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Line-of-sight velocities of globular clusters
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Line-of-sight velocities of globular clusters
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easy, huh?



Line-of-sight velocities of globular clusters
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Conventional approach: https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

Computing the mean value of noisy measurements:

measured values: xi

errors (uncertainties): δxi , i = 1..N

error-weighted mean value: µ =

∑N
i=1 xi/δxi

2∑N
i=1 1/δxi

2

uncertainty of the mean value: δµ =
(∑N

i=1 1/δxi
2
)−1/2

Rejection of outliers (3σ–clipping):
or some other threshold

I if |xi − µ| ≥ 3 δxi : eliminate this datapoint

I recompute µ from remaining datapoints

I repeat until the list of remaining points doesn’t change

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean


Maximum-likelihood computation of the error-weighted mean

1. Assume a model: e.g., all datapoints have the same true value µ,
but are measured with some error which is normally distributed:

xi ∼ N (µ, δxi) ≡
1√

2π δxi
exp

[
−(xi − µ)2

2 δxi
2

]
2. Write down the likelihood function for the observed dataset given the model:

L =
N∏
i=1

N (xi | µ, δxi), or ln L = −1
2

N∑
i=1

(xi − µ)2

δxi
2 −

N∑
i=1

ln δxi − N
2

ln 2π

3. Vary the parameters of the model (in this case, only µ) to maximize L :

d ln L

dµ
=

N∑
i=1

xi − µ
δxi

2 = 0 =⇒ µ =

∑N
i=1 xi/δx

2
i∑N

i=1 1/δxi
2

4. ln L is a parabola near the best-fit µ:
d2 ln L

dµ2
= −

∑N
i=1

1

δxi
2 ;

confidence interval for µ: ln L decreases by 1 from the best-fit value



Bayesian formulation

P
(
θ | D, M

)
=
P
(
D | θ, M

)
P
(
θ |M

)
P
(
D |M

)
model

data (measurements)

model parameters

posterior probability
of model parameters

likelihood of measured data given
the model and its parameters

prior probability of
model parameters

evidence

Posterior is a normalized probability distribution:

∫
P
(
θ | D, M

)
dθ = 1,

hence the evidence is a “normalization factor”:

P
(
D |M

)
=

∫
P
(
D | θ, M

)
P
(
θ |M

)︸ ︷︷ ︸
often this is a flat prior, i.e. constant [in some range]

dθ
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Treatment of measurement errors

D are measured (observed) data;

T are “true” (intrinsic) values predicted by the model M with parameters θ:
P
(
T | θ, M

)
is the predicted distribution of true values;

P
(
D | T ) is the measurement model: predicted distribution of D given T ;

predicted distribution of observables is a marginalization over the

[unknown] true values: P
(
D | θ, M

)
=

∫
P
(
D | T

)
P
(
T | θ, M

)
dT︸ ︷︷ ︸

convolution with error distribution

In the previous example, the model prediction was a single number µ:
P
(
T | µ, M

)
= δ(T − µ),

and the measurement model was a normal distribution with width δxi .



Inferring the intrinsic dispersion
1. Make the model slightly more complicated:

the true values are drawn from a Gaussian with mean µ and width σ,
the observed values xi are further perturbed by measurement errors δxi

xi ∼ N (µ, σ) ∗ N (0, δxi)︸ ︷︷ ︸
convolution of two Gaussians is also a Gaussian

= N (µ, σi), σi =

√
σ2 + δxi

2

2. Write down the likelihood function L
(
µ, σ | {xi , δxi}

)
:

ln L = −1
2

N∑
i=1

(xi − µ)2

σ2 + δxi
2 −

1
2

N∑
i=1

ln
(
σ2 + δxi

2
)
− N

2
ln 2π

3. Vary the parameters (µ, σ) to maximize ln L : solve

{
∂L

∂µ
= 0,

∂L

∂σ
= 0

}
4. The covariance matrix of the uncertainties on model parameters is

C =

(
δµ2 ρ δµ δσ

ρ δµ δσ δσ2

)
= −


∂2 ln L

∂µ2

∂2 ln L

∂µ ∂σ

∂2 ln L

∂µ ∂σ

∂2 ln L

∂σ2


−1



Inferring the intrinsic dispersion
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blue: intrinsic distribution

green: true values of sampled points



Inferring the intrinsic dispersion

blue: intrinsic distribution

green: true values of sampled points
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with measurement uncertainties



Inferring the intrinsic dispersion

blue: intrinsic distribution

green: true values of sampled points
with measurement uncertainties
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red: measured values (perturbed by errors)



Inferring the intrinsic dispersion

blue: intrinsic distribution

green: true values of sampled points
with measurement uncertainties

red: measured values (perturbed by errors)
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magenta: prob.distrib. for each measured point



Inferring the intrinsic dispersion

4 3 2 1 0 1 2 3 4 distribution of inferred model parameters (µ, σ)
obtained from a Markov Chain Monte Carlo run

: deconvolution



Treatment of outliers: mixture models

1. Assume a two-component model specified by two intrinsic distributions,
convolved with individual measurement errors for each datapoint:
I points belonging to the object of interest: xi ∼ Fint(θ) ∗ N (0, δxi)

could be a Gaussian, but not necessarilyI ouliers: xi ∼ Fout(ζ) ∗ N (0, δxi)

θ, ζ are the parameters of the intrinsic distributions (e.g., mean and width of Gaussians)

2. Assume that an (unknown) fraction η of all datapoints are outliers:
the probability distribution of the mixture model for datapoint xi is

xi ∼ Fmix,i ≡
[
(1− η)Fint(θ) + ηFout(ζ)

]
∗ N (0, δxi),

and the likelihood of the entire model is L
(
θ, ζ, η | {xi , δxi}

)
=
∏N

i=1Fmix,i

3. Define suitable priors P for the nuisance parameters ζ, η

4. Obtain the posterior probability distribution for the parameters of interest θ
by marginalizing over the nuisance parameters ζ, η:

P
(
θ | {xi}

)
=
∫

L
(
θ, ζ, η | {xi}

)
P(ζ, η) dζ dη ;

determine the confidence intervals for θ from this posterior distribution



Treatment of outliers: mixture models
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Mixture models and classification

I Each datapoint has the same prior probability η of being an outlier;
however, the posterior probability does depend on the measured value xi
and its uncertainty δxi , as well as the model parameters θ, ζ:

Pout(xi , δxi | θ, ζ, η) =

[
ηFout(ζ)∗N (0, δxi)

]
(xi)[{

(1− η)Fint(θ) + ηFout(ζ)
}
∗N (0, δxi)

]
(xi)

I For the best-fit values of parameters,
∑N

i=1Pout(xi , δxi) = N η

I There is no single “N-σ” criterion: if there were no model for outliers,
one couldn’t reject a point even when it is 10σ off!

I The dataset should contain enough contaminants to reliably infer
their fraction η and the parameters ζ for Fout

I Probabilistic membership classification should be carried onward
to subsequent modelling procedures, if possible.



Mixture models, classification and rejection of outliers
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1.0σ off, Pout =0.091

2.0σ off, Pout =0.316

3.0σ off, Pout =0.845

4.0σ off, Pout =0.994

0.5σ off, Pout =0.112

1.0σ off, Pout =0.159

1.5σ off, Pout =0.256

2.0σ off, Pout =0.433

2.5σ off, Pout =0.673

3.0σ off, Pout =0.871



Multidimensional case

I D-dimensional Gaussian with mean µ and covariance matrix Σ:

N (x | µ,Σ) =
1√

(2π)D det Σ
exp
[
− 1

2
(x− µ)T Σ−1 (x− µ)

]
I Measurement errors for i -th datapoint described by error covariance matrix δxi
I Convolution of two Gaussians is also a Gaussian with covariance Σ + δxi

original datapoints with errors classification by the mixture model



Additional parameters in the model

The probability distribution Fint and the fraction of outliers η
may depend on some additional parameters ς and measured properties {ξi}
(e.g., scale radius a, the distance Ri of a star from the cluster center, etc.)
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Fitting dynamical models to discrete-kinematic data

Example: Plummer-like model for the cluster, uniform contamination:
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Fint

(
{Ri , vi , δvi} | a, v , σ0

)
= N

(
vi | v ,

√
σ2(Ri) + δv 2

i

) 1 + (Rmax/a)2[
1 + (Ri/a)2

]2
σ(Ri | a, σ0) ≡ σ0[

1 + (Ri/a)2
]1/4

Fout

(
{vi , δvi} | v out, σout

)
= N

(
vi | v out,

√
σ2
out + δv 2

i

)
Distribution function of the mixture model:

Fmix = (1− η)Fint + ηFout

parameters: a, v , σ0, v out, σout, η



Fitting dynamical models to discrete-kinematic data

Example: globular cluster NGC 6656

General problem with parametric models:
inferred uncertainty intervals are too small
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Fitting dynamical models to discrete-kinematic data

Example: globular cluster NGC 6656

General problem with parametric models:
inferred uncertainty intervals are too small
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Fitting “nonparametric” models to discrete-kinematic data

Consider a more flexible (but not dynamically motivated) dispersion profile:
σ(R) represented as a cubic spline with fixed nodes and free coefficients.

Similar uncertainties as binned data, but in a mathematically consistent model.
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Binned velocity dispersion [Baumgardt+2019]

σ(R) profile of the Plummer model
fit to original points
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Penalization of overly flexible models

If one has too many free parameters, the models would overfit the data.

To prevent this, one needs to impose stronger priors on the parameters,
e.g., penalizing large variations between adjacent spline values.

There are objective methods for determining the optimal value of penalty
(smoothing parameter), based on cross-validation:

I adopt a particular value of the smoothing parameter λ;

I split the data sample into two parts – training set and validation set;

I find the best-fit model for the training set;

I evaluate the goodness-of-fit of this model for the validation set;

I average this over different choices of training and validation subsets;

I adjust the parameter λ to maximize this validation score;
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The same approach is used in machine learning to prevent overfitting
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Binned vs. non-binned data

Traditional (binned) approach:
I Clean up the sample

I Bin datapoints (e.g., in radius R)

I Compute the mean and dispersion v , σ
and their standard deviations in each bin

I Subtract the measurement uncertainty
(“error”) in quadrature from σ

I Fit σ(R) from the model to

the binned data {σb ± δσb}
∣∣Nbin

b=1

Non-binned approach:
I Assume models (parametric or

free-form) for the distribution of
objects of interest and outliers

I Write down a mixture model:
F = (1− η)Fint + ηFout

I Find the best-fit parameters and
their uncertainties from a Monte
Carlo simulation

I Compute the membership
probability of each datapoint



Binned vs. non-binned data

Traditional (binned) approach:
I Clean up the sample

I Bin datapoints (e.g., in radius R)

I Compute the mean and dispersion v , σ
and their standard deviations in each bin

I Subtract the measurement uncertainty
(“error”) in quadrature from σ

I Fit σ(R) from the model to

the binned data {σb ± δσb}
∣∣Nbin

b=1

Non-binned approach:
I Assume models (parametric or

free-form) for the distribution of
objects of interest and outliers

I Write down a mixture model:
F = (1− η)Fint + ηFout

I Find the best-fit parameters and
their uncertainties from a Monte
Carlo simulation

I Compute the membership
probability of each datapoint

Don’t bin! (if you can)



Pros and cons of fitting models directly to discrete data

+ outlier rejection or fitting multiple populations are straightforward

+ easy to account for selection function and measurement uncertainties

+ use all available information (no coarse-graining)

− computationally demanding in case of large datasets

− marginalization and convolution often non-analytic ⇒ expensive

− difficult to fit discrete models (Schwarzschild, M2M) to discrete data

Applications
I Membership determination for dSph [Walker+ 2009]

I Jeans models of globular clusters and dSph [Watkins+ 2013; Zhu+ 2016]

I DF-block model of Milky Way nuclear star cluster [Magorrian 2019]

I Proof-of-concept Schwarzschild and M2M methods for discrete data
[Chanamé+ 2008; Breddels 2013 (thesis); Hunt & Kawata 2013; Bovy+ 2017]

I Parametric DF models of the Milky Way disk
[McMillan & Binney 2013; Bovy & Rix 2013; Trick+ 2016]


