Chaotic mixing and the secular evolution of
triaxial cuspy galaxy models built with Schwarzschild’s method
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We explore the stability and the long-term secular evolution of non-rotating, triaxial spheroidal galactic models, using both N-body simulations and integration in fixed
potentials. More specifically we consider Dehnen models with inner density cusp p oc »~7, built with the Schwarzschild method. We show that short-term stability depends
on the degree of velocity anisotropy (radially anisotropic models are subject to rapid development of radial-orbit instability). Long-term stability, on the other hand, depends
mainly on the properties of the potential, and in particular, on whether it admits a substantial fraction of strongly chaotic orbits. We show that in the case of a weak density
cusp (v = 1 Dehnen model) the N-body model is remarkably stable, while the strong-cusp (v = 2) model exhibits substantial evolution of shape away from triaxiality,
which we attribute to the effect of chaotic diffusion of orbits. The different behaviour in these two cases originates from the different phase space structure of the potential;
in the weak-cusp case there exist numerous resonant orbit families that impede the chaotic duffusion. Moreover, we found that varying the fraction of chaotic orbits in
Schwarzschild model has no effect on the shape evolution of N-body model, which we attribute to impossibility to preserve the chaotic properties of an orbit in the N-body

simulation.

Introduction

We study the evolution of triaxial spheroidal galaxies rep-
resented by Dehnen density profile

(3 —v)M 1
drabe mY(1 + m)4=7’

p(r) =

where m = [(x/a)?+(y/b)?+(z/c)?|'/? is the elliptic ra-
dius, for two cases: v = 1 (weak-cusp model) and v = 2
(strong-cusp), with b/a = 0.79 and ¢/a = 0.5. The
models were created with Schwarzschild method imple-
mented in SMILE software |1]. We explore the stability
of these models with N-body simulations, using N > 10°
particles evolved with gyrfalcON code |2|, on a timescale
corresponding to Hubble time. We find that on a short
timescale the models develop radial-orbit instabglity if the
=157
0.3 — 0.4, in agreement with |3]. In the opposite case
the models appear to be quite stable for many dynamical
times. However, the strong-cusp model exhibits substan-

tial evolution of shape towards more axisymmetric, see
Fig. 1.

central velocity anisotropy coefficient 3 exceeds

Resonances and chaotic diffusion

The triaxial Dehnen models contain a large fraction
(~ 30 — 40%) of chaotic orbits: it is impossible to cre-
ate a self-consistent model using only the regular orbits.
There is gradual transition from regular through weakly
chaotic to strongly chaotic orbits (example is given in
Fig. 2). One of chaos indicators is frequency diffusion
rate ow, measuring the difference in leading frequencies
of motion between the first and the second halves of inte-
gration time. As seen from Fig. 3 (right panel), there is
a smooth distribution of orbits by 0w, but for the strong-
cusp case there are more strongly chaotic orbits |[4|. More
importantly, in the weak-cusp case there exist numerous
non-tube resonant orbit families, for which the leading fre-
quencies of oscillation in three coordinates satisfy one or
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more resonant relation njw, +nowy, +naw, = 0, with in-
teger n;. They are visible as concentration of points along
lines on the frequency map plot (Fig. 3, left); by contrast,
the frequency map for strong-cusp model (Fig. 3, middle)
does not have significant resonances, apart from 1 : 2
x — z banana orbit.

The resonant orbits are important because they both rep-
resent “building blocks” with various geometry, and in-
hibit chaotic diffusion in phase space [5]. While chaotic
orbits exist in both weak- and strong-cusp models, in the
latter case they become on average rounder in the course
of evolution, more uniformly filling the equipotential sur-
face; while in the former case their diffusion is mostly
limited to the vicinity of resonant orbit families, which
have more well-defined nontrivial shape.

We also found that the variation of the chaotic orbit frac-
tion in the Schwarzschild model does not change the rate
of shape evolution of N-body model. This is explained
by the impossibility to preserve chaotic properties of a
given orbit in the N-body simulation, even if the orbit
shape is well preserved. The evolution is therefore gov-
erned by gross features of the potential, not by a par-
ticular arrangement of orbits. Another demonstration
of this is that models built with Schwarzschild’s method
evolve similarly to those created with iterative method
for constructing dynamical equilibrium models [6]. 1t is
also important to note that a similar amount of evolution
is observed in fixed-potential integration, when particles

are evolved in a static potential and do not interact with
each other (Fig. 1, red).
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Fig. 1: Evolution of axis ratios b/a and ¢/a (starting from
0.79 and 0.5, correspondingly). Blue line —y = 1 N-body
model with N = 10°, which shows very little evolution;
green line — v = 2 N-body model with N = 10°, which
changes shape substantially to become more axisymmet-
ric; red line — integration in fixed potential for v = 2
model, which shows comparable amount of evolution ex-
clusively due to chaotic diffusion. 7" = 1000 corresponds
roughly to Hubble time; dynamical time at half-mass ra-

dius is O(10).

Fig. 2. Example of a regular resonant orbit (left, fre-
quency diffusion rate dw ~ 10™%), a weakly chaotic orbit
(center, dw ~ 1072°), and a strongly chaotic one (right,

dw ~ 1071).
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Fig. 3: Frequency map plots for v = 1 (left) and v = 2 (center) models: each point represents an orbit with given ratio of leading frequencies in three coordinates (w,/wy and
w,/wy). Blue dots represent regular orbits and red — chaotic ones, based on the value of their Lyapunov exponent. There is remarkable difference between the two models: in
the former case there exist substantial population of orbits in resonant families, which show up as points grouping along certain lines on the plot. In the latter case most orbits
which do not belong to 1 : 1 tube families and 1 : 2 x — z banana family, are chaotic.
Right panel displays the distribution of frequency diffusion rates (blue — for v = 1 model, green — for v = 2 model). Dotted lines — all orbits, solid lines — tube-like orbits only,
dot-dashed lines — all other non-tube orbits, including resonant orbit families and chaotic orbits. It demonstrates that the latter population is indeed different in the two models,
in the v = 2 case being notably composed of strongly chaotic orbits with dw > 1072




