# $\mathcal{N}=6$ CHERN-SIMONS THEORIES IN HARMONIC SUPERSPACE 

B.M. Zupnik<br>BLTP, JINR, Dubna

$\mathrm{D}=3$ Chern-Simons theory

$$
S_{C S}=\frac{k}{4 \pi} \int d^{3} x \varepsilon^{m n r} \operatorname{Tr}\left\{A_{m}\left(\partial_{n} A_{r}+\frac{i}{3}\left[A_{n}, A_{r}\right]\right)\right\}
$$

where $A_{m}$ is the three-dimensional gauge field. The classical CS solutions are pure gauge fields $F_{n r}(A)=0$.

## $\mathrm{D}=3$ BF-theory

$$
S_{B F}=\int d^{3} x \varepsilon^{m n r} \operatorname{Tr}\left\{B_{m} F_{n r}(A)\right\}
$$

This model has the additional noncompact Abelian btransformations

$$
\delta B_{m}=\partial_{m} b+i\left[A_{m}, b\right]+i\left[B_{m}, a\right], \quad \delta A_{m}=\partial_{m} a+i\left[A_{m}, a\right]
$$

$D=3, \mathcal{N}=1$ supersymmetric CS theory in the superspace $z=\left(x^{m}, \theta^{\alpha}\right)$ is described by the spinor gauge superfield $A_{\alpha}(z)$ and the superfield strength $W_{\alpha}[\mathbf{W}$. Siegel (1979), J. Schonfeld (1981)].
$D=3, \mathcal{N}=2$ supersymmetric CS theory in the superspace $z=\left(x^{m}, \theta^{\alpha}, \bar{\theta}^{\alpha}\right)$ is described by the prepotential $V$ and the pseudoscalar superfield strength $W$ [B. Zupnik, D. Pak (1988)].

$$
S_{C S}=\int d^{3} x d^{4} \theta V W=\int d^{3} x d^{4} \theta V D^{\alpha} \bar{D}_{\alpha} V
$$

$D=3, \mathcal{N}=3$ general superspace: $x^{m}, \theta_{(i k)}^{\alpha}, \quad i, k=1,2$ $D=3, \mathcal{N}=3$ harmonic superspace uses the $S U(2) / U(1)$ harmonics $u_{i}^{ \pm}$

$$
\theta_{\alpha}^{++}=\theta_{\alpha}^{i k} u_{i}^{+} u_{k}^{+}, \quad \theta_{\alpha}^{0}=\theta_{\alpha}^{i k} u_{i}^{+} u_{k}^{-}
$$

$\mathcal{N}=3$ gauge prepotential $V^{++}$and superfield strength $W^{++}$live in the same analytic superspace [D. Khetselius, B. Zupnik (1988)]

$$
\begin{gathered}
S_{C S}=\int d^{3} x_{A} d \theta^{-4} d u V^{++} W^{++}=\int d^{3} x d^{6} \theta d u V^{++} V^{--} \\
D^{++} V^{--}=D^{--} V^{++}, \quad W^{++}=-\frac{1}{4} D^{++\alpha} D_{\alpha}^{++} V^{--}
\end{gathered}
$$

The $\mathcal{N}=6$ ABJM model was reformulated in this $\mathcal{N}=3$ superfield formalism [J. Buchbinder, E. Ivanov, O. Lechtenfeld, N. Pletnev, I. Samsonov, B. Zupnik (2008)]. This formalism was presented in the talk of I. Samsonov on this conference.

The action of the $\mathcal{N}=3$ abelian BF theory can be constructed as the difference of two Chern-Simons actions

$$
\begin{gathered}
\frac{1}{4} \int d \zeta^{-4} d u\left[\left(V^{++}+A^{++}\right)\left(W_{V}^{++}+W_{A}^{++}\right)-\left(V^{++}+A^{++}\right)\left(W_{V}^{++}+W_{A}^{++}\right)\right] \\
=\frac{1}{2} \int d \zeta^{-4}\left[V^{++} W_{A}^{++}+A^{++} W_{V}^{++}\right]
\end{gathered}
$$

where the prepotentials $V^{++}$and $A^{++}$have opposite parities. The fourth supersymmetry transformations of these prepotentials are

$$
\delta_{4} V^{++}=\epsilon^{\alpha} D_{\alpha}^{0} V^{++}, \quad \delta_{4} A^{++}=-\epsilon^{\alpha} D_{\alpha}^{0} A^{++}
$$

This model can be also constructed in the $\mathcal{N}=4$ superspace.
$D=3, \mathcal{N}=4$ general superspace $x^{m}, \theta_{i a}^{\alpha}, \quad i, k=1,2, \quad a=$ 1,2 is covariant with respect to the group $S U_{L}(2) \times$ $S U_{R}(2)$. We introduce left harmonics $u_{k}^{ \pm}$and right harmonics $v_{a}^{( \pm)}$. The mirror map interchanges indices of two groups

$$
\mathcal{M}: \quad S U_{L}(2) \leftrightarrow S U_{R}(2), \quad u_{k}^{ \pm} \leftrightarrow v_{a}^{( \pm)}, \quad \theta_{12}^{\alpha} \leftrightarrow \theta_{21}^{\alpha}
$$

The $\mathcal{N}=4$ left harmonic superspace uses the harmonics $u_{k}^{ \pm}$and the analytic projection of the Grassmann coordinates $\theta_{a}^{+\alpha}=-u^{+k} \theta_{k a}^{\alpha}$. It is analogous to the $D=4, \mathcal{N}=2$ harmonic superspace [A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev (1984)]. The left gauge prepotential $V^{++}$and its superfield strength

$$
W^{a b}=-\frac{1}{4} D^{+a \alpha} D_{\alpha}^{+b} V^{--}
$$

are defined in different superspaces. The superfield $W=\sqrt{W^{a b} W_{a b}}$ plays the role of the superconformal dilaton. The constants $\varphi$ and $C^{a} b$ break down spontaneously the superconformal symmetry in the representation $W^{a b}=\varphi\left(C^{a b}+w^{a b}\right)$. We can construct the superconformal generalization of the $\mathcal{N}=4$ superfield abelian gauge action [B. Zupnik (1999)]

$$
S_{W}^{0}=\int d^{3} x d^{8} \theta d u W^{-1} V^{++} V^{--}
$$

The mirror $\mathcal{N}=4$ right harmonic superspace uses the harmonics $v_{a}^{( \pm)}$and the corresponding projection of the Grassmann coordinates $\theta_{k}^{(+) \alpha}=-v^{(+) a} \theta_{k a}^{\alpha}$. The mirror abelian prepotential $A^{(++)}$has the left analytic superfield strength

$$
L^{++}(A)=-\frac{1}{4} u_{k}^{+} u_{l}^{+} D^{(+) k \alpha} D_{\alpha}^{(+) l} A^{(--)}, \quad D^{++} L^{++}=0
$$

$$
D^{(++)} A^{(--)}=D^{(--)} A^{(++)}, \quad D_{\alpha}^{(+) l} A^{(++)}=0
$$

The action of the $\mathcal{N}=4$ superfield abelian BF theory

$$
S_{B F}=\beta \int d \zeta_{L}^{-4} d u V^{++} L^{++}(A)
$$

In components, it connects fields of the mirror gauge multiplets [R. Brooks, S.J. Gates (1994)]

$$
S_{B F}=\beta \int d^{3} x\left(2 \varepsilon^{m n p} A_{m} \partial_{n} B_{p}-\frac{1}{2} \phi^{a b} Y_{a b}-\frac{1}{2} \Lambda^{i k} X_{i k}+2 \rho_{\alpha}^{k a} \lambda_{k a}^{\alpha}\right)
$$

This term yields the non-trivial interaction of the left and right abelian gauge multiplets in the $\mathcal{M}$-invariant action

$$
S_{W}^{0}+\mathcal{M} S_{W}^{0}+S_{B F}
$$

which describes the interactions of the topologically massive gauge fields with the scalar and fermion fields. The mixed scalar potential term is

$$
P=-\frac{\sqrt{2} \beta^{2}}{4} \int d^{3} x\left[\phi^{a b} \phi_{a b} \sqrt{\Lambda^{k l} \Lambda_{k l}}+\Lambda^{k l} \Lambda_{k l} \sqrt{\phi^{a b} \phi_{a b}}\right]
$$

We can add interactions of the left hypermultiplet $q_{a}^{+}$ and right hypermultiplet $Q_{k}^{(+)}=\mathcal{M} q_{a}^{+}$with the corresponding gauge multiplets

$$
\begin{gathered}
S(q, V)=\int d \zeta_{L}^{-4} d u q_{a}^{+}\left[D^{++} \delta_{b}^{a}+\left(\tau_{3}\right)_{b}^{a} V^{++}\right] q^{+b} \\
S(Q, A)=\mathcal{M} S(q, V)=\int d \zeta_{R}^{(-4)} d v Q_{k}^{(+)}\left[D^{(++)} \delta_{l}^{k}+\left(\tau_{3}\right)_{l}^{k} A^{(++)}\right] Q^{(+) l}
\end{gathered}
$$

$\mathcal{N}=6$ general superspace $z=\left(x^{m}, \theta_{a}^{\alpha}\right)$ where $a=1, \ldots 6$ is the 6 -vector index of the group $S O(6)$. We analyze the $\mathrm{CS}_{3}^{6}$ theory using the $S O(6) / U(3)$ harmonics [P.S. Howe, M.I. Leeming (1994)]

$$
U=\left(U_{a}^{+k}, U_{k a}^{-}\right)
$$

where $a$ is the $S O(6)$ vector index,,+- are the $U(1)$ charges, and $k=1,2,3$ are indices of the spinor representations of $S U(3)$. The basic relations for these harmonics are

$$
\begin{aligned}
& U_{a}^{+k} U_{a}^{+l}=0, \quad U_{a}^{+k} U_{l a}^{-}=\delta_{l}^{k}, \quad U_{k a}^{-} U_{l a}^{-}=0, \\
& U_{a}^{+k} U_{k b}^{-}+U_{k a}^{-} U_{b}^{+k}=\delta_{a b} .
\end{aligned}
$$

We treat the $S O(6) / U(3)$ harmonics as real with respect to the special $\sim$ conjugation.

The $S O(6)$ invariant harmonic derivatives are

$$
\begin{aligned}
& \partial_{k}^{++}=\varepsilon_{k j l} U_{a}^{+j} \frac{\partial}{\partial U_{l a}^{-}}, \quad \partial^{--k}=\varepsilon^{k j l} U_{j a}^{-} \frac{\partial}{\partial U_{a}^{+l}}, \\
& \partial_{l}^{k}=U_{a}^{+k} \frac{\partial}{\partial U_{a}^{+l}}-U_{l a}^{-} \frac{\partial}{\partial U_{k a}^{-}}-\frac{1}{3} \delta_{l}^{k}\left(U_{a}^{+j} \frac{\partial}{\partial U_{a}^{+j}}-U_{j a}^{-} \frac{\partial}{\partial U_{j a}^{-}}\right), \\
& \partial^{0}=U_{a}^{+j} \frac{\partial}{\partial U_{a}^{+j}}-U_{j a}^{-} \frac{\partial}{\partial U_{j a}^{-}} .
\end{aligned}
$$

In the analytic basis $(A B)$ of the $S O(6) / U(3)$ harmonic superspace, we introduce harmonic projections of the $N=6$ spinor coordinates

$$
\theta^{+k \alpha}=\theta_{a}^{\alpha} U_{a}^{+k}, \quad \theta_{k}^{-\alpha}=\theta_{a}^{\alpha} U_{k a}^{-}
$$

and the corresponding analytic vector coordinates

$$
y^{m}=x^{m}+i\left(\theta_{a} \gamma^{m} \theta_{b}\right) U_{a}^{+k} U_{k b}^{-}
$$

where $\gamma_{m}$ are the 3D gamma-matrices. The analytic integral measure is pure imaginary and dimensionless

$$
d \mu^{(-6)}=d U d^{3} y d \theta^{(-6)}, \quad \int d \theta^{(-6)}\left(\theta^{+1}\right)^{2}\left(\theta^{+2}\right)^{2}\left(\theta^{+3}\right)^{2}=1
$$

This integral measure is odd with respect to the P parity transformation

$$
\left(y^{0}, y^{1}, y^{2}\right) \rightarrow\left(y^{0},-y^{1}, y^{2}\right), \quad \theta^{+k \alpha} \rightarrow\left(\gamma_{1}\right)_{\beta}^{\alpha} \theta^{+k \beta}
$$

The analytic-superspace representation of the harmonic derivatives have the following form:

$$
\mathcal{D}_{k}^{++}=\partial_{k}^{++}-i \varepsilon_{k j l}\left(\theta^{+j} \gamma^{m} \theta^{+l}\right) \partial_{m}-\varepsilon_{k j l} \theta^{+j \alpha} \partial_{\alpha}^{+l} .
$$

where

$$
\partial_{k \alpha}^{-}=\frac{\partial}{\partial \theta^{+k \alpha}}, \quad \partial_{\alpha}^{+k}=\frac{\partial}{\partial \theta_{k}^{-\alpha}} .
$$

The AB-representation of the spinor derivatives is

$$
D_{k \alpha}^{-}=\partial_{k \alpha}^{-}-2 i \theta_{k}^{-\beta}\left(\gamma^{m}\right)_{\alpha \beta} \partial_{m}, \quad D_{\alpha}^{+k}=\partial_{\alpha}^{+k} .
$$

The analytic superfield gauge parameters satisfy the conditions

$$
D_{\alpha}^{+k} \Lambda(\zeta)=0, \quad \mathcal{D}_{l}^{k} \Lambda=\mathcal{D}^{0} \Lambda=0
$$

In the gauge group $S U(n)$, we use the following covariant derivatives and the analytic prepotentials:

$$
\begin{aligned}
& \nabla_{k}^{++}=\mathcal{D}_{k}^{++}+V_{k}^{++}(\zeta), \quad\left(V_{k}^{++}\right)^{\dagger}=-V_{k}^{++}, \\
& \mathcal{D}_{l}^{k} V_{j}^{++}=\frac{1}{3} \delta_{l}^{k} V_{j}^{++}-\delta_{j}^{k} V_{l}^{++}, \quad \mathcal{D}^{0} V_{k}^{++}=2 V_{k}^{++}
\end{aligned}
$$

The superfield action of the $N=6$ CS theory has the following form in our notation:

$$
S_{C S}=\frac{i}{12} \int d \mu^{(-6)} \varepsilon^{k l j} \operatorname{Tr}\left\{V_{k}^{++} \mathcal{D}_{l}^{++} V_{j}^{++}+\frac{1}{3} V_{k}^{++}\left[V_{l}^{++}, V_{j}^{++}\right]\right\}
$$

The corresponding classical equations of motion $F_{k l}^{(+4)}=$ 0 have the pure gauge solutions only.

The $N=6 B F$ theory contains interactions of $V_{k}^{++}$ with the second analytic gauge superfield $B_{k}^{++}$

$$
\delta_{\Lambda} B_{k}^{++}=\left[B_{k}^{++}, \Lambda\right], \quad \delta_{\Sigma} B_{k}^{++}=\mathcal{D}_{k}^{++} \Sigma+\left[V_{k}^{++}, \Sigma\right]
$$

where $\Sigma$ is the independent superfield matrix parameter describing Abelian translations in the group space.

The corresponding superfield action has the following form:

$$
\begin{equation*}
S_{B F}=i \int d \mu^{(-6)} \varepsilon^{k l j} \operatorname{Tr}\left\{\frac{1}{2} B_{k}^{++} F_{l j}^{(+4)}(V)\right\} \tag{0.1}
\end{equation*}
$$

The $\mathbf{B F}$-action preserves the $\mathbf{P}$ parity if $B_{k}^{++}$is the P -odd superfield.

The classical equations of the $B F$ theory are

$$
F_{l j}^{(+4)}(V)=0, \quad \varepsilon^{k l j} \nabla_{l}^{++} B_{j}^{++}=0
$$

They have the pure gauge solutions for both superfields.

The superconformal transformations $\mathbf{S C}_{3}^{6}$ of the $N=6$ analytic coordinates

$$
\begin{aligned}
& \delta_{s c} y^{m}=c^{m}+2 l y^{m}+\varepsilon^{m n r} L_{n} y_{r}+\left(y^{n} k_{n}\right) y^{m}-\frac{1}{2} y^{2} k^{m}-2 i\left(\epsilon_{k}^{-} \gamma^{m} \theta^{+k}\right) \\
& -i \omega_{a b} U_{k a}^{-} U_{l b}^{-}\left(\theta^{+k} \gamma^{m} \theta^{+l}\right)+i y^{m} \theta^{+k \alpha} \eta_{k \alpha}^{-}+i \varepsilon^{m n r} y_{n}\left(\theta^{+k} \gamma_{r} \eta_{k}^{-}\right) \\
& \quad \delta_{c s} \theta^{+k \alpha}=\epsilon^{+k \alpha}+L_{\beta}^{\alpha} \theta^{+k \beta}+l \theta^{+k \alpha}-\omega_{b c} U_{b}^{+k} U_{l c}^{-} \theta^{+l \alpha} \\
& \quad+\frac{1}{2} y^{\alpha \beta} \theta^{+k \gamma} k_{\beta \gamma}+\frac{1}{2} y^{\alpha \beta} \eta_{\beta}^{+k}-i \theta^{+l \alpha} \theta^{+k \beta} \eta_{l \beta}^{-} \\
& \quad \delta_{s c} U_{a}^{+k}=\varepsilon^{k l j} \lambda_{l}^{++} U_{j a}^{-}, \quad \delta_{s c} U_{k a}^{-}=0 \\
& \lambda_{l}^{++}=\varepsilon_{l j n}\left[\frac{i}{2} k_{\alpha \beta} \theta^{+j \alpha} \theta^{+n \beta}+i \theta^{+j \alpha} \eta_{\alpha}^{+n}+\frac{1}{2} \omega_{c b} U_{c}^{+j} U_{b}^{+n}\right]
\end{aligned}
$$

where $c^{m}, L^{m}, l$ and $k^{m}$ are parameters of the 3D conformal group, $\omega_{a b}$ are the $\operatorname{SO}(6)$ parameters, and the harmonic projections of the odd parameters $\epsilon_{a}^{\alpha}$ and $\eta_{a}^{\alpha}$ are used
$\epsilon^{+k \alpha}=\epsilon_{a}^{\alpha} U_{a}^{+k}, \quad \epsilon_{k}^{-\alpha}=\epsilon_{a}^{\alpha} U_{k a}^{-}, \quad \eta^{+k \alpha}=\eta_{a}^{\alpha} U_{a}^{+k}, \quad \eta_{k}^{-\alpha}=\eta_{a}^{\alpha} U_{k a}^{-}$.
The analytic integral measure is invariant with respect to these transformations.

The $\mathrm{SC}_{3}^{6}$ transformations of the harmonic derivatives are

$$
\delta_{s c} \mathcal{D}_{k}^{++}=\lambda_{l}^{++} \mathcal{D}_{k}^{l}-\frac{2}{3} \lambda_{k}^{++} \mathcal{D}^{0}, \quad \delta_{s c} \mathcal{D}_{l}^{k}=\delta_{s c} \mathcal{D}^{0}=0
$$

The superfield CS and BF actions are invariant with respect to the superconformal transformations

$$
\delta_{s c} V_{k}^{++}=0, \quad \delta_{s c} F_{k l}^{(+4)}=0, \quad \delta_{s c} B_{k}^{++}=0 .
$$

The Grassmann decompositions of the gauge BFsuperfield $V_{k}^{++}$contain the vector gauge field plus an infinite number of auxiliary fields

$$
V_{k}^{++}=\varepsilon_{k j l}\left(\theta^{+j} \gamma^{m} \theta^{+l}\right) A_{m}+i \Theta^{(+3) \alpha \beta \gamma} U_{k a}^{-} \Psi_{\alpha \beta \gamma}^{a}+i \Theta_{k}^{(+3) l \alpha} U_{l a}^{-} \Psi_{\alpha}^{a}+\ldots
$$

where $\Psi_{\alpha \beta \gamma}^{a}(x)$ is the unusual auxiliary field.
We do not know how to describe interaction of this CS prepotential with the $\mathcal{N}=6$ matter superfields.

The equivalent formalism of the $\mathcal{N}=6$ CS theory can be formulated in the $\mathcal{N}=5$ harmonic superspace [Zupnik (2007)]. We used the $S O(5) / U(2)$ harmonics

$$
U_{a}^{K}=\left(U_{a}^{+i}, U_{a}^{0}, U_{i a}^{-}\right)=\left(U_{a}^{+1}, U_{a}^{+2}, U_{a}^{0}, U_{1 a}^{-}, U_{2 a}^{-}\right)
$$

where $a=1, \ldots 5$ is the vector index of the group $S O(5)$, $i=1,2$ is the spinor index of the group $S U(2)$, and $U(1)$-charges are denoted by symbols,,+- 0 . The basic relations for these harmonics are

$$
\begin{aligned}
U_{a}^{+i} U_{a}^{+k}=U_{a}^{+i} U_{a}^{0} & =0, \quad U_{i a}^{-} U_{k a}^{-}=U_{i a}^{-} U_{a}^{0}=0, \\
U_{a}^{+i} U_{k a}^{-} & =\delta_{k}^{i}, \quad U_{a}^{0} U_{a}^{0}=1
\end{aligned}
$$

We consider the $S O(5)$ invariant harmonic derivatives with nonzero $U(1)$ charges

$$
\begin{gathered}
\partial^{+i}=U_{a}^{+i} \frac{\partial}{\partial U_{a}^{0}}-U_{a}^{0} \frac{\partial}{\partial U_{i a}^{-}}, \quad \partial^{+i} U_{a}^{0}=U_{a}^{+i}, \quad \partial^{+i} U_{k a}^{-}=-\delta_{k}^{i} U_{a}^{0} \\
\partial^{++}=U_{i a}^{+} \frac{\partial}{\partial U_{i a}^{-}}, \quad\left[\partial^{+i}, \partial^{+k}\right]=\varepsilon^{k i} \partial^{++}, \quad \partial^{+i} \partial_{i}^{+}=\partial^{++}
\end{gathered}
$$

The $S O(5) / U(2)$ harmonics allow constructing projections of the spinor coordinates and the partial spinor derivatives

$$
\theta^{+i \alpha}=U_{a}^{+i} \theta_{a}^{\alpha}, \quad \theta^{0 \alpha}=U_{a}^{0} \theta_{a}^{\alpha}, \quad \theta_{i}^{-\alpha}=U_{i a}^{-} \theta_{a}^{\alpha}
$$

We use the following representation of the vector coordinate:

$$
x_{A}^{m}=x^{m}+i\left(\theta^{+k} \gamma^{m} \theta_{k}^{-}\right)
$$

and the harmonic derivatives in the $A B$ representation:

$$
\mathcal{D}^{+k}=\partial^{+k}-i\left(\theta^{+k} \gamma^{m} \theta^{0}\right) \partial_{m}+\theta^{+k \alpha} \partial_{\alpha}^{0}-\theta^{0 \alpha} \partial_{\alpha}^{+k},
$$

$$
\mathcal{D}^{++}=\partial^{++}+i\left(\theta^{+k} \gamma^{m} \theta_{k}^{+}\right) \partial_{m}+\theta_{k}^{+\alpha} \partial_{\alpha}^{+k}
$$

The integration measure in the analytic superspace $d \mu^{(-4)}$ has the dimension zero

$$
d \mu^{(-4)}=d U d^{3} x_{A}\left(\partial_{\alpha}^{0}\right)^{2}\left(\partial_{i \alpha}^{-}\right)^{4}=d U d^{3} x_{A} d \theta^{(-4)}
$$

The gauge superfields (prepotentials) $V^{+k}(\zeta)$ and $V^{++}(\zeta)$ in the harmonic $S O(5) / U(2)$ superspace satisfy the Grassmann analyticity and $U(2)$-covariance conditions
$D_{\alpha}^{+k} V^{+k}=D_{\alpha}^{+k} V^{++}=0, \quad \mathcal{D}_{j}^{i} V^{+k}=\delta_{j}^{k} V^{+i}, \quad \mathcal{D}_{j}^{i} V^{++}=\delta_{j}^{i} V^{++}$
We treat these prepotentials as connections in the covariant gauge derivatives

$$
\nabla^{+i}=\mathcal{D}^{+i}+V^{+i}, \quad \nabla^{++}=\mathcal{D}^{++}+V^{++}
$$

The superfield action in the analytic $S O(5) / U(2)$ superspace is defined on three prepotentials $V^{+k}$ and $V^{++}$

$$
\begin{gathered}
S_{C S}=\frac{i k}{12 \pi} \int d \mu^{(-4)} \operatorname{Tr}\left\{V^{+j} \mathcal{D}^{++} V_{j}^{+}+2 V^{++} \mathcal{D}_{j}^{+} V^{+j}\right. \\
\left.+\left(V^{++}\right)^{2}+V^{++}\left[V_{j}^{+}, V^{+j}\right]\right\}
\end{gathered}
$$

The transformation of the sixth supersymmetry can be defined on the analytic $\mathcal{N}=5$ superfields

$$
\delta_{6} V^{++}=\epsilon_{6}^{\alpha} D_{\alpha}^{0} V^{++}, \quad \delta_{6} V^{+k}=\epsilon_{6}^{\alpha} D_{\alpha}^{0} V^{+k}
$$

