS: ACCRETION-DISK CORONA

(Uzdensky & Goodman 2008)

Magnetized Corona above a thin turbulent accretion disk:

numerous magnetic loops subject to shear due to Keplerian rotation.

Role of reconnection:

controls magnetic scale height and energy dissipation.

Magnetic Tower in a Star (Uzdensky & MacFadyen 2006):magnetic version of collapsar model for long GRBs.

- Q: Can fast reconnection happen near central engine?
- Fiducial parameters: $B \sim 10^{14} \text{ G}, \quad n_e \sim 10^{30} \text{ cm}^{-3},$ $T \sim 3 \cdot 10^9 \text{ K}, \quad L \sim 10^7 \text{ cm}.$
- Reconnection parameters: $S \sim 10^{18}$, $\delta_{\rm SP} \sim 10^{-2}$ cm, $\lambda_{e,\rm mfp} \sim 10^{-6}$ cm, $\rho_e \sim 10^{-11}$ cm, $d_e \sim 10^{-9}$ cm.
- Implication: $L \gg \delta_{SP} \gg \delta_{\text{collisionless}}$ \Rightarrow no fast reconnection \Rightarrow Magnetic outflow survives propagation through the inner part of the star!

FAST RECONNECTION: CAVEATS AND ALTERNATIVES

• 3D-MHD Turbulent Reconnection:

(Lazarian & Vishniac 1999; Bhattacharjee & Hameiri 1986; Strauss 1988; Kim & Diamond 2001)

- Bursty, Impulsive Reconnection: (e.g., Bhattacharjee 2004)
- Additional Physics: e.g., partially-ionized plasmas in molecular clouds (Zweibel 1989).

• Electron equation of motion \Rightarrow Generalized Ohm's law:

$$\mathbf{E} = -\frac{1}{c} \left[\mathbf{v}_e \times \mathbf{B} \right] + \eta \mathbf{j} = \underbrace{-\frac{1}{c} \left[\mathbf{v} \times \mathbf{B} \right] + \eta \mathbf{j}}_{resistive \ MHD} + \underbrace{\frac{\mathbf{j} \times \mathbf{B}}{\underbrace{n_e ec}_{Hall \ term}}}_{Hall \ term}$$

$$[\mathbf{j} = n_e e \left(\mathbf{v_i} - \mathbf{v_e} \right)]$$

• Electron equation of motion \Rightarrow Generalized Ohm's law:

$$\mathbf{E} = -\frac{1}{c} \left[\mathbf{v}_e \times \mathbf{B} \right] + \eta \mathbf{j} = \underbrace{-\frac{1}{c} \left[\mathbf{v} \times \mathbf{B} \right] + \eta \mathbf{j}}_{resistive \ MHD} + \underbrace{\frac{\mathbf{j} \times \mathbf{B}}{\frac{n_e ec}{Hall \ term}}}_{Hall \ term}$$

 $[\mathbf{j} = n_e e \left(\mathbf{v_i} - \mathbf{v_e} \right)]$

• Hall-term spatial scale:

$$d_i \equiv \frac{c}{\omega_{pi}} = c \sqrt{\frac{m_i}{4\pi n_e e^2}}.$$

 Two-fluid effects: on scales < d_i, ions are no longer tied to field lines but electrons still are ⇒ ions and electrons move separately:

• Electron equation of motion \Rightarrow Generalized Ohm's law:

$$\mathbf{E} = -\frac{1}{c} \left[\mathbf{v}_e \times \mathbf{B} \right] + \eta \mathbf{j} = \underbrace{-\frac{1}{c} \left[\mathbf{v} \times \mathbf{B} \right] + \eta \mathbf{j}}_{resistive \ MHD} + \underbrace{\frac{\mathbf{j} \times \mathbf{B}}{n_e ec}}_{Hall \ term}$$
$$[\mathbf{j} = n_e e \left(\mathbf{v}_{\mathbf{j}} - \mathbf{v}_{\mathbf{e}} \right)]$$

• Hall-term spatial scale:

$$d_i \equiv \frac{c}{\omega_{pi}} = c \sqrt{\frac{m_i}{4\pi n_e e^2}}.$$

 Two-fluid effects: on scales < d_i, ions are no longer tied to field lines but electrons still are ⇒ ions and electrons move separately:

• Reconnection layer thickness $\delta \simeq d_i \ (\gg \delta_{SP})$. But this is not sufficient since still $d_i \ll L$!

• Good news (numerical simuations): Hall effect enables Petschek-like structure with $v_{\text{rec}} \leq 0.1 V_A$ (e.g., Shay et al. 1998).

Cassak, Shay, & Drake 2005

• What is the physically-relevant resistivity η ?

• What is the physically-relevant resistivity η ?

 Physical Mechanism: when

$$v_d = \frac{j}{en_e} > v_c \sim v_{\text{thermal}} \,,$$

plasma instabilities are excited \Rightarrow developed microturbulence. Scattering of electrons by waves enhances resistivity.

 \bullet As the layer's thickness δ decreases down to critical thickness

$$\delta_c \equiv \frac{cB_0}{4\pi j_c},$$
 where $j_c \equiv en_e v_c,$

anomalous resistivity $\eta = \eta(j)$ turns on.

• What is the physically-relevant resistivity η ?

 Physical Mechanism: when

$$v_d = \frac{j}{en_e} > v_c \sim v_{\text{thermal}} ,$$

plasma instabilities are excited \Rightarrow developed microturbulence. Scattering of electrons by waves enhances resistivity.

 \bullet As the layer's thickness δ decreases down to critical thickness

$$\delta_c \equiv \frac{cB_0}{4\pi j_c},$$
 where $j_c \equiv en_e v_c,$

anomalous resistivity $\eta = \eta(j)$ turns on.

- Anomalous resistivity $\eta = \eta(j)$ is localized near the center.
- Simulations: strongly-localized resistivity ⇒ Petschek-like configuration (also theory by Kulsrud 2001; Malyshkin et al. 2005).
- Dual role of anomalous resistivity:
 - direct: $\eta_{\text{anom}} \gg \eta_{\text{coll}}$
 - *indirect:* enables Petschek mechanism
- Resulting rate plausible for solar flares (e.g., Uzdensky 2003).

Condition for Collisionless Reconnection: Strong Guide Field Case: $B_z \gg B_0$

 Collisional (resistive) reconnection scale — Sweet–Parker reconnection layer thickness:

$$\delta_{\rm SP} = \sqrt{L\eta/V_A}$$

Collisionless reconnection scale for strong guide field case,
 — ion-sound Larmor radius:

$$\rho_s = c_s \,\Omega_i^{-1} \sim d_i \,\beta_e^{1/2} \,\frac{B_0}{B_z}$$

• Collisionless Reconnection Condition:

$$\delta_{\mathsf{SP}} < \rho_s$$

• Final form:

$$L < L_c = \lambda_{e,\mathsf{mfp}} \sqrt{\frac{m_i}{m_e}} \left(\frac{B_0}{B_z}\right)^2 \simeq 6 \cdot 10^9 \,\mathrm{cm} \, n_{10}^{-3} \, B_{1.5}^4 \, \left(\frac{B_0}{B_z}\right)^2$$

What is the Status of our Knowledge about Magnetic Reconnection?

Common Perception:

"We don't know anything about reconnection. So we are free to assume anything we want."

NOT TRUE !!

INSTEAD:

We don't know <u>everything</u> about reconnection. But there are <u>some things</u> we do know. (or we think we know)
Sweet–Parker Reconnection: Too Slow for Solar Flares!

• Typical Solar Corona parameters:

 $L \sim 10^9 - 10^{10} \,\mathrm{cm}$ $n_e \sim 10^9 - 10^{10} \,\mathrm{cm}^{-3}$ $V_A \sim 10^8 \,\mathrm{cm/sec}$

 $\begin{array}{l} B\sim 100\,{\rm G}\\ T\sim 2\cdot 10^6\,{\rm K}\\ \tau_A\sim 10-100\,{\rm sec} \end{array}$

Sweet–Parker Reconnection: Too Slow for Solar Flares!

- Typical Solar Corona parameters:
 - $\begin{array}{ll} L \ \sim \ 10^9 10^{10} \, {\rm cm} & B \ \sim \ 100 \, {\rm G} \\ n_e \ \sim \ 10^9 10^{10} \, {\rm cm}^{-3} & T \ \sim \ 2 \cdot \ 10^6 \, {\rm K} \\ V_A \ \sim \ 10^8 \, {\rm cm/sec} & \tau_A \ \sim \ 10 \ 100 \, {\rm sec} \end{array}$
- Lundquist number:

$$S = \frac{LV_A}{\eta} \sim 10^{12}$$

• Sweet–Parker timescale:

 $\tau_{\rm rec} \sim \tau_A \sqrt{S} \sim {\rm months} \gg \tau_{\rm flare} \sim 15 \, {\rm min}$

OPEN QUESTIONS

IN MAGNETIC RECONNECTION

1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
- 3. How do the system parameters (e.g., B_{guide} and $\beta_{upstream}$) affect collisionless reconnection?

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
- 3. How do the system parameters (e.g., B_{guide} and $\beta_{upstream}$) affect collisionless reconnection?
- 4. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact?

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
- 3. How do the system parameters (e.g., B_{guide} and $\beta_{upstream}$) affect collisionless reconnection?
- 4. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact?
- 5. What is the role of electron holes in guide-field reconnection?

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
- 3. How do the system parameters (e.g., B_{guide} and $\beta_{upstream}$) affect collisionless reconnection?
- 4. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact?
- 5. What is the role of electron holes in guide-field reconnection?
- 6. Is collisionless reconnection laminar or bursty? (Bhattacharjee 2004; Daughton et al. 2006, 2009)
 What is time-averaged reconnection rate?
 What are the observable signatures (e.g., radio) ?

- 1. What is the physical nature and functional shape of η_{anom} ? (e.g., Kulsrud et al. 2005; Ji et al. 2005?)
- 2. Petschek-like structure for given functional shape of η_{anom}? Reconnection rate in terms of basic plasma parameters? (Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp & Schwarz 2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
- 3. How do the system parameters (e.g., B_{guide} and $\beta_{upstream}$) affect collisionless reconnection?
- 4. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact?
- 5. What is the role of electron holes in guide-field reconnection?
- 6. Is collisionless reconnection laminar or bursty? (Bhattacharjee 2004; Daughton et al. 2006, 2009)
 What is time-averaged reconnection rate?
 What are the observable signatures (e.g., radio) ?
- 7. How is the released energy partitioned between: E_{kin} , $E_{e,\text{th}}$, $E_{i,\text{th}}$, and $E_{\text{non-therm}}$?

OPEN QUESTIONS II: Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with $\eta = \text{const}$, and in a limited range of Lundquist numbers ($S \sim 10^3 - 10^4$).

Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with $\eta = \text{const}$, and in a limited range of Lundquist numbers ($S \sim 10^3 - 10^4$).

What are the effects of:

- 1. Actual Spitzer resistivity instead of $\eta = \text{const}$?
- 2. Ohmic heating and realistic *e*-thermal conduction?
- 3. Compressibility: small β_{upstream} ?
- 4. Viscosity (anisotropic)?

Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with $\eta = \text{const}$, and in a limited range of Lundquist numbers ($S \sim 10^3 - 10^4$).

What are the effects of:

- 1. Actual Spitzer resistivity instead of $\eta = \text{const}$?
- 2. Ohmic heating and realistic *e*-thermal conduction?
- 3. Compressibility: small $\beta_{upstream}$?
- 4. Viscosity (anisotropic)?
- 5. Secondary tearing instability in long current sheets (for $S > 10^4$)? (Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)

Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with $\eta = \text{const}$, and in a limited range of Lundquist numbers ($S \sim 10^3 - 10^4$).

What are the effects of:

- 1. Actual Spitzer resistivity instead of $\eta = \text{const}$?
- 2. Ohmic heating and realistic *e*-thermal conduction?
- 3. Compressibility: small $\beta_{upstream}$?
- 4. Viscosity (anisotropic)?
- 5. Secondary tearing instability in long current sheets (for $S > 10^4$)? (Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)
- 6. MHD turbulence? (e.g., Matthaeus & Lamkin 1986; Lazarian & Vishniac 1999, Loureiro et al. 2009)

Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with $\eta = \text{const}$, and in a limited range of Lundquist numbers $(S \sim 10^3 - 10^4)$.

What are the effects of:

- 1. Actual Spitzer resistivity instead of $\eta = \text{const}$?
- 2. Ohmic heating and realistic *e*-thermal conduction?
- 3. Compressibility: small $\beta_{upstream}$?
- 4. Viscosity (anisotropic)?
- 5. Secondary tearing instability in long current sheets (for $S > 10^4$)? (Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)
- 6. MHD turbulence? (e.g., Matthaeus & Lamkin 1986; Lazarian & Vishniac 1999, Loureiro et al. 2009)
- 7. Additional (astro-)physical effects:
 - weakly-ionized and dusty plasma (ISM, molecular clouds) (Zweibel 1989);
 - Compton resistivity (radiation drag; black-hole coronae and jets);
 - radiative (e.g., Compton) cooling (black-hole coronae);
 - pair creation (black holes, magnetars) (Uzdensky 2009, in preparation)

FUTURE DIRECTIONS I

- Non-stationary, bursty reconnection in very large systems susceptable to secondary tearing instability:
 - resistive-MHD reconnection in long current sheets (S > 10⁴)
 (e.g., Bulanov et al. 1978; Loureiro et al. 2007, 2009; Lapenta 2008; Bhattacharjee et al. 2009; Samtaney et al. 2009)
 - collisionless reconnection (Daughton et al. 2008);
 - How does time-averaged reconnection rate scale with $S=LV_{A}/\eta$ for $S>10^{4}$?
 - Role of secondary plasmoids in non-thermal particle acceleration (Drake et al. 2006).
 - Radio-signatures: a direct probe into reconnection layer?
 - now accessible to numerical simulations!
- Interaction between two fundamental plasma processes: reconnection and turbulence, e.g., externally-driven resistive-MHD turbulence (e.g., Lazarian & Vishniac 1999; Kowal et al. 2008; Loureiro et al. 2009, in preparation)

MHD-Turbulent Reconnection

2D incompressible resistive-MHD simulations (Loureiro, Uzdensky, Schekochikhin, Yousef, & Cowley 2009)

MHD-Turbulent Reconnection

2D incompressible resistive-MHD simulations

(Loureiro, Uzdensky, Schekochikhin, Yousef, & Cowley 2009)

Astrophysically motivated questions:

- How is the released magnetic energy partitioned between: E_{kin} , $E_{e,th}$, $E_{i,th}$, and $E_{non-therm}$?
- A new frontier in astrophysical reconnection: High-energy-density (HED), radiative environements (*Uzdensky 2008, 2009 in prep.*):
 - radiative cooling (e.g., Compton) of the reconnection layer (blackhole coronae; magnetar flares);
 - Compton resistivity (radiation drag; black-hole coronae/jets)
 - radiation pressure (collapsars and magnetar flares)
 - pair creation (BH coronae; collapsars and magnetar flares)

• Prospects for experimental research:

- Next generation (medium-scale) reconnection expt: larger ($S > 10^4$), better separation of scales; better diagnostics (incl. energetic particles)
- HED reconnection with radiation cooling/pressure effects: laser-plasma facilities

SOLAR CORONAL HEATING

TRACE –171 $\stackrel{\circ}{A}$

Solar corona: $n_e \sim 10^{10} \, {\rm cm}^{-3}$, $T \sim 2 \cdot 10^6 \, {\rm K}$.

SOLAR CORONAL HEATING

TRACE –171 Å

Solar corona: $n_e \sim 10^{10} \,\mathrm{cm}^{-3}$, $T \sim 2 \cdot 10^6 \,\mathrm{K}$.

Nanoflare model of coronal heating (Parker 1988):

- Footpoint motions pump magnetic energy into corona.
- Energy dissipates in the corona via reconnection.
- Characteristic scale (L) and field strength (B₀) of coronal magnetic structures are determined by photospheric motions, flux emergence, etc.
- But what determines coronal density?

D. Uzdensky

A DIGRESSION:

Secondary Tearing Instability in Current Sheets

- Very long Sweet–Parker resistive current sheets themselves becoming tearing unstable for S > 10⁴ (Bulanov et al. 1978; Loureiro et al. 2007, 2009) leading to non-stationary, bursty reconnection.
- How does time-averaged reconnection rate scale with $S=LV_{A}/\eta$ for $S>10^{4}$?
- Now accessible to numerical simulations! (Lapenta 2008; Bhattacharjee et al. 2009; Samtaney et al. 2009)

RESISTIVE MHD

• Resistive magnetohydrodynamics (MHD) Magnetic Induction Equation:

RESISTIVE MHD

• Resistive magnetohydrodynamics (MHD) Magnetic Induction Equation:

$$\frac{\partial \mathbf{B}}{\partial t} = \underbrace{-\left[\nabla \times \left[\mathbf{v} \times \mathbf{B}\right]\right]}_{advection} + \underbrace{\eta \nabla^2 \mathbf{B}}_{diffusion}$$

• Characteristic velocity in MHD — Alfvén velocity:

$$V_A \equiv \frac{B}{\sqrt{4\pi\rho}}$$

• Characteristic *advection time* — Alfvén crossing time:

$$\tau_A = \frac{L}{V_A}$$

RESISTIVE MHD

• Resistive magnetohydrodynamics (MHD) Magnetic Induction Equation:

$$\frac{\partial \mathbf{B}}{\partial t} = \underbrace{-\left[\nabla \times \left[\mathbf{v} \times \mathbf{B}\right]\right]}_{advection} + \underbrace{\eta \nabla^2 \mathbf{B}}_{diffusion}$$

• Characteristic velocity in MHD — Alfvén velocity:

$$V_A \equiv \frac{B}{\sqrt{4\pi\rho}}$$

• Characteristic *advection time* — Alfvén crossing time:

$$\tau_A = \frac{L}{V_A}$$

• Characteristic resistive diffusion time:

$$\tau_{\rm res} = \frac{L^2}{\eta}$$

• Measure of flux-freezing — Lundquist number:

$$S \equiv \frac{\tau_{\rm res}}{\tau_A} = \frac{LV_A}{\eta} \quad (\gg 1)$$

- Usually in Space and Astrophysics $S = LV_A/\eta \gg 1$
 - \Rightarrow ideal MHD works well on large scales L.

- Usually in Space and Astrophysics $S = LV_A/\eta \gg 1$
 - \Rightarrow ideal MHD works well on large scales L.
- But notice:
 - resistive diffusion term $\sim \nabla^2 {\bf B}$
 - advection term $\sim \nabla \mathbf{B}$