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Line-of-sight velocities of globular clusters
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Line-of-sight velocities of globular clusters

-300

-200

-100

 0

 100

 200

 300

 0  200  400  600  800  1000

V_
lo

s,
 k

m
/s

Distance from cluster center (arcsec)

easy, huh?



Line-of-sight velocities of globular clusters
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Outline

1. Likelihood-based inference on model parameters

2. Single-component model with measurement errors

3. Mixture model and outlier rejection

4. Mixture model with errors

5. Nonparametric models and further complexities

Food for thought:

Hogg, Bovy & Lang, “Data analysis recipes: fitting a model to data”
(arXiv:1008.4686)

Kuhn & Feigelson, “Mixture models in astronomy” (arXiv:1711.11101)

https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1711.11101


Likelihood-based analysis: fit a Gaussian to the data

1. The model: a normal distribution with mean µ and variance σ2:

xi ∼ N (µ, σ2) ≡ 1√
2π σ

exp

[
−(xi − µ)2

2σ2

]
2. The data: N precisely measured values xi drawn from this distribution.

3. The likelihood function for the observed dataset given the model :

L
(
{xi} | µ, σ

)
=

N∏
i=1

N (xi | µ, σ2), or

ln L = −1
2

N∑
i=1

(xi − µ)2

σ2
− N lnσ − N

2
ln 2π

4. Vary the parameters (µ, σ) to maximize ln L : solve

{
∂L

∂µ
= 0,

∂L

∂σ
= 0

}



Likelihood-based analysis: fit a Gaussian to the data

4. solve

{
∂L

∂µ
= 0,

∂L

∂σ
= 0

}
:

∂L

∂µ
=

N∑
i=1

xi − µ
σ2

= 0 =⇒ µ =
1

N

N∑
i=1

xi ,

∂L

∂σ
=

N∑
i=1

(xi − µ)2

σ3
− N

σ
= 0 =⇒ σ =

1

N

N∑
i=1

(xi − µ)2.

5. The likelihood surface near its maximum is a paraboloid, and
the covariance matrix of the uncertainties on model parameters is

C =

(
δµ2 ρ δµ δσ

ρ δµ δσ δσ2

)
= −


∂2 ln L

∂µ2

∂2 ln L

∂µ ∂σ

∂2 ln L

∂µ ∂σ

∂2 ln L

∂σ2


−1



Inferring the intrinsic dispersion from imprecise measurements

1. The model for the intrinsic distribution and the measurement process:
the true values are drawn from a Gaussian with mean µ and variance σ2,
the observed values xi are further perturbed by measurement errors δxi

xi ∼ N (µ, σ2) ∗ N (0, δx2i )︸ ︷︷ ︸
convolution of two Gaussians is also a Gaussian

= N (µ, σ2
i ), σ2

i = σ2 + δxi
2

2. Write down the likelihood function L
(
µ, σ | {xi , δxi}

)
:

ln L = −1
2

N∑
i=1

(xi − µ)2

σ2 + δxi
2 −

1
2

N∑
i=1

ln
(
σ2 + δxi

2
)
− N

2
ln 2π

3. Vary the parameters (µ, σ) to maximize ln L : solve

{
∂L

∂µ
= 0,

∂L

∂σ
= 0

}
–

no explicit analytic expression, but straightforward to solve numerically
(note that the best-fit σ may be zero if the actual spread of measured values is smaller

than the typical measurement error)



Bayesian formulation

P
(
θ | D, M

)
=
P
(
D | θ, M

)
P
(
θ |M

)
P
(
D |M

)
model

data (measurements)

model parameters

posterior probability
of model parameters

likelihood of measured data given
the model and its parameters

prior probability of
model parameters

evidence

Posterior is a normalized probability distribution:

∫
P
(
θ | D, M

)
dθ = 1,

hence the evidence is a “normalization factor”:

P
(
D |M

)
=

∫
P
(
D | θ, M

)
P
(
θ |M

)︸ ︷︷ ︸
often this is a flat prior, i.e. constant [in some range]

dθ

Evidence is useful only when choosing between alternative models M1, M2.



Bayesian formulation

P
(
θ | D, M

)
=
P
(
D | θ, M

)
P
(
θ |M

)
P
(
D |M

)
model

data (measurements)

model parameters

posterior probability
of model parameters

likelihood of measured data given
the model and its parameters

prior probability of
model parameters

evidence

Posterior is a normalized probability distribution:

∫
P
(
θ | D, M

)
dθ = 1,

hence the evidence is a “normalization factor”:

P
(
D |M

)
=

∫
P
(
D | θ, M

)
P
(
θ |M

)︸ ︷︷ ︸
often this is a flat prior, i.e. constant [in some range]

dθ

Evidence is useful only when choosing between alternative models M1, M2.



Treatment of measurement errors

D are measured (observed) data;

T are “true” (intrinsic) values predicted by the model M with parameters θ:
P
(
T | θ, M

)
is the predicted distribution of true values;

P
(
D | T ) is the measurement model: predicted distribution of D given T ;

predicted distribution of observables is a marginalization over the

[unknown] true values: P
(
D | θ, M

)
=

∫
P
(
D | T

)
P
(
T | θ, M

)
dT︸ ︷︷ ︸

convolution with error distribution

In the previous example, the model prediction was a normal distribution
with two free parameters θ = {µ, σ}: P

(
T | θ, M

)
= N (T | µ, σ),

and the measurement model was a normal distribution with width δxi :
P
(
D | T ) = N (D | T , δxi).



Inferring the intrinsic dispersion
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Inferring the intrinsic dispersion

blue: intrinsic distribution

green: true values of sampled points
with measurement uncertainties
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red: measured values (perturbed by errors)



Inferring the intrinsic dispersion

blue: intrinsic distribution

green: true values of sampled points
with measurement uncertainties

red: measured values (perturbed by errors)

4 3 2 1 0 1 2 3 4

magenta: prob.distrib. for each measured point



Inferring the intrinsic dispersion

4 3 2 1 0 1 2 3 4 distribution of inferred model parameters (µ, σ)
obtained from a Markov Chain Monte Carlo run

: deconvolution



Membership determination from mixture modelling
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N stars with observed properties xi , i = 1..N
(e.g., position, velocity, colours, etc.);

The entire dataset consists of C populations;
i -th star belongs to the component with
index ai .

The distribution of values of x among
stars of c-th component is described
by probability distributions fc(x | θ)
with some (unknown) parameters θ,
normalized to unity:

∫
fc(x) dx = 1.

The mixture DF is a weighted sum of
component DFs:

f (x | θ) =
∑C

c=1 ηc fc(x | θ),

where ηc is the fraction of stars in c-th
component, and

∑C
c=1 ηc = 1.



Membership determination from mixture modelling
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The log-likelihood of the observed dataset,
given the model parameters (θ, η), is

ln L =
∑N

i=1 ln Li , where

Li ≡ fai (xi | θ) =
∑C

c=1 δc ai fc(xi | θ).

However, since we do not know the indices
ai , we use the mixture DF:

Li ≡ f (xi | θ) =
∑C

c=1 ηc fc(xi | θ).

As usual, the best-fit model parameters
may be inferred by maximizing ln L
(optionally with some priors).



Membership determination from mixture modelling
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Assume first that we know the parameters for
all DFs θ and their fractions ηc , but do not
know which star belongs to which component.

ηc are prior membership probabilities (identical
for all stars), while the posterior probabilities
for i -th star with measured properties xi are

p
(c)
i =

ηc fc(xi | θ)∑C
k=1 ηk fk(xi | θ)

.
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Membership determination from mixture modelling
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Assume first that we know the parameters for
all DFs θ and their fractions ηc , but do not
know which star belongs to which component.

ηc are prior membership probabilities (identical
for all stars), while the posterior probabilities
for i -th star with measured properties xi are

p
(c)
i =

ηc fc(xi | θ)∑C
k=1 ηk fk(xi | θ)

.

At the same time, ηc =
1

N

N∑
i=1

p
(c)
i ,

so the fractions can be computed
alongside membership probabilities.



Membership determination from mixture modelling
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Now that we know (probabilistically)

the membership of each point p
(c)
i ,

we may update the parameters of the DFs θ:

θ(new) = arg max
θ

(
ln L

)
= arg max

θ

( N∑
i=1

C∑
c=1

p
(c)
i ln fc(xi | θ)

)
.

Fit the parameters θ of each DF fc to the mea-
sured values xi , weighted by probabilities p

(c)
i .

fc(x) may have any suitable functional form:
– a Gaussian (θ are the mean and dispersion);
– a histogram (θ are the bin heights);
– . . .

Repeat these steps until convergence:
this is the expectation/maximization algorithm.



Membership determination from mixture modelling

Expectation/maximization (EM) is one possible way of finding the
maximum-likelihood solution for the mixture DF – it gives only
the best-fit solution, but no associated uncertainty on ηc and θc .
One can compute them from the Hessian of the likelihood function
L ({xi} | η,θ) at its maximum, or by running a MCMC simulation in-
stead of the EM algorithm. In the latter case, it is also straightforward
to marginalize over the nuisance parameters.



Outlier rejection and model fitting with imprecise data

1. Assume a two-component model specified by two intrinsic distributions,
convolved with individual measurement errors for each datapoint:
I points belonging to the object of interest: xi ∼ Fint(θ) ∗ N (0, δxi)

could be a Gaussian, but not necessarilyI ouliers: xi ∼ Fout(ζ) ∗ N (0, δxi)

θ, ζ are the parameters of the intrinsic distributions (e.g., mean and width of Gaussians)

2. Assume that an (unknown) fraction η of all datapoints are outliers:
the probability distribution of the mixture model for datapoint xi is

xi ∼ Fmix,i ≡
[
(1− η)Fint(θ) + ηFout(ζ)

]
∗ N (0, δxi),

and the likelihood of the entire model is L
(
θ, ζ, η | {xi , δxi}

)
=
∏N

i=1Fmix,i

3. Define suitable priors P for the nuisance parameters ζ, η

4. Obtain the posterior probability distribution for the parameters of interest θ
by marginalizing over the nuisance parameters ζ, η:

P
(
θ | {xi}

)
=
∫

L
(
θ, ζ, η | {xi}

)
P(ζ, η) dζ dη ;

determine the confidence intervals for θ from this posterior distribution



Example: measuring the dispersion and pruning outliers

10 5 0 5 10



Mixture models and classification

I Each datapoint has the same prior probability η of being an outlier;
however, the posterior probability does depend on the measured value xi
and its uncertainty δxi , as well as the model parameters θ, ζ:

Pout(xi , δxi | θ, ζ, η) =

[
ηFout(ζ)∗N (0, δxi)

]
(xi)[{

(1− η)Fint(θ) + ηFout(ζ)
}
∗N (0, δxi)

]
(xi)

I For the best-fit values of parameters,
∑N

i=1Pout(xi , δxi) = N η

I There is no single “N-σ” criterion: if there were no model for outliers,
one couldn’t reject a point even when it is 10σ off!

I The dataset should contain enough contaminants to reliably infer
their fraction η and the parameters ζ for Fout

I Probabilistic membership classification should be carried onward
to subsequent modelling procedures, if possible.



Mixture models, classification and rejection of outliers

10 5 0 5 10 10 5 0 5 10

1.0σ off, Pout =0.091

2.0σ off, Pout =0.316

3.0σ off, Pout =0.845

4.0σ off, Pout =0.994

0.5σ off, Pout =0.112

1.0σ off, Pout =0.159

1.5σ off, Pout =0.256

2.0σ off, Pout =0.433

2.5σ off, Pout =0.673

3.0σ off, Pout =0.871

20% outliers



Mixture models, classification and rejection of outliers

10 5 0 5 10 10 5 0 5 10

1.0σ off, Pout =0.545

2.0σ off, Pout =0.847

3.0σ off, Pout =0.985

4.0σ off, Pout =0.999

0.5σ off, Pout =0.603

1.0σ off, Pout =0.694

1.5σ off, Pout =0.805

2.0σ off, Pout =0.902

2.5σ off, Pout =0.961

3.0σ off, Pout =0.988

75% outliers



Multidimensional case

I D-dimensional Gaussian with mean µ and covariance matrix Σ:

N (x | µ,Σ) =
1√

(2π)D det Σ
exp
[
− 1

2
(x− µ)T Σ−1 (x− µ)

]
I Measurement errors for i -th datapoint described by error covariance matrix δxi
I Convolution of two Gaussians is also a Gaussian with covariance Σ + δxi

original datapoints with errors classification by the mixture model



Additional parameters in the model

The probability distribution Fint and the fraction of outliers η
may depend on some additional parameters ς and measured properties {ξi}
(e.g., scale radius a, the distance Ri of a star from the cluster center, etc.)
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original datapoints with errors classification by the mixture model



Fitting dynamical models to discrete-kinematic data

Example: Plummer-like model for the cluster, uniform contamination:
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central velocity dispersion
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fraction of contaminants

Fint

(
{Ri , vi , δvi} | a, v , σ0

)
= N

(
vi | v ,

√
σ2(Ri) + δv 2

i

) 1 + (Rmax/a)2[
1 + (Ri/a)2

]2
σ(Ri | a, σ0) ≡ σ0[

1 + (Ri/a)2
]1/4

Fout

(
{vi , δvi} | v out, σout

)
= N

(
vi | v out,

√
σ2
out + δv 2

i

)
Distribution function of the mixture model:

Fmix = (1− η)Fint + ηFout

parameters: a, v , σ0, v out, σout, η



Fitting dynamical models to discrete-kinematic data

Example: globular cluster NGC 6656

General problem with parametric models:
inferred uncertainty intervals are too small
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fit to original points
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Fitting dynamical models to discrete-kinematic data

Example: globular cluster NGC 6656

General problem with parametric models:
inferred uncertainty intervals are too small

0 100 200 300 400 500 600
R [arcsec]

0

2

4

6

8

10

σ
 [

km
/s

]

Binned velocity dispersion [Baumgardt+2019]

σ(R) profile of the Plummer model
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Fitting “nonparametric” models to discrete-kinematic data

Consider a more flexible (but not dynamically motivated) dispersion profile:
σ(R) represented as a cubic spline with fixed nodes and free coefficients.

Similar uncertainties as binned data, but in a mathematically consistent model.
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σ(R) profile of the Plummer model
fit to original points
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Penalization of overly flexible models

If one has too many free parameters, the models would overfit the data.

To prevent this, one needs to impose stronger priors on the parameters,
e.g., penalizing large variations between adjacent spline values.

There are objective methods for determining the optimal value of penalty
(smoothing parameter), based on cross-validation:

I adopt a particular value of the smoothing parameter λ;

I split the data sample into two parts – training set and validation set;

I find the best-fit model for the training set;

I evaluate the goodness-of-fit of this model for the validation set;

I average this over different choices of training and validation subsets;

I adjust the parameter λ to maximize this validation score;
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The same approach is used in machine learning to prevent overfitting



Penalization of overly flexible models

If one has too many free parameters, the models would overfit the data.

To prevent this, one needs to impose stronger priors on the parameters,
e.g., penalizing large variations between adjacent spline values.

There are objective methods for determining the optimal value of penalty
(smoothing parameter), based on cross-validation:

I adopt a particular value of the smoothing parameter λ;

I split the data sample into two parts – training set and validation set;

I find the best-fit model for the training set;

I evaluate the goodness-of-fit of this model for the validation set;

I average this over different choices of training and validation subsets;

I adjust the parameter λ to maximize this validation score;

0 100 200 300 400 500 600
R [arcsec]

0

2

4

6

8

10

σ
 [

km
/s

]

spline fit with no penalty

0 100 200 300 400 500 600
R [arcsec]

0

2

4

6

8

10

σ
 [

km
/s

]

spline fit with penalty

The same approach is used in machine learning to prevent overfitting



Pros and cons of fitting probabilistic mixture models

+ outlier rejection or fitting multiple populations are straightforward

+ easy to account for selection function and measurement uncertainties

+ use all available information (individual datapoints, no binning)

+ can propagate uncertainty in membership into subsequent analysis

− computationally demanding in case of large datasets

− marginalization and convolution often non-analytic ⇒ expensive

The most common variant of this technique is the Gaussian mixture
modelling, with several implementations available in Python:

I scikit-learn (no measurement errors)

I Extreme Deconvolution [Bovy, Hogg & Roweis 2011]

I XDGMM [Holoien, Marshall & Wechsler 2016] (also in AstroML)

I PyGMMis [Melchior & Goulding 2018]

All these variants use the expectation/maximization approach and give only
the best-fit parameters, without uncertainties.

https://scikit-learn.org/stable/modules/mixture.html
https://github.com/jobovy/extreme-deconvolution
https://github.com/tholoien/XDGMM
http://www.astroml.org/user_guide/density_estimation.html#extreme-deconvolution
https://github.com/pmelchior/pygmmis


Exercise: simple 1d Gaussian mixture models
Scenario: a dataset of N points drawn from a mixture of two populations:
broad and narrow.

I Write a routine for generating the mock dataset (assuming precise
measurements).

I Write another routine for computing the likelihood of the dataset given
a model with some free parameters – a sum of two Gaussians with
unknown mean, dispersion, and relative weights.

I Use your favourite method to find the best-fit parameters (e.g., direct
maximization of the likelihood function, or the expectation/maximization
algorithm, or MCMC).

I Extend the procedure to the case of measurement errors (preferrably,
varying between datapoints) – both for the mock data generation and
for the fit.

I Fiducial values: N ' 100, fraction of broad component (contaminants)
between 10 and 90%, measurement uncertainties between 0 and 1− 2×
the dispersion of the narrow component.



Exercise 2: application to globular clusters
Many globular clusters in the Galaxy have plenty of stars with measured
values of line-of-sight velocity; a good starting point is the catalogue of
Baumgardt+ 2019: https://people.smp.uq.edu.au/

HolgerBaumgardt/globular/appendix/appendix.html

The tables for individual clusters contain both members and non-members.
For each star, the table contains the value and uncertainty of vlos, distance
from the cluster centre, and the membership probability – we will not use
the latter quantity in the fit, but will compare it with the results of the
mixture modelling classifier. Ideally, the distance information can be used
to estimate the density profile of the cluster, but the coverage of the
spectroscopic dataset is very non-uniform, making this task difficult.
We may instead restrict the range of distances to a few arcmin (perhaps
depending on the cluster under consideration).

The goal is to measure the mean velocity and its dispersion, and to
estimate the membership probability of all stars in the dataset. The results
can be compared with the original paper (which used a different approach),
shown in the table of structural parameters (for σ) and orbits (for vlos).

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/appendix/appendix.html
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/appendix/appendix.html
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/parameter.html
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/orbits.html

