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We explore the stability and the long-term seular evolution of non-rotating, triaxial spheroidal galati models, using both N -body simulations and integration in �xedpotentials. More spei�ally we onsider Dehnen models with inner density usp ρ ∝ r−γ, built with the Shwarzshild method. We show that short-term stability dependson the degree of veloity anisotropy (radially anisotropi models are subjet to rapid development of radial-orbit instability). Long-term stability, on the other hand, dependsmainly on the properties of the potential, and in partiular, on whether it admits a substantial fration of strongly haoti orbits. We show that in the ase of a weak densityusp (γ = 1 Dehnen model) the N -body model is remarkably stable, while the strong-usp (γ = 2) model exhibits substantial evolution of shape away from triaxiality,whih we attribute to the e�et of haoti di�usion of orbits. The di�erent behaviour in these two ases originates from the di�erent phase spae struture of the potential;in the weak-usp ase there exist numerous resonant orbit families that impede the haoti du�usion. Moreover, we found that varying the fration of haoti orbits inShwarzshild model has no e�et on the shape evolution of N -body model, whih we attribute to impossibility to preserve the haoti properties of an orbit in the N -bodysimulation.

IntrodutionWe study the evolution of triaxial spheroidal galaxies rep-resented by Dehnen density pro�le
ρ(r) =

(3 − γ)M
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,

where m = [(x/a)2+(y/b)2+(z/c)2]1/2 is the ellipti ra-dius, for two ases: γ = 1 (weak-usp model) and γ = 2(strong-usp), with b/a = 0.79 and c/a = 0.5. Themodels were reated with Shwarzshild method imple-mented in SMILE software [1℄. We explore the stabilityof these models with N -body simulations, using N ≥ 106partiles evolved with gyrfalON ode [2℄, on a timesaleorresponding to Hubble time. We �nd that on a shorttimesale the models develop radial-orbit instability if theentral veloity anisotropy oe�ient β = 1−
σ2
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2σ2
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0.3 − 0.4, in agreement with [3℄. In the opposite asethe models appear to be quite stable for many dynamialtimes. However, the strong-usp model exhibits substan-tial evolution of shape towards more axisymmetri, seeFig. 1.
Resonanes and haoti di�usionThe triaxial Dehnen models ontain a large fration(∼ 30 − 40%) of haoti orbits: it is impossible to re-ate a self-onsistent model using only the regular orbits.There is gradual transition from regular through weaklyhaoti to strongly haoti orbits (example is given inFig. 2). One of haos indiators is frequeny di�usionrate δω, measuring the di�erene in leading frequeniesof motion between the �rst and the seond halves of inte-gration time. As seen from Fig. 3 (right panel), there isa smooth distribution of orbits by δω, but for the strong-usp ase there are more strongly haoti orbits [4℄. Moreimportantly, in the weak-usp ase there exist numerousnon-tube resonant orbit families, for whih the leading fre-quenies of osillation in three oordinates satisfy one or

more resonant relation n1ωx+n2ωy +n3ωz = 0, with in-teger ni. They are visible as onentration of points alonglines on the frequeny map plot (Fig. 3, left); by ontrast,the frequeny map for strong-usp model (Fig. 3, middle)does not have signi�ant resonanes, apart from 1 : 2
x − z banana orbit.The resonant orbits are important beause they both rep-resent �building bloks� with various geometry, and in-hibit haoti di�usion in phase spae [5℄. While haotiorbits exist in both weak- and strong-usp models, in thelatter ase they beome on average rounder in the ourseof evolution, more uniformly �lling the equipotential sur-fae; while in the former ase their di�usion is mostlylimited to the viinity of resonant orbit families, whihhave more well-de�ned nontrivial shape.We also found that the variation of the haoti orbit fra-tion in the Shwarzshild model does not hange the rateof shape evolution of N -body model. This is explainedby the impossibility to preserve haoti properties of agiven orbit in the N -body simulation, even if the orbitshape is well preserved. The evolution is therefore gov-erned by gross features of the potential, not by a par-tiular arrangement of orbits. Another demonstrationof this is that models built with Shwarzshild's methodevolve similarly to those reated with iterative methodfor onstruting dynamial equilibrium models [6℄. It isalso important to note that a similar amount of evolutionis observed in �xed-potential integration, when partilesare evolved in a stati potential and do not interat witheah other (Fig. 1, red).Referenes[1℄ http://td.lpi.ru/~eugvas/smile/[2℄ Dehnen W., 2002, J.Comp.phys., 179, 27[3℄ Antonini F., Capuzzo-Doletta R., Merritt D., 2009, MNRAS,399, 671[4℄ Valluri M., Merritt D., 1998, ApJ, 506, 686[5℄ Valluri M., Merritt D., 2000, in �The Chaoti Universe�, p.229

[6℄ Rodionov S.A., Athanassoula E., Sotnikova N.Ya., 2009, MN-RAS, 392, 904
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Fig. 1: Evolution of axis ratios b/a and c/a (starting from0.79 and 0.5, orrespondingly). Blue line � γ = 1 N -bodymodel with N = 106, whih shows very little evolution;green line � γ = 2 N -body model with N = 106, whihhanges shape substantially to beome more axisymmet-ri; red line � integration in �xed potential for γ = 2model, whih shows omparable amount of evolution ex-lusively due to haoti di�usion. T = 1000 orrespondsroughly to Hubble time; dynamial time at half-mass ra-dius is O(10).

Fig. 2: Example of a regular resonant orbit (left, fre-queny di�usion rate δω ∼ 10−4), a weakly haoti orbit(enter, δω ∼ 10−2.5), and a strongly haoti one (right,
δω ∼ 10−1).
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Fig. 3: Frequeny map plots for γ = 1 (left) and γ = 2 (enter) models: eah point represents an orbit with given ratio of leading frequenies in three oordinates (ωy/ωx and
ωz/ωx). Blue dots represent regular orbits and red � haoti ones, based on the value of their Lyapunov exponent. There is remarkable di�erene between the two models: inthe former ase there exist substantial population of orbits in resonant families, whih show up as points grouping along ertain lines on the plot. In the latter ase most orbitswhih do not belong to 1 : 1 tube families and 1 : 2 x − z banana family, are haoti.Right panel displays the distribution of frequeny di�usion rates (blue � for γ = 1 model, green � for γ = 2 model). Dotted lines � all orbits, solid lines � tube-like orbits only,dot-dashed lines � all other non-tube orbits, inluding resonant orbit families and haoti orbits. It demonstrates that the latter population is indeed di�erent in the two models,in the γ = 2 ase being notably omposed of strongly haoti orbits with δω & 10−2.


