Направления исследований

image

Механизмы пространственно-временной самоорганизации в химических системах

Явления самоорганизации, т.е. перехода системы в иное, как правило, более упорядоченное состояние, наблюдаются в системах различной природы: физических химических, биологических. Существенным свойством таких систем является то, что они открыты и далеки от состояния термодинамического равновесия. Именно это и является предпосылкой возникновения в них различных нетривиальных пространственно-временных режимов. Система может самоорганизоваться как во времени: например, она переходит из стационарного в колебательный режим, так и в пространстве: в частности, она может перейти из пространственно-однородного в неоднородное устойчивое состояние, или в ней могут возникнуть различные автоволновые режимы. Зачастую возникновение динамического хаоса также относят к явлениям самоорганизации.

По существу, вся деятельность нашей лаборатории лежит в русле изучений самоорганизации в различных системах. Вместе с тем, следует особо выделить направление, связанное с изучением пространственно-временной самоорганизации в химических системах. Это обусловлено тем, что, с одной стороны, к настоящему времени имеется ряд химических реакций, демонстрирующих в экспериментах сложное пространственно-временное поведение (ярким примером является реакция Белоусова- Жаботинского), а с другой, в силу их относительной простоты (по сравнению с биологическими системами) они допускают корректное изучение соответствующих механизмов самоорганизации с помощью математических моделей.

Конкретные задачи, которые решаются в рамках данного направления, – это изучение механизмов возникновения сложных пространственно-временных режимов, наблюдаемых в экспериментах с реакцией Белоусова-Жаботинского, протекающей, в частности, в водно-масляной микроэмульсии, а также механизмов возникновения структур на движущемся фронте реакции, например, на фронте волны горения.

image

Динамика ансамблей связанных осцилляторов

image

Моделирование роста опухоли

image
image
image

Исследование динамики и структуры волн горения

В течение более десяти лет мы активно занимаемся изучением нелинейно-волновых процессов, связанных с горением. Наши исследования направлены на анализ устойчивости, структуры и динамики ламинарных пламен в смесях и диффузионных пламен. Помимо этого мы обладаем большим опытом в изучении нелинейно-волновых явлений в активных средах и системах типа реакция-диффузия. По результатам нашей работы опубликовано более 50 статей в ведущих профильных изданиях.

Нами был впервые применен метод функции Эванса для анализа диффузионно-тепловой устойчивости перемешанных и диффузионных пламен. В частности, мы впервые исследовали устойчивость волн горения в моделях Зельдовича-Линяна и Зельдовича-Баренблатта с двухступенчатым цепным механизмом реакции, которые являются базовым фундаментальным представлением углеводородных пламен с цепным механизмом реакции. В пространстве параметров были найдены критические значения параметров для потери устойчивости, были установлены типы бифуркаций, приводящие к появлению сложных динамических режимов распространения волн горения, а также были исследованы свойства этих режимов. Проведен анализ сценариев гашения пламени. Было установлено, что существует три сценария гашения волн горения: стандартный, связанный с бифуркацией складки; случай, когда скорость пламени спадает непрерывным образом к нулю при конечных значениях параметров; динамический сценарий. Последний связан с рождением хаотического режима распространения пламени и кризисом странного аттрактора по сценарию переходного хаоса.

Позднее мы применили, полученные знания для анализа устойчивости богатых водород-воздушных пламен в рамках моделей с редуцированной и детальной кинетикой. Были получены новые результаты в области изучения критических явлений потери устойчивости и гашения волн дефлаграции в смесях с цепным кинетическим механизмом реакции и предложен новый метод верификации кинетических механизмов реакций горения в таких системах.

Основные направления текущих исследований включают:
-Исследование динамики и структуры волн горения и диффузионных пламен
-Разработка новых методов редукции и верификации кинетических механизмов
-Изучение процессов ингибирования и взаимодействия пламени со стенками
-Изучение распространения волн горения в композитных твердых энергетических материалах
-Исследования фундаментальных основ энергоэффективных технологий горения углеводородного топлива для практических приложений
-Исследование процессов горения в условиях микрогравитации и моделирование экспериментов
-Разработка низкоразмерных кинетических схем горения углеводородных топлив, изучение процессов ингибирования и динамики пламен в рамках данных моделей

image
Режимы частичной синхронизации, на базе супердиффузионно-сетевого представления.
image
Химерное состояние, соответсвующее преведенному выше рисунку.
image
Динамика развития химерных кольцевых структур в двухмерной системе.

Динамические режимы частичной синхронизации в нейросетях

Одним из новых направлений лаборатории является исследование динамических режимов, реализуемых в различных сетевых конфигурациях связанных нейронов.

Системы взаимодействующих осцилляторов различной природы (фазовые, динамические, химические, оптические и биологические) способны демонстрировать богатое разнообразие возможных динамических проявлений и свойств. Активное изучение динамики точечных элементов, а также сетевых структур, привело к открытию нового, во многом контринтуитивного динамического явления, которому вскоре было присвоено имя "химера”. Суть химерных структур заключается в согласованном сосуществовании порядка и хаоса (пространственной когерентности и инкогерентности) в системах идентичных осцилляторов и обуславливается согласованием внутренней динамики точечных подсистем с их формообразующей сетевой структурой. Не удивительно, что особое место химерные состояния заняли в задачах нейронаук. Сейчас, химеры отождествляются с эмпирически зафиксированными явлениями, возникающими в коре головного мозга и ответственны за процессы обработки информации, однополушарный сон (встречающийся и некоторых видов млекопитающих и птиц), а также некоторые патологические состояния.

В наших исследованиях, была предложена математическая модель, основанная на системе дробно-дифференциальных реакционно-супердиффузионных уравнений, подразумевающая возможность кластерной активации элементов. Произведено сравнение предложенной модели с локально-связанной системой, орагнизованной на основе классических реакционно-диффузионных уравнений. Более того, была продемонстрирована возможность построения сетевых структур с переменной и адаптивной формой соединений, основанных на вышеуказанном методе. Дальнейшее развитие и изучение предложенной модели привело к открытию химерных состояний в качестве одного из возможных ее динамических проявлений. Как и в большинстве нелинейных задач, были подробно проанализированы различные комбинации параметров, ответственные за динамические свойства. В частности, в пространстве показателей дробного оператора Лапласа (которые определяют сетевые свойства предложенной системы) были обнаружены области синхронизации, развитой инкогерентости, а также химерных состояний. Наконец, была продемонстрирована взаимосвязь между параметрами, ответственными за активацию точечных подсистем (нейронов) и параметров, характеризующих сетевые особенности их совокупностей (нейронных сетей), с точки зрения динамики химер и развития полной синхронизации и инкогерентости.

Нами были подробно проанализированы процессы синхронизации в нейронных сетях, конфигурация которых задана на основе супердиффзионного типа взаимодействия. Продемонстрированы сетевые конфигурации, слабая вариация которых приводит к существенному (неоднородный синхронизационный переход), а также к несущественному (однородный синхронизационный переход) изменению динамики системы.

Сотрудники

Волков Е.И. – д.ф.-м.н., главный научный сотрудник
Губернов В.В. – д.ф.-м.н., ведущий научный сотрудник
Колобов А.В. – к.ф.-м.н., старший научный сотрудник
Полежаев А.А. – д.ф.-м.н., главный научный сотрудник, заведующий Лабораторией.
Фатеев И.С. – младший научный сотрудник.
Якупов Э.О. – младший научный сотрудник.

О нас

В 1972 году в Отделе теоретической физики ФИАН был образован Сектор проблем теоретической биофизики по инициативе возглавившего его Д.С. Чернавского и при поддержке руководителя ОТФ академика В.Л. Гинзбурга. Поначалу Сектор занимался исследованиями биологических систем, в частности, проблемой возникновения биологических ритмов, исследованием возможных механизмов биологического формообразования, механизмом переноса заряда в биологических макромолекулах, а также механизмом функционирования ферментов. В дальнейшем круг решаемых задач значительно расширился и вышел за пределы исключительно биологических. Был получен ряд важных результатов как общего характера, касающихся фундаментальных механизмов пространственно-временной самоорганизации в открытых неравновесных системах, так и относящихся к конкретным системам различной природы: физическим, химическим, биологическим.

В 2015 году Сектор был преобразован в Лабораторию нелинейной динамики и теоретической биофизики. Основное направление работы – исследование механизмов формирования пространственно-временных структур в нелинейных диссипативных динамических системах. В рамках этого направления решаются фундаментальные проблемы самоорганизации, а также разрабатывается математические модели, описывающие конкретные системы. В частности, в последнее время объектами теоретического исследования Лаборатории были сложные пространственно-временные режимы, экспериментально наблюдаемые в химических реакциях, таких как реакция Белоусова-Жаботинского, а также на распространяющемся фронте горения, рост и прогрессия злокачественной опухоли с учётом её взаимодействия с окружающими тканями и с кровеносными сосудами, сложные автоколебательные режимы, в том числе динамический хаос, в ансамблях связанных осцилляторов.

Последние публикации

  1. Chimera states in a lattice of superdiffusively coupled neurons, Chaos, Solitons & Fractals. – 2024. – Т. 181. – С. 114722. DOI: 10.1016/j.chaos.2024.114722
  2. Synchronization transitions in a system of superdiffusively coupled neurons: Interplay of chimeras, solitary states, and phase waves, Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2024. – Т. 34. – №. 9. DOI: 10.1063/5.0226751
  3. Химерные состояния в системах супердиффузионно связанных нейронов, Известия Саратовского университета. Новая серия. Серия: Физика.– 2024. – Т. 24, – вып. 4. С. 328-339. DOI: 10.18500/1817-3020-2024-24-4-328-339, EDN: AKRGLX
  4. Evolutionary equations for the disturbed flame stabilised at the flat burner, S Minaev, E Sereshchenko, V Gubernov, Combustion Theory and Modelling, 1-18, 2024
  5. The performance of reaction mechanism in prediction of the characteristics of the diffusive-thermal oscillatory instability of methane–hydrogen–air burner-stabilized flames, A Moroshkina, E Yakupov, V Mislavskii, E Sereshchenko, A Polezhaev, S Minaev, V Gubernov, V Bykov, Acta Astronautica 215, 496-504, 2024
  6. Activation Energy of Hydrogen–Methane Mixtures, A Moroshkina, A Ponomareva, V Mislavskii, E Sereshchenko, V Gubernov, V. Bykov, S. Minaev, Fire 7 (2), 42, 2024
  7. Formation of spiral structures in rich-hydrogen air flames at elevated pressures, EO Yakupov, VV Gubernov, AA Polezhaev, International Journal of Hydrogen Energy 49, 784-795, 2024
  8. Relaxational oscillations of burner-stabilized premixed methane–air flames, D Volkov, A Moroshkina, V Mislavskii, E Sereshchenko, V Gubernov, V.Bykov, S.Minaev, Combustion and Flame 259, 113141, 2024
  9. Motion of magnetic motors across liquid–liquid interface, B Kichatov, A Korshunov, V Sudakov, V Gubernov, A Golubkov, A Kolobov, A Kiverin, L Chikishev, Journal of Colloid and Interface Science 652, 1456-1466, 2023
  10. Thermal Radiation Characteristics of Cylindrical Porous Burner with Axial Supply of Combustible Mixture, AD Moroshkina, AA Ponomareva, VV Mislavskii, EV Sereshchenko, VV Gubernov, SS Minaev, SN Tskhai, Bulletin of the Lebedev Physics Institute 50 (12), 515-520, 2023
  11. Determining the global activation energy of methane–air premixed flames, AD Moroshkina, AA Ponomareva, VV Mislavskii, EV Sereshchenko, VV Gubernov, VV Bykov, SS Minaev, Combustion Theory and Modelling 27 (7), 909-924, 2023
  12. Chimera states in a chain of superdiffusively coupled neurons, I.S. Fateev, A.A. Polezhaev, Chaos: An Interdisciplinary Journal of Nonlinear Science, v.33, 2023
  13. Influence of Heat Loss on the Chaotic Dynamics of Reaction Waves in the Model with Chain-Branching Reaction, M Kuznetsov, A Kolobov, V Gubernov, A Polezhaev, International Journal of Bifurcation and Chaos 33 (12), 2350137, 2023
  14. Dynamics of a chain of interacting neurons with nonlocal coupling, given by Laplace operator of fractional and variable orders with nonlinear Hindmarsh–Rose model functions, I.S. Fateev, A.A. Polezhaev, Bulletin of the Lebedev Physics Institute, v.50, p.243, 2023.
  15. Structure of Low Stretched Non-Premixed Counterflow Flames Stabilized in Planar Channel: Mass Spectrometric Study and Numerical Simulation, DA Knyazkov, TA Bolshova, RV Fursenko, ES Odintsov, AG Shmakov, VV Gubernov, SS Minaev, Combustion Science and Technology, 1-18, 2023
  16. Instability of Diverging Cylindrical Flame in Rotating Gas, SS Minaev, SN Mokrin, VV Gubernov, Bulletin of the Lebedev Physics Institute 50 (3), 91-96, 2023
  17. Experimental Study of Stretched Premixed Flame Stabilized in a Flat Channel near a Heated Wall, S Mokrin, V Gubernov, S Minaev, Metals 13 (2), 391, 2023
  18. Burner stabilized flames: Towards reliable experiments and modelling of transient combustion, A Moroshkina, V Mislavskii, B Kichatov, V Gubernov, V Bykov, U Maas, Fuel 332, 125754, 2023
  19. Pattern formation and collective effects during the process of the motion of magnetic nanomotors in narrow channels, B Kichatov, A Korshunov, V Sudakov, V Gubernov, A Golubkov, A Kiverin, Physical Chemistry Chemical Physics 25 (16), 11780-11788, 2023

СВЯЗЬ С НАМИ

Контакты

ФИАН, гл. здание, комн. 110-112
Ленинский проспект, д.53, 19991 Москва.
+7(499) 132-69-77, +7(499) 132-69-78
+7(499) 132-67-43

© 2016 ФИАН. ДИЗАЙН: AIKOR