Superconducting non-Abelian strings in Weinberg-Salam theory – electroweak thunderbolts

Michael S. Volkov

LMPT, Tours

FRANCE

FIAN, SC4, 18 May 2008

Constructing new vortex solutions in the electroweak theory and studying their stability

> M.S.V. Phys.Lett. B648, 249 (2007) J.Garaud and M.S.V. Nucl.Phys. B799, 430 (2008) J.Garaud and M.S.V. hep-ph/0905.xxxx

superconductivity – constant currents due to non-zero values of scalar fields (condensate)

Witten's U(1)×U(1) model '85

$$\mathcal{L}_{W} = -\frac{1}{4} (F_{\mu\nu}^{(1)})^{2} + |D_{\mu}\phi_{1}|^{2} - \frac{\lambda_{1}}{4} (|\phi_{1}|^{2} - \eta_{1}^{2})^{2} - \frac{1}{4} (F_{\mu\nu}^{(2)})^{2} + |D_{\mu}\phi_{2}|^{2} - \frac{\lambda_{2}}{4} (|\phi_{2}|^{2} - \eta_{2}^{2})^{2} - \gamma |\phi_{1}|^{2} |\phi_{2}|^{2},$$

Vacuum: $|\phi_1| = \eta_1, \ \phi_2 = 0 \Rightarrow A^{(2)}_{\mu}$ is massless

- $A^{(2)}_{\mu} = \phi_2 = 0 \Rightarrow$ ANO vortex made of $A^{(1)}_{\mu}, \phi_1$
- Unstable, relaxes to dressed vortex with $\phi_2 \neq 0$
- Phase excitation of $\phi_2 \neq 0 \Rightarrow$ superconducting string

$$J_{\mu} = \partial^{\nu} F_{\nu\mu}^{(2)} \neq 0$$

Witten's superconducting strings

$$A^{(1)} = (n - v(\rho)) \, d\varphi, \quad \phi_1 = f_1(\rho) e^{in\varphi},$$
$$A^{(2)} = (\sigma_0 dt + \sigma_3 dz) \, (1 - u(\rho)), \quad \phi_2 = f_2(\rho) e^{i\sigma_0 t + i\sigma_3 z},$$

twist $\sigma^2 = \sigma_3^2 - \sigma_0^2 > 0$ magneitc; $\sigma^2 < 0$ electric; $\sigma^2 = 0$ chiral

Current quenching

Witten's model \in GUT theories $\Rightarrow \mathcal{I}_{max} \sim 10^{20}$ Amperes \Rightarrow cosmological applications

Electroweak vacuum polarization

Higgs vacuum for $B < m_w^2/e$ electroweak condensate for $m_w^2/e < B < m_h^2/e$ symmetry restoration for $B > m_h^2/e$

Ambjorn and Olesen '89

What about electroweak theory ?

- It contains two complex scalars that could be the vortex field and condensate field
- $U(1) \times U(1)$ is contained in $SU(2) \times U(1)$
- Z strings = embedded ANO vortices /Vachaspati '93/
- unstable but non-topological \Rightarrow relax to zero
- no dressed strings
 /Achucarro et al '94/
- \blacktriangleright \Rightarrow no superconducting strings ???

loophole: one can have superconducting strings without dressed strings

Weinberg-Salam theory

$$\mathcal{L} = -\frac{1}{4g^2} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} + (D_\mu \Phi)^{\dagger} D^\mu \Phi - \frac{\beta}{8} \left(\Phi^{\dagger} \Phi - 1 \right)^2,$$

$$W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + \epsilon_{abc}W^{b}_{\mu}W^{c}_{\nu}, \quad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu},$$

$$\Phi = \begin{pmatrix} \phi^{1} \\ \phi^{2} \end{pmatrix}, \quad D_{\mu}\Phi = \left(\partial_{\mu} - \frac{i}{2}A_{\mu} - \frac{i}{2}\tau^{a}W^{a}_{\mu}\right)\Phi.$$

$$g = \cos \theta_{\mathsf{w}}, \quad g' = \sin \theta_{\mathsf{w}}, \quad m_{\mathsf{z}} = 1/\sqrt{2},$$
$$m_{\mathsf{w}} = m_{\mathsf{z}} \cos \theta_{\mathsf{w}}, \quad \beta = \left(\frac{m_{\mathsf{h}}}{m_{\mathsf{z}}}\right)^2 \qquad \boxed{1.5 \le \beta \le 3.5}$$

Field equations

$$\partial_{\mu}B^{\mu\nu} = g'^{2} \Re(i\Phi^{\dagger}D^{\nu}\Phi),$$

$$\partial_{\mu}W_{a}^{\mu\nu} + \epsilon_{abc}W_{\sigma}^{b}W^{c\sigma\nu} = g^{2} \Re(i\Phi^{\dagger}\tau^{a}D^{\nu}\Phi),$$

$$D_{\mu}D^{\mu}\Phi = \frac{\beta}{4} (\Phi^{\dagger}\Phi - 1)\Phi.$$

 $n^a = \Phi^{\dagger} \tau^a \Phi / (\Phi^{\dagger} \Phi) \Rightarrow$ electromagnetic, Z fields /Nambu '77/

$$F_{\mu\nu} = \frac{g}{g'} B_{\mu\nu} - \frac{g'}{g} n^a W^a_{\mu\nu}, \qquad Z_{\mu\nu} = B_{\mu\nu} + n^a W^a_{\mu\nu},$$

 \Rightarrow electromagnetic current density

$$J_{\mu} = \partial^{\nu} F_{\nu\mu}$$

Vortex symmetries

symmetry generators

$$K_{(t)} = \frac{\partial}{\partial t}, \qquad K_{(z)} = \frac{\partial}{\partial z}, \qquad K_{(\varphi)} = \frac{\partial}{\partial \varphi}$$

 \Rightarrow energy, momentum, angular momentum

$$\int T^{0}_{\mu} K^{\mu}_{(t)} d^{2}x, \quad \int T^{0}_{\mu} K^{\mu}_{(z)} d^{2}x, \quad \int T^{0}_{\mu} K^{\mu}_{(\varphi)} d^{2}x,$$

electric charge and current ($\alpha = 0, 3$)

$$\mathcal{I}^{\alpha} = \int J^{\alpha} d^2 x$$

Field ansatz

Symmetries commute $\Rightarrow \exists$ a gauge where the fields depend only on ρ . With $\sigma_{\alpha} = (\sigma_0, \sigma_3)$

$$\mathcal{W} = u(\rho) \,\sigma_{\alpha} dx^{\alpha} - v(\rho) \,d\varphi + \tau^{1} \left[u_{1}(\rho) \,\sigma_{\alpha} dx^{\alpha} - v_{1}(\rho) \,d\varphi \right] + \tau^{3} \left[u_{3}(\rho) \,\sigma_{\alpha} dx^{\alpha} - v_{3}(\rho) \,d\varphi \right], \qquad \Phi = \begin{pmatrix} f_{1}(\rho) \\ f_{2}(\rho) \end{pmatrix}$$

•
$$\mathcal{W}_{
ho} = 0$$
 – gauge condition

- $\Psi = \mathcal{W}^*, \quad \Phi = \Phi^*$
- Boosts along $z = x^3$ axis
- Residual global symmetry $(f_1 + if_2) \rightarrow e^{\frac{i}{2}\Gamma}(f_1 + if_2),$ $(u_1 + iu_3) \rightarrow e^{-i\Gamma}(u_1 + iu_3), (v_1 + iv_3) \rightarrow e^{-i\Gamma}(v_1 + iv_3)$

U(1) + Higgs equations

$$\frac{1}{\rho}(\rho u')' = \frac{g'^2}{2} \left\{ (u+u_3)f_1^2 + 2u_1f_1f_2 + (u-u_3)f_2^2 \right\},\$$
$$\rho\left(\frac{v'}{\rho}\right)' = \frac{g'^2}{2} \left\{ (v+v_3)f_1^2 + 2v_1f_1f_2 + (v-v_3)f_2^2 \right\},\$$

$$\begin{aligned} \frac{1}{\rho}(\rho f_1')' &= \left\{ \frac{\sigma^2}{4} \left[(u+u_3)^2 + u_1^2 \right] + \frac{1}{4\rho^2} \left[(v+v_3)^2 + v_1^2 \right] + \frac{\beta}{4} (f_1^2 + f_2^2 - 1) \right\} f_1 \\ &+ \left(\frac{\sigma^2}{2} u u_1 + \frac{1}{2\rho^2} v v_1 \right) f_2, \\ \frac{1}{\rho}(\rho f_2')' &= \left\{ \frac{\sigma^2}{4} \left[(u-u_3)^2 + u_1^2 \right] + \frac{1}{4\rho^2} \left[(v-v_3)^2 + v_1^2 \right] + \frac{\beta}{4} (f_1^2 + f_2^2 - 1) \right\} f_2 \\ &+ \left(\frac{\sigma^2}{2} u u_1 + \frac{1}{2\rho^2} v v_1 \right) f_1. \end{aligned}$$

 $\sigma^2 = \sigma_3^2 - \sigma_0^2$

Superconducting non-Abelian strings in Weinberg-Salam theory –electroweak thunderbolts – p.12/41

SU(2) equations

$$\frac{1}{\rho}(\rho u_1')' = -\frac{1}{\rho^2} \left(v_1 u_3 - v_3 u_1 \right) v_3 + \frac{g^2}{2} \left[u_1 (f_1^2 + f_2^2) + 2u f_1 f_2 \right],$$

$$\frac{1}{\rho}(\rho u_3')' = +\frac{1}{\rho^2} \left(v_1 u_3 - v_3 u_1 \right) v_1 + \frac{g^2}{2} \left[(u_3 + u) f_1^2 + (u_3 - u) f_2^2 \right],$$

$$\rho \left(\frac{v_1'}{\rho} \right)' = +\sigma^2 \left(v_1 u_3 - v_3 u_1 \right) u_3 + \frac{g^2}{2} \left[v_1 (f_1^2 + f_2^2) + 2v f_1 f_2 \right],$$

$$\rho \left(\frac{v_3'}{\rho} \right)' = -\sigma^2 \left(v_1 u_3 - v_3 u_1 \right) u_1 + \frac{g^2}{2} \left[(v_3 + v) f_1^2 + (v_3 - v) f_2^2 \right].$$

Boundary conditions

- At the symmetry axis, $\rho = 0$, the fields are regular, energy density is finite.
- At infinity, $\rho \to \infty$, one has the Biot-Savart field of an infinitely long electric wire:

$$A_{\mu} = \frac{Q}{gg'} \sigma_{\alpha} dx^{\alpha} \ln \frac{\rho}{\rho_0} + C \, d\varphi$$
$$\Rightarrow Z_{\mu} = 0, \quad \mathbf{W}_{\mu}^{\pm} = 0, \quad \Phi = \begin{pmatrix} 1\\0 \end{pmatrix}$$

The current of the wire

$$\mathcal{I}_{\alpha} = -\frac{2\pi Q}{gg'} \,\boldsymbol{\sigma_{\alpha}}$$

Local solutions at the origin

$$u = a_{1} + \dots, \quad u_{1} = a_{2}\rho^{\nu} + \dots, \quad u_{3} = 1 + \dots,$$

$$v_{1} = O(\rho^{\nu+2}), \quad v_{3} = \nu + a_{3}\rho^{2} + \dots, \quad v = 2n - \nu + a_{4}\rho^{2} + \dots,$$

$$f_{1} = a_{5}\rho^{n} + \dots, \quad f_{2} = q\rho^{|n-\nu|} + \dots,$$

$$n, \nu \in \mathbb{Z}.$$
Regular gauge
$$\mathcal{W} = \left\{ u(\rho) + 1 + \tau_{\psi}^{1} u_{1}(\rho) + \tau^{3}[u_{3}(\rho) - 1] \right\} \sigma_{\alpha} dx^{\alpha}$$

$$+ \left\{ 2n - \nu - v(\rho) - \tau_{\psi}^{1} v_{1}(\rho) + \tau^{3} \left[\nu - v_{3}(\rho) \right] \right\} d\varphi,$$
$$\Phi = \left[\begin{array}{c} e^{in\varphi} f_{1}(\rho) \\ e^{i(n-\nu)\varphi + i \sigma_{\alpha} x^{\alpha}} f_{2}(\rho) \end{array} \right]$$

Infinity = Biot-Savart+corrections

$$u = Q \ln \rho + c_1 + \frac{c_3 g'^2}{\sqrt{\rho}} e^{-m_z \rho} + \dots$$

$$v = c_2 + c_4 g'^2 \sqrt{\rho} e^{-m_z \rho} + \dots$$

$$u_1 + iu_3 = e^{-i\gamma} \left\{ \frac{c_7}{\sqrt{\rho}} e^{-\int m_\sigma d\rho} + i \left[-Q \ln \rho - c_1 + \frac{c_3 g^2}{\sqrt{\rho}} e^{-m_z \rho} \right] \right\} + \dots$$

$$v_1 + iv_3 = e^{-i\gamma} \left\{ c_8 \sqrt{\rho} e^{-\int m_\sigma d\rho} + i \left[-c_2 + c_4 g^2 \sqrt{\rho} e^{-m_z \rho} \right] \right\} + \dots$$

$$f_1 + if_2 = e^{\frac{i}{2}\gamma} \left\{ 1 + \frac{c_5}{\sqrt{\rho}} e^{-m_b \rho} + i \frac{c_6}{\sqrt{\rho}} e^{-\int m_\sigma d\rho} \right\} + \dots$$

$$m_{\sigma} = \sqrt{m_{\mathsf{w}}^2 + \sigma^2 (Q \ln \rho + c_1)^2} \quad \Rightarrow \sigma^2 \ge 0$$

Global solutions

- numerically propagating the local solutions at small and large ρ and matching them at $\rho \sim 1$ within the multiple shooting method.
- there are 16 matching conditions and 17 parameters to resolve them: a_1, \ldots, a_5 and q at the origin, also $c_1, \ldots, c_8, Q, \gamma$ at infinity and also σ^2 .
- there is one parameter left to label the global solutions: $q = f_2(0)$.

$q = 0 \Rightarrow$ zero current Z strings

 $q = f_2(\rho) = 0 \Rightarrow \mathbf{Z}$ strings

$$\mathcal{W}_Z = 2(g'^2 + g^2 \tau^3)(n - v_{\mathsf{ANO}}(\rho)) \, d\varphi, \quad \Phi_Z = \begin{pmatrix} e^{in\varphi} f_{\mathsf{ANO}}(\rho) \\ 0 \end{pmatrix}$$

$$\frac{1}{\rho} (\rho f'_{\text{ANO}})' = \left(\frac{v_{\text{ANO}}^2}{\rho^2} + \frac{\beta}{4} (f_{\text{ANO}}^2 - 1)\right) f_{\text{ANO}},$$
$$\rho \left(\frac{v'_{\text{ANO}}}{\rho}\right)' = \frac{1}{2} f_{\text{ANO}}^2 v_{\text{ANO}},$$
$$0 \leftarrow f_{\text{ANO}} \to 1, \quad n \leftarrow v_{\text{ANO}} \to 0$$

 $n = 1, 2, \dots$

$q = f_2(0) \ll 1 \Rightarrow$ small currents

small Z string deformations, $(\mathcal{W}, \Phi) = (\mathcal{W}_Z, \Phi_Z) + (\delta \mathcal{W}, \delta \Phi)$,

$$(\delta \mathcal{W}, \delta \Phi) \sim e^{i \sigma_{\alpha} x^{\alpha}} \Psi(\rho)$$

 \Rightarrow eigenvalue problem

$$\Psi'' = (\sigma^2 + V_Z[\beta, \theta_{\mathsf{w}}, n, \nu, \rho])\Psi,$$

 $\Rightarrow 2n$ bound states labeled by $\nu = 1, 2, \dots 2n$

$$\Psi \sim \exp(-m_{\sigma}\rho), \quad m_{\sigma}^2 = m_{w}^2 + \sigma^2$$

⇒ small deformations of Z strings by a spacelike ($\sigma^2 > 0$), timelke ($-m_w^2 < \sigma^2 < 0$), or isotropic ($\sigma^2 = 0$) current $\mathcal{I}_\alpha \sim \sigma_\alpha$

 $\sigma^2(n,\nu)$ -eigenvalue ($\beta=2$)

 $\sigma^2 = 0 \exists$ only for special values of β, θ_w, n, ν

Chiral solutions

Generic $q = f_2(0)$

Generic superconducting vortices

are globally regular, with a regular vortex core condaining massive W-condensate that creates a current. The current produces a Biot-Savart field outside the core.

- Exist for any value of m_h and for any $\sin^2 \theta_w \in [0, 1]$
- Comprise a four parameter family labeled by q, n, ν, σ₀. Related to these are the current, momentum, angular momentum, magnetic and Z fluxes of the vortex.
- When current tends to zero, they reduce to Z-strings.

Current $I/I_0 = \mathcal{I}$

 $\mathbf{I}_0 = \mathbf{c} \Phi_0 = \mathbf{c} \times 52.68 \times 10^9 \text{ Volts} = 1.75 \times 10^9 \text{ Amperes.}$

 $\sigma^2(\mathcal{I}), \gamma(\mathcal{I})$

$$\tan \gamma = \frac{f_2(\infty)}{f_1(\infty)}$$

Fluxes

The electromagnetic flux Ψ_F/ν and Z-flux $\Psi_Z/(4\pi n)$ against the current for the vortices with $\beta = 2$, $\sin^2 \theta_w = 0.23$.

Large current limit $\sigma \to 0$

profiles for $\beta = 2$, $g'^2 = 0.23$, $n = \nu = 1$ and $\sigma = 0.008$.

Central condensate region, $\rho < 4/\lambda$

 $B_{\mu} \approx \text{const.}, \Phi \approx 0 \Rightarrow \text{pure Yang-Mills} \quad \mathcal{L} = -\frac{1}{4q^2} W^a_{\mu\nu} W^{a\mu\nu}$

Yang-Mills string: $\tau^a W^a_{\nu} dx^{\mu} = \tau^1 \lambda U_1(\lambda \rho) dz + \tau^3 V_3(\lambda \rho) d\varphi.$

$$x\left(\frac{V_3'}{x}\right)' = U_1^2 V_3, \qquad \frac{1}{x}(xU_1')' = \frac{V_3^2}{x^2} U_1 \leftarrow \text{current density}$$

External region, $\rho > 4/\lambda$

$$A_{\mu} = \frac{g}{g'} B_{\mu} - \frac{g'}{g} W_{\mu}^{1}, \qquad Z_{\mu} = B_{\mu} + W_{\mu}^{1}, \quad \phi_{1} \approx \phi_{2} \equiv \phi$$

$$\mathcal{L} = -\frac{1}{4} (F_{\mu\nu})^{2} - \frac{1}{4} (Z_{\mu\nu})^{2} + |(\partial_{\mu} - \frac{i}{2} Z_{\mu})\phi|^{2} - \frac{\beta}{8} (|\phi|^{2} - 1)^{2}$$

$$A = (a + b \ln \rho) dz + g^{2} d\varphi, \quad Z = U(\rho) dz + V(\rho) d\varphi, \quad \phi = f(\rho)$$

$$\frac{1}{\rho} (\rho f')' = \left(U^{2} + \frac{V^{2}}{\rho^{2}} + \frac{\beta}{4} (f^{2} - 1) \right) f$$

$$\rho \left(\frac{V'}{\rho} \right)' = \frac{1}{2} f^{2} V$$

$$\frac{1}{\rho} (\rho U')' = \frac{1}{2} f^{2} U$$

Matching at $\rho = 4/\lambda$

Inner structure of large $\mathcal I$ vortex

supercritical field in condensate core+'pulp' \Rightarrow SU(2)×U(1) critical field in the 'crust' \Rightarrow non-trivial Higgs undercritical field in Biot-Savart region \Rightarrow Higgs vacuum

Vortex cross section

No need of GUT-originating Witten's string

Semilocal limit $\theta_{w} = \pi/2$

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi - \frac{\beta}{8} \left(\Phi^{\dagger}\Phi - 1\right)^2,$$

only massive fields \Rightarrow no longrange modes \Rightarrow finite energy, current is global

Superconducting non-Abelian strings in Weinberg-Salam theory –electroweak thunderbolts – p.33/41

Isospin limit $\theta_{w} = 0$

$$\mathcal{L} = -\frac{1}{4} \mathbf{W}^a_{\mu\nu} \mathbf{W}^{a\mu\nu} + (D_\mu \Phi)^{\dagger} D^\mu \Phi - \frac{\beta}{8} \left(\Phi^{\dagger} \Phi - 1 \right)^2$$

Chiral solutions, $\sigma^2 = 0$. Non-generic !

 $\Rightarrow \sigma_0 = \pm \sigma_3$ in particular $\sigma_{\alpha} = 0 \Rightarrow$ finite energy.

chiral versus Z string for n = 4, $\nu = 7$, $\beta = 2$, $g'^2 = 0.23$.

Stability in the semilocal limit, $\theta_w = \pi/2$

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi - \frac{\beta}{8} \left(\Phi^{\dagger} \Phi - 1 \right)^{2},$$

$$\Phi \to \Phi + \delta \Phi, \qquad B_{\mu} \to B_{\mu} + \delta B_{\mu}, \qquad \delta B_{0} = 0$$

$$\delta \Phi_{1} = e^{iN\varphi} \delta \tilde{\Phi}_{1}, \qquad \delta \Phi_{2} = e^{i\sigma z} \delta \tilde{\Phi}_{2},$$

$$\begin{split} \delta \tilde{\Phi}_{a} &= \sum_{\omega,\kappa,m} \cos(\omega t + m\varphi + \kappa z) \left(\phi_{a}^{\omega,\kappa,m}(\rho) + i\psi_{a}^{\omega,\kappa,m}(\rho) \right) \\ &+ \sin(\omega t + m\varphi + \kappa z) \left(\pi_{a}^{\omega,\kappa,m}(\rho) + i\nu_{a}^{\omega,\kappa,m}(\rho) \right) , \\ \delta A_{\mu} &= \sum_{\omega,\kappa,m} \xi_{\mu}^{\omega,\kappa,m}(\rho) \cos(\omega t + m\varphi + \kappa z) \\ &+ \chi_{\mu}^{\omega,\kappa,m}(\rho) \sin(\omega t + m\varphi + \kappa z) \end{split}$$

Perturbation equations

Variables separate to give a Schrodinger system

$$-\Psi'' + \mathbf{U}_{m,\kappa}\Psi = \omega^2 \Psi \,,$$

 $\Psi(\rho)$ is a 6-component vector, $\mathbf{U}_{m,\kappa}$ is a potential matrix determined by the background fields.

solutions with $\omega^2 < 0 \Rightarrow$ unstable modes

\exists only one negative mode

proportional to $\exp\{ikz\}$

where $k < \sigma \Rightarrow$

$$\lambda > \lambda_{\min}(\mathcal{I}) = \frac{2\pi}{\sigma}$$

 \Rightarrow one can eliminate the instability by imposing periodic boundary conditions with period $L < \lambda_{\min}(\mathcal{I})!$ This does not work if $\mathcal{I} = 0$ due to the homogeneous mode

Conclusion of the stability analysis

- Short vortex segments stable no room to accommodate inhomogeneous unstable modes.
- The length of stable segments increases with current and tends to infinity for $\mathcal{I} \to \infty$.
- Hydrodynamical analogy: Plateau-Rayleigh instability of a water jet: if the jet is long enough, ripples appear.
- It seems that the same conclusions apply for any θ_w .

Perhaps small vortex loops are stable ?

Electroweak thunderbolts

Z strings are non-topological – can exist as finite segments. Current carrying vortices can perhaps also exist as finite segments joining electrically polarized regions of space – 'thunderbolts between clouds'.

Summary

- New type of solutions describing vortices carrying a constant electric current is constructed in the electroweak sector of Standard Model.
- The vortex current can typically attain billions of Amperes, and there seem to be no upper bound for it.
- For large currents the electroweak gauge symmetry is completely restored inside the vortex by a very strong magnetic field.
- Short vortex segments whose length increases with current are stable. Could perhaps transfer charge between different regions of space (? thunderbolts?)
- Loops made of stable segments could perhaps be stable (?? stable electroweak solitons ??)