
Secular Monte-Carlo method

Eugene Vasiliev (Lebedev Physical Institute, Moscow, Russia)

I propose a new approach to simulations of long-term (secular) evolution of stellar systems that follow a series of quasi-equilibrium configurations.
It can be regarded as a bridge between self-consistent field (SCF) method for collisionless dynamics, and Monte-Carlo method for globular cluster evolution.

General potential-density representa-

tion and the Schwarzschild method

The potential and density profile of a stellar system
with a well-defined center and without clumpy sub-
structure may be well represented as a finite sum of
basis functions with certain coefficients Anlm:

Φ(r, θ, φ) =
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

AnlmΦnlm(r, θ, φ)

ρ(r, θ, φ) =
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

Anlm ρnlm(r, θ, φ)

(1)

Typically, the basis functions are factorized as
Φnlm = Φnl(r)Y

m
l (θ, φ), where the angular part of

basis functions is represented in spherical harmonic
functions. For the radial basis, several choices exist,
most widely used is the Hernquist-Ostriker(1992) ba-
sis set, for which the zeroth-order term corresponds
to Hernquist profile, ρ(r) = r−1(1 + r)−3. Another
option is a direct representation of radial part of ex-
pansion as smooth functions of radius:

Φ(r, θ, φ) =

lmax∑

l=0

l∑

m=−l

Alm(r)Y m
l (θ, φ) (2)

In practice, Alm are evaluated at a finite number of
grid points in radius, and spline-interpolated between
them.

The coefficients of expansion in either case may be
computed from a smooth analytical model, or directly
from a set of point masses. In the latter case, integra-
tion of orbits in a smooth potential initialized from
an N -body snapshot may be used to study the or-
bital structure of a given system, and gives a better
approximation to the underlying density model than
a superposition of potentials of discrete “frozen” par-
ticles (Vasiliev, 2013).

The potential-density expansions presented above
may be used to construct self-consistent equilibrium
models using the Schwarzschild (1979) method. One
computes a large library of Norb orbits by numer-
ically integrating equations of motion in the given
potential, evaluates the contribution of each orbit to
the density of the model, parametrized by coefficients
Anlm,i, i = 1..Norb of density expansion for each or-
bit, and solves for weights wi of orbits which result
in their superposition satisfying the original density
profile:

Norb∑

i=1

wiAnlm,i = Anlm for ∀n, l,m (3)

Time-smoothed SCF method

We can go one step further and drop the requirement
that the superposition of orbits described above re-
mains stationary in time. Namely, we may let the co-
efficients of potential expansion depend on t, while re-
maining consistent with the density generated by the
set of orbits. It may be regarded as a time-smoothed
generalization of Hernquist & Ostriker (1992) self-
consistent field (SCF) method, in which the basic
building block is changed from a single particle to the
entire orbit (represented by Nsamp ≫ 1 of sampling

points from its trajectory), and the coefficients of ex-
pansion are averaged over a time interval of many
dynamical times. The obvious advantages are:

• Reduced discreteness noise: instead of Nbody we
have Norb × Nsamp point masses to compute the
potential, while we need to follow only Norb tra-
jectories.

• Time averaging over timescales longer than the dy-
namical time ensures adiabatic conservation of ac-
tions; two-body relaxation is suppressed.

•May impose a particular form of symmetry (e.g.
axisymmetry) by keeping only relevant terms in
potential expansion.

In addition, one may add random perturbations to
trajectories, mimicking the effect of two-body relax-
ation with adjustable relaxation rate (i.e. it does not
needs to correspond to the actual number of orbits in
the system, but to a much larger N⋆ which is a free
parameter). In this approach, it generalizes the well-
known Monte-Carlo method for studying dynamics
of globular clusters (in the Spitzer’s, not Hénon’s for-
mulation) to arbitrary geometry.

A range of problems may be addressed with this
method, including:

• Interplay between collisional and collisionless re-
laxation in galactic nuclei containing supermassive
black holes.

• Evolution of galactic shape due to diffusion of
chaotic orbits.

• Non-spherical star clusters in external tidal field.

SMILE – a new software for orbit anal-

ysis and Schwarzschild modelling

While the approach outlined above remains to be de-
veloped in details, the tool for orbit analysis and con-
struction of self-consistent models by Schwarzschild’s
method already exists and is publicly available. The
key features of SMILE are:

• A number of standard potential models (e.g. tri-
axial Dehnen), and several general-purpose poten-
tial approximations which may represent arbitrary
non-spherical density profile.

• Orbit analysis methods: classification of orbit
shapes (boxes, tubes, resonant and chaotic orbits);
frequency analysis, detection of chaotic orbits us-
ing Lyapunov exponent and frequency diffusion
rate. May analyse orbits from external simulations
as well as from internal orbit integrator.

• Tools for studying global dynamics of a given po-
tential: Poincaré surfaces of section, frequency
map plots.

• Schwarzschild modelling for a theorist’s usage (cre-
ating models with arbitrary density profile but
without fitting observations).

• An interactive graphical interface and scripting
support.

•Written in C++, portable to Linux, Mac and Win-
dows. Modular structure allows to use parts of the
code in external programs, and easily include ad-
ditional features.
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3d rendering of a 3:4:5 resonant orbit.
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Frequency map plot (e.g. Papaphilippou & Laskar,
1998): each point corresponds to an orbit with the
ratio of leading frequencies ωy/ωx and ωz/ωx as co-
ordinates. Families of resonant orbits are visible as
concentration of points along lines; color denotes the
regular(blue) or chaotic(red) character of an orbit.

Poincaré surface of section for a 2d logarithmic po-
tential

The software is available for download at
http://td.lpi.ru/~eugvas/smile/


