Observational foundations of stellar dynamics

Eugene Vasiliev

Institute of Astronomy, Cambridge

45th Heidelberg Physics Graduate Days, October 2020

What is a star?

in stellar dynamics:

a point mass with additional properties

What is a star?

- position x
- velocity v
- mass m
- radius R = 0 [remember, it's a point mass!]
 ⇔ surface gravity log g
- ▶ [effective] temperature *T*
- ► luminosity L (more generally: broad-band spectrum luminosity in several photometric bands ⇒ magnitudes, colours)

▶ chemical composition: metallicity $Z = [Fe/H] \equiv \log_{10} (N_{Fe}/N_{H})_{star} / (N_{Fe}/N_{H})_{Sun}$, abundances of other elements [X/Fe]

Photometry

Photometry: dust extinction and reddening

[credit: ESA]

Photometry: dust extinction and reddening

Photometry: dust extinction and reddening

2MASS infrared survey (early 2000s)

[credit: NASA]

Astrometry

Astrometry

To measure the absolute proper motion of a star, one needs

- repeated observations of its location with a baseline of a few years;
- ▶ an absolute reference frame (e.g., tied to extragalactic objects).

Ground-based astrometry was used for decades, but is largely obsolete now after Gaia DR2, except highly extincted regions of the Galactic bulge – here ground-based near-IR observations are the only possibility (e.g., the VIRAC catalogue [Smith+ 2018], or as an extreme example, GRAVITY interferometry).

HST-based astrometry is superior for faint sources and crowded fields.

In both cases, extra steps are needed to determine *absolute* proper motions, though these are not always needed (e.g., relative motions are sufficient for studying the internal kinematics of star clusters).

Relative accuracy of proper motion $\mu = V_{\rm sky}/D$ is usually better than that of parallax $\varpi = 1/D$, and improves faster with time: error $\epsilon_{\mu} \propto T^{-1} N_{\rm obs}^{-1/2} \propto N_{\rm obs}^{-3/2}$, $\epsilon_{\varpi} \propto N_{\rm obs}^{-1/2}$.

How Gaia astrometry works

Berry Holl (2008)

90 -80 -60 -50 -30 -20 -10 -

Overview of Gaia mission

- Launched end 2013, duration up to 10 yr
- Scanning the entire sky every few weeks
- Astrometry for sources down to 21 mag
- Broad-band photometry/low-res spectra
- \blacktriangleright Line-of-sight velocity down to $\sim 15~\text{mag}_{(\text{end-of-mission})}$

Data release 2 (DR2, April 2018):

- based on 22 months of observations
- ▶ 1.3×10^9 stars with full astrometry
- ▶ 1.4×10^9 stars with two colours
- ▶ 7.2×10^6 stars with V_{los}
- 0.5 × 10⁶ variable stars
 Next comes EDR3 (Dec 2020): improving astrometric precision for *ω* by a factor 1.4, *μ* by 2.2

Spectroscopy

Two main tasks:

- measure line-of-sight velocities (often meaninglessly called "radial velocities") from Doppler shifts in spectral lines – e.g., Calcium triplet
- measure chemical abundances usually requires relatively high resolution and/or large large wavelength coverage

Data products:

 $v_{\rm los}$ (typical precision: from a fraction of km/s to tens of km/s); metallicity [Fe/H]; abundances of α -elements (C, O, Mg, Si, Ca); stellar parameters: effective temperature ($T_{\rm eff}$); surface gravity (log g); using stellar evolution models: ages and distances.

Multi-fiber and integral-field spectroscopic instruments

SDSS (1000 fibers per plate) [video]

MaNGA IFU

Integral-field spectroscopic instruments

Instrument	wavelength range	spectral res.	spatial res.	field of view	telescope
MUSE	4650 - 9300	pprox 3000	0."2	$60^{\prime\prime} imes 60^{\prime\prime}$	VLT 8 m
VIMOS	3600 - 10000	200 – 2500	0.‴67	$54^{\prime\prime} imes54^{\prime\prime}$	VLT 8 m
SAURON	4500 - 7000	pprox 1500	0."94	$41^{\prime\prime} imes 33^{\prime\prime}$	WHT 4.2 m
	3700 - 0600	5000 20.000	1."3	$11^{\prime\prime} imes 12^{\prime\prime}$	W/HT 4.2 m
VVLAVL	5700 - 9000	3000, 20000	2."6	$78^{\prime\prime} imes90^{\prime\prime}$	VVIII 4.2 III
SAMI	3700 – 9500	1700 - 13000	1."6	Ø15″	AAT 3.9 m
DensePak	3700 - 11000	5000 - 20 000	3."0	$30^{\prime\prime} imes 45^{\prime\prime}$	WIYN 3.8 m
SparsePak	5000 - 9000	5000 - 20 000	4."7	$72^{\prime\prime} imes 71.^{\prime\prime}3$	WIYN 3.8 m
SITELLE	3500 - 9000	1 - 10000	0."32	11' imes 11'	CFHT 3.6 m
PPak	4000 - 9000	pprox 8000	2.17	$74^{\prime\prime} imes 64^{\prime\prime}$	Calar Alto 3.5 m
VIRUS-P	3500 - 6800	pprox 850	4."3	1.7 imes1.7	McDonald 2.7 m
VIRUS-W	4340 - 6040	2500, 6800	3."2	$105^{\prime\prime} imes75^{\prime\prime}$	McDonald 2.7 m
MaNGA	3600 - 10 400	pprox 2000	2."0	12."5 - 32."5	APO 2.5 m
				[adap	ted from Zou+ 2019]
AO-assisted	IFU				
MUSE-AO	4650 - 9300	pprox 3000	0.″025	$7.^{\prime\prime}5 imes7.^{\prime\prime}5$	VLT 8 m
SINFONI	11 000 - 24 500	1500 - 4000	0."1	$3^{\prime\prime} imes 3^{\prime\prime}$	VLT 8 m
NIFS	9400 - 24 000	5000	0."1	$3^{\prime\prime} imes 3^{\prime\prime}$	Gemini N 8 m

Stellar evolution and isochrones

theoretical isochrones from MIST project [Dotter+2016, Choi+2016]

Observational colour-magnitude diagrams

Important classes of stars

Distance measurement

Individual stars:

From parallax: D ≈ 1/∞ − only good as long as e_∞ ≪ ∞; error distribution is asymmetric

- From photometry (standard candles: Cepheids, RR Lyrae, RC, BHB, tip of the RGB, ...)
- From spectro-photometric and photo-astrometric modelling based on stellar evolution models (along with chemistry, masses, ages, number of planets with alien life, etc.)

Stellar clusters, galaxies, ...

- resolved stellar populations: CMD fitting, standard candles
- semi-resolved: surface brightness fluctuations

Velocity measurement

 v_{los} usually measured with precision O(1 km/s), but the sky-plane velocity is $v_{sky} = D \mu$: depends on both distance and proper motion

A typical star cluster at a distance 10 kpc

19 20 21

Density measurement

Couldn't be easier! just count stars...

but:

- ▶ limiting magnitude depends on distance (⇒ completeness)
- complicated by spatially variable extinction
- difficult to resolve faint stars in dense environment (\Rightarrow crowding)
- not all potentially observable stars are recorded
 (⇒ survey selection function sometimes simply uncomputable!)

In general, density is more difficult to measure reliably than kinematics!

Photometric surveys

Name	date w	avelength	coverage	telescope
2MASS	1997–2001	near-IR	all sky	Whipple obs (US), CTIO (Chile) 1.3m
WISE	2010	mid-IR	all sky	space 0.4m
SDSS	2000–2009	optical	1/3 sky	Apache Point 2.5m
PanSTARRs	2011-now	optical	3/4 sky	Hawaii 1.8m
Legacy surveys (DES, DECaLS, DECaPS, MzLS)	2013-now	optical	$1/3 \; { m sky}$	Kitt Peak (US) 4m Blanco (Chile) 4m
VVV VHS	ongoing	near-IR	Galactic plane 1/2 sky (S)	VISTA (Chile) 4m
Gaia	2014-now	optical	all sky	space (L2) 1.2m
LSST	2023–	optical	1/2 sky (S)	Rubin obs. (Chile) 8m

Photometric surveys

Astronomical databases

Images are fun, but the real science is in catalogues, especially when cross-matching objects between different surveys.

Fortunately, most astronomical databases are publicly available (perhaps after some proprietary period).

VizieR Table	ID/Alias:	simbad			-	4 🕨	C
Name	SIMBAD	PanST/	ARRS	DR1			
Alias:		SAGE ARCHIVE					
		SAGE (CATAL	LOG			
Description:	SIMBAD	SDSS E	DR12				
Row Count:	11,377,03	SDSS E	DR7				e l
Coverage:	1.0 (order	SDSS E	DR8				1
		SDSS D	DR9				
Local Table-		SIMBA	D2				-
In such Tables	1. estal						
input rable:	I. Catan	Jyue.tx	. ~				
RA column:	ra		•	degrees	٢	(J20	00

Tools related to VizieR

- Catalogue collection : Search VizieR catalogues available via various services (FTP, VizieR, TAP, ...)
- CDS Portal : Access CDS data including VizieR, Simbad and Aladin using the CDS portal
- Spectra, images in VizieR : Search Spectra, images in VizieR
 Photometry viewer : Plot photometry (sed) including all VizieR
- <u>rnotometry viewer</u>: Plot photometry (sed) including all VizieR
 TAP VizieR : query VizieR using ADQL (a SQL extension dedicated for astronomy)
- LAT VIDER : query vizier using ADQL (a SQL extension dedicated for astronomy)
 CDS cross-match service : fast cross-identification between any 2 tables, including VizieR catalogues, SIMBAD