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We explore the stability and the long-term se
ular evolution of non-rotating, triaxial spheroidal gala
ti
 models, using both N -body simulations and integration in �xedpotentials. More spe
i�
ally we 
onsider Dehnen models with inner density 
usp ρ ∝ r−γ, built with the S
hwarzs
hild method. We show that short-term stability dependson the degree of velo
ity anisotropy (radially anisotropi
 models are subje
t to rapid development of radial-orbit instability). Long-term stability, on the other hand, dependsmainly on the properties of the potential, and in parti
ular, on whether it admits a substantial fra
tion of strongly 
haoti
 orbits. We show that in the 
ase of a weak density
usp (γ = 1 Dehnen model) the N -body model is remarkably stable, while the strong-
usp (γ = 2) model exhibits substantial evolution of shape away from triaxiality,whi
h we attribute to the e�e
t of 
haoti
 di�usion of orbits. The di�erent behaviour in these two 
ases originates from the di�erent phase spa
e stru
ture of the potential;in the weak-
usp 
ase there exist numerous resonant orbit families that impede the 
haoti
 du�usion. Moreover, we found that varying the fra
tion of 
haoti
 orbits inS
hwarzs
hild model has no e�e
t on the shape evolution of N -body model, whi
h we attribute to impossibility to preserve the 
haoti
 properties of an orbit in the N -bodysimulation.

Introdu
tionWe study the evolution of triaxial spheroidal galaxies rep-resented by Dehnen density pro�le
ρ(r) =

(3 − γ)M

4πabc

1

mγ(1 + m)4−γ
,

where m = [(x/a)2+(y/b)2+(z/c)2]1/2 is the ellipti
 ra-dius, for two 
ases: γ = 1 (weak-
usp model) and γ = 2(strong-
usp), with b/a = 0.79 and c/a = 0.5. Themodels were 
reated with S
hwarzs
hild method imple-mented in SMILE software [1℄. We explore the stabilityof these models with N -body simulations, using N ≥ 106parti
les evolved with gyrfal
ON 
ode [2℄, on a times
ale
orresponding to Hubble time. We �nd that on a shorttimes
ale the models develop radial-orbit instability if the
entral velo
ity anisotropy 
oe�
ient β = 1−
σ2

t
2σ2

r
ex
eeds

0.3 − 0.4, in agreement with [3℄. In the opposite 
asethe models appear to be quite stable for many dynami
altimes. However, the strong-
usp model exhibits substan-tial evolution of shape towards more axisymmetri
, seeFig. 1.
Resonan
es and 
haoti
 di�usionThe triaxial Dehnen models 
ontain a large fra
tion(∼ 30 − 40%) of 
haoti
 orbits: it is impossible to 
re-ate a self-
onsistent model using only the regular orbits.There is gradual transition from regular through weakly
haoti
 to strongly 
haoti
 orbits (example is given inFig. 2). One of 
haos indi
ators is frequen
y di�usionrate δω, measuring the di�eren
e in leading frequen
iesof motion between the �rst and the se
ond halves of inte-gration time. As seen from Fig. 3 (right panel), there isa smooth distribution of orbits by δω, but for the strong-
usp 
ase there are more strongly 
haoti
 orbits [4℄. Moreimportantly, in the weak-
usp 
ase there exist numerousnon-tube resonant orbit families, for whi
h the leading fre-quen
ies of os
illation in three 
oordinates satisfy one or

more resonant relation n1ωx+n2ωy +n3ωz = 0, with in-teger ni. They are visible as 
on
entration of points alonglines on the frequen
y map plot (Fig. 3, left); by 
ontrast,the frequen
y map for strong-
usp model (Fig. 3, middle)does not have signi�
ant resonan
es, apart from 1 : 2
x − z banana orbit.The resonant orbits are important be
ause they both rep-resent �building blo
ks� with various geometry, and in-hibit 
haoti
 di�usion in phase spa
e [5℄. While 
haoti
orbits exist in both weak- and strong-
usp models, in thelatter 
ase they be
ome on average rounder in the 
ourseof evolution, more uniformly �lling the equipotential sur-fa
e; while in the former 
ase their di�usion is mostlylimited to the vi
inity of resonant orbit families, whi
hhave more well-de�ned nontrivial shape.We also found that the variation of the 
haoti
 orbit fra
-tion in the S
hwarzs
hild model does not 
hange the rateof shape evolution of N -body model. This is explainedby the impossibility to preserve 
haoti
 properties of agiven orbit in the N -body simulation, even if the orbitshape is well preserved. The evolution is therefore gov-erned by gross features of the potential, not by a par-ti
ular arrangement of orbits. Another demonstrationof this is that models built with S
hwarzs
hild's methodevolve similarly to those 
reated with iterative methodfor 
onstru
ting dynami
al equilibrium models [6℄. It isalso important to note that a similar amount of evolutionis observed in �xed-potential integration, when parti
lesare evolved in a stati
 potential and do not intera
t withea
h other (Fig. 1, red).Referen
es[1℄ http://td.lpi.ru/~eugvas/smile/[2℄ Dehnen W., 2002, J.Comp.phys., 179, 27[3℄ Antonini F., Capuzzo-Dol
etta R., Merritt D., 2009, MNRAS,399, 671[4℄ Valluri M., Merritt D., 1998, ApJ, 506, 686[5℄ Valluri M., Merritt D., 2000, in �The Chaoti
 Universe�, p.229

[6℄ Rodionov S.A., Athanassoula E., Sotnikova N.Ya., 2009, MN-RAS, 392, 904
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Fig. 1: Evolution of axis ratios b/a and c/a (starting from0.79 and 0.5, 
orrespondingly). Blue line � γ = 1 N -bodymodel with N = 106, whi
h shows very little evolution;green line � γ = 2 N -body model with N = 106, whi
h
hanges shape substantially to be
ome more axisymmet-ri
; red line � integration in �xed potential for γ = 2model, whi
h shows 
omparable amount of evolution ex-
lusively due to 
haoti
 di�usion. T = 1000 
orrespondsroughly to Hubble time; dynami
al time at half-mass ra-dius is O(10).

Fig. 2: Example of a regular resonant orbit (left, fre-quen
y di�usion rate δω ∼ 10−4), a weakly 
haoti
 orbit(
enter, δω ∼ 10−2.5), and a strongly 
haoti
 one (right,
δω ∼ 10−1).
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Fig. 3: Frequen
y map plots for γ = 1 (left) and γ = 2 (
enter) models: ea
h point represents an orbit with given ratio of leading frequen
ies in three 
oordinates (ωy/ωx and
ωz/ωx). Blue dots represent regular orbits and red � 
haoti
 ones, based on the value of their Lyapunov exponent. There is remarkable di�eren
e between the two models: inthe former 
ase there exist substantial population of orbits in resonant families, whi
h show up as points grouping along 
ertain lines on the plot. In the latter 
ase most orbitswhi
h do not belong to 1 : 1 tube families and 1 : 2 x − z banana family, are 
haoti
.Right panel displays the distribution of frequen
y di�usion rates (blue � for γ = 1 model, green � for γ = 2 model). Dotted lines � all orbits, solid lines � tube-like orbits only,dot-dashed lines � all other non-tube orbits, in
luding resonant orbit families and 
haoti
 orbits. It demonstrates that the latter population is indeed di�erent in the two models,in the γ = 2 
ase being notably 
omposed of strongly 
haoti
 orbits with δω & 10−2.


