Evolution of binary supermassive black holes and the mythical final-parsec problem

WFPC2 captures a SMBH binary kicking stars out of the bulge

Evolutionary stages of binary supermassive black holes

Gravitational slingshot and binary hardening

Three-body scattering:

a star passing near the binary is ejected with a typical velocity

 $v_{\rm ej} \sim \sqrt{rac{m_1 m_2}{(m_1 + m_2)^2}} v_{\rm bin} \gg \sigma.$

These stars carry away energy and angular momentum, so that the binary semimajor axis *a* decreases:

$$rac{d}{dt}\left(rac{1}{a}
ight)pprox 16rac{G\,
ho}{\sigma}\ \equiv\ S_{
m full}$$
 [Quinlan 1996]

Thus if the density of stars ρ remains constant, the binary hardens at a constant rate. However, the reservoir of low angular momentum stars (the loss cone) may be depleted quickly \Rightarrow the binary stalls at a radius $a_{\text{stall}} \sim (0.1 - 0.4)a_{\text{hard}}$.

Loss cone theory

Loss cone angular momentum: $L_{LC} \equiv \sqrt{2G(m_1 + m_2) a}$. Stars with $L < L_{LC}$ are eliminated on a dynamical timescale T_{dyn} . The crucial parameter is the timescale for loss cone repopulation. In the absence of other processes, the repopulation time is $T_{rep} \sim T_{rel} \frac{L_{LC}^2}{L_{circ}^2}$, where $T_{rel} = \frac{0.34 \sigma^3}{G^2 m_\star \rho_\star \ln \Lambda}$ is the relaxation time.

If $T_{\rm rep} \lesssim T_{\rm dyn}$, the loss cone is full.

However, real galaxies are in the opposite (empty loss cone) regime.

In this case the hardening rate
$$S \equiv rac{d}{dt}(a^{-1}) \simeq rac{T_{\mathsf{dyn}}}{T_{\mathsf{rep}}}S_{\mathsf{full}}.$$

Relaxation is too slow for an efficient repopulation of the loss cone: in the absense of other processes, the binary would not merge in a Hubble time.

This is the "final-parsec problem" [Milosavljević&Merritt 2003]

N-scaling in the empty loss cone regime

In galaxy-scale *N*-body simulations, the number of particles $N \lesssim 10^6$ is much less than the number of stars in the galaxy N_{\star} . Hardening rate $S \equiv \frac{d}{dt}(a^{-1}) \propto T_{rel}^{-1} \propto (N^{-1})$

signature of empty loss cone regime

Merger simulations hint for a full loss cone

Loss cone in non-spherical stellar systems

Angular momentum L of any star is not conserved, but experiences oscillations due to torques from non-spherical distribution of stars.

More stars can attain low L and enter the loss cone at some point in their (collisionless) evolution, regardless of two-body relaxation.

This has led to the conclusion that the loss cone in axisymmetric and especially triaxial systems remains full.

Evolution of isolated systems in different geometries

But this can't be the whole story:

in N-body simulations of isolated systems with different geometry – spherical, axisymmetric and triaxial – the hardening rate still decreases with N (but less strongly in non-spherical cases), and is several times lower than S_{full} .

Problems with direct *N*-body simulations

- Galaxies have $N_{\star} \sim 10^{10-12}$, but simulations only $N \sim 10^6$;
- Cannot simply extrapolate the hardening rate to different N: collisional relaxation scales as N⁻¹, collisionless processes are independent of N;
- We can't afford much higher N even with the latest hardware (at least using direct-summation codes)

Problems with direct *N*-body simulations

- Galaxies have $N_{\star} \sim 10^{10-12}$, but simulations only $N \sim 10^6$;
- Cannot simply extrapolate the hardening rate to different N: collisional relaxation scales as N⁻¹, collisionless processes are independent of N;
- We can't afford much higher N even with the latest hardware (at least using direct-summation codes)

Need a simulation method in which we may

- accurately follow fast three-body scattering events;
- track the depletion and slow repopulation of the loss cone;
- account for the change of galaxy shape and erosion of density cusp;
- adjust the relaxation rate independently of particle number (in particular, attain the collisionless limit by switching it off).

Sounds too good to be feasible?

A novel simulation method

Suppression of relaxation: use spatial and temporal smoothing and oversampling;

Gravitational potential:

spherical-harmonic expansion for \forall geometry;

Star-binary interactions:

explicit tracking of energy and angular momentum exchanges in three-body scattering events;

Addition of relaxation:

local diffusion coefficients for velocity perturbations

Assumptions:

- quasi-stationary evolution, well defined center;
- hard SBH binary already formed

[Vasiliev 2015]

Global dynamics: smooth field method

Spherical-harmonic expansion for the global stellar potential

(cf. Aarseth 1967, Hernquist&Ostriker 1992) :

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} \Phi_{l,m}(r) Y_{l}^{m}(\theta,\phi);$$

$$\Phi_{l,m}(r) = -\frac{4\pi G}{2l+1} \left[r^{-l-1} \sum_{r_{i} < r} m_{i} Y_{l}^{m}(\theta_{i},\phi_{i}) r_{i}^{l} + r^{l} \sum_{r_{i} > r} m_{i} Y_{l}^{m}(\theta_{i},\phi_{i}) r_{i}^{-1-l} \right]$$

Use long intervals between potential update ($\gtrsim T_{dyn}$); take many sampling points from each particle's trajectory.

Three-body scattering and binary evolution

- Two black holes on a Keplerian orbit;
- Test particles in time-dependent gravitational field;
- Record changes in energy and angular momentum of each particle, adjust the binary orbit parameters (semimajor axis a and eccentricity e) using conservation laws [e.g. Sesana+ 2006,2007; Meiron&Laor 2012].
- Add gravitational-wave emission:

$$\begin{aligned} \frac{d(1/a)}{dt}\Big|_{\rm GW} &= \frac{64}{5} \frac{G^3 M_{\bullet}^3}{c^5 a^5} \frac{q}{(1+q)^2} \frac{1 + \frac{73}{24} e^2 + \frac{37}{96} e^4}{(1-e^2)^{7/2}}, \\ \frac{de}{dt}\Big|_{\rm GW} &= -\frac{G^3 M_{\bullet}^3}{c^5 a^4} \frac{q}{(1+q)^2} \frac{e(304+121e^2)}{15(1-e^2)^{5/2}} \qquad [{\rm Peters} \ 1964]. \end{aligned}$$

Collisional relaxation and the Monte Carlo method

Spitzer's (1971) formulation of Monte Carlo method in terms of local (position-dependent) velocity perturbations:

$$\begin{split} \Delta v_{\parallel} &= \langle \Delta v_{\parallel} \rangle \Delta t + \zeta_{1} \sqrt{\langle \Delta v_{\parallel}^{2} \rangle \Delta t} , \qquad \text{Perturbations applied} \\ \Delta v_{\perp} &= \zeta_{2} \sqrt{\langle \Delta v_{\perp}^{2} \rangle \Delta t} , \qquad \zeta_{1}, \zeta_{2} \sim \mathcal{N}(0, 1) \qquad \text{numerical orbit integration} \\ v \langle \Delta v_{\parallel} \rangle &= -\left(1 + \frac{m}{m_{\star}}\right) l_{1/2} , \\ \langle \Delta v_{\parallel}^{2} \rangle &= \frac{2}{3} \left(l_{0} + l_{3/2}\right) , \\ \langle \Delta v_{\perp}^{2} \rangle &= \frac{2}{3} \left(2l_{0} + 3l_{1/2} - l_{3/2}\right) , \\ l_{0} &\equiv \Gamma \int_{E}^{0} dE' \left[f(E')\right] \qquad \text{distribution function of stars} \\ l_{n/2} &\equiv \Gamma \int_{\Phi(r)}^{E} dE' f(E') \left(\frac{E' - \Phi(r)}{E - \Phi(r)}\right)^{n/2} , \qquad \text{gravitational potential} \\ \Gamma &\equiv 16\pi^{2}G^{2}m_{\star} \ln \Lambda = 16\pi^{2}G^{2}M_{\text{tot}} \times \left[\left(N_{\star}^{-1}\ln\Lambda\right)\right] \\ &= \text{scalable amplitude of perturbation} \end{split}$$

Implementations of the Monte Carlo method

Name	Reference	relaxation treatment	timestep	1:11	BH ²	remarks
Princeton	Spitzer&Hart(1971), Spitzer&Thuan(1972)	local dif.coefs. in velocity, Maxwellian background $f(r, v)$	$\propto T_{dyn}$	-	-	
Cornell	Marchant&Shapiro (1980)	dif.coef. in E , L , self-consistent background $f(E)$	indiv., <i>T_{dyn}</i>	-	+	particle cloning
-	Hopman (2009)	same		-	+	stellar binaries
Hénon	Hénon(1971)	local pairwise interaction, self-consistent bkgr. $f(r, v_{\parallel}, v_{\perp})$	$\propto T_{rel}$	-	-	
-	Stodołkiewicz(1982) Stodołkiewicz(1986)	Hénon's	block, $T_{rel}(r)$	-	-	mass spectrum, disc shocks binaries, stellar evolution
Mocca	Giersz(1998) Hypki&Giersz(2013)	same same	same same	+ +	_	3-body scattering (analyt.) single/binary stellar evol., few-body scattering (num.)
Смс	Joshi+(2000) Umbreit+(2012), Pattabiraman+(2013)	same	$\propto T_{rel}(r=0)$ (shared)	+ +	- +	partially parallelized fewbody interaction, single/ binary stellar evol., GPU
${\rm Me}({\rm ssy})^2$	Freitag&Benz(2002)	same	indiv. $\propto T_{\it rel}$	-	+	cloning, SPH physical collis.
-	Sollima&Mastrobuono- Battisti(2014)	same		-	-	realistic tidal field
Raga	Vasiliev(2015)	local dif.coef. in velocity, self- consistent background $f(E)$	indiv. $\propto T_{dyn}$	-	+	arbitrary geometry

 $^1 \ensuremath{\mathsf{O}}\xspace{\mathsf{ne}}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\xspace{\mathsfne}\$

 $^{2}\ensuremath{\mathsf{Massive}}$ black hole in the center, loss-cone effects

Calibration of Monte Carlo simulations

- Monte Carlo simulations are in quantitative agreement with direct N-body simulations for all combinations of parameters that we explored (N, mass ratio, eccentricity, geometry, ...)
- There are no free parameters in the Monte Carlo method (apart from the pre-factor η ~ 0.02 in the Coulomb logarithm log Λ = log ηN).

Long-term binary evolution in Monte Carlo simulations

- ► Hardening rate decreases with time in all three geometries.
- In the absense of relaxation (N_⋆ = ∞), it drops to zero in spherical and axisymmetric cases, but stays high enough in triaxial case.
- Systems with relaxation eventually settle to a constant hardening rate at large enough time.
- ▶ There is little difference between axisymmetric and triaxial systems even for N_{\star} as large as 5×10^6 , but in the collisionless limit their evolution is qualitatively different!

Qualitative analysis of long-term collisionless evolution

- ► To shrink the binary by a factor of two, one needs to eject stars with total mass ~ M_•; thus one needs to supply a few×M_• worth of stars into the loss cone over the entire evolution.
- Stars on centrophilic orbits in the extended loss region can eventually enter the loss cone; but in the axisymmetric case the volume of loss region shrinks as the binary hardens.

Particles that can arrive into the loss cone:

- not in loss region
- spherical
- axisymmetric
- triaxial

[Vasiliev, Antonini & Merritt 2015]

Summary

- The longest evolutionary stage of a sub-parsec binary is driven by loss-cone repopulation;
- ▶ Binary black holes need few×10⁸ 10⁹ years to coalesce in gas-poor galaxies;
- The "final-parsec problem" occurs in the idealized cases, but in realistic galactic mergers even minor deviations from axisymmetry are sufficient to keep the loss cone non-empty;
- Accurate treatment of this problem is difficult to achieve in conventional *N*-body simulations, but can be done with the special-purpose Monte Carlo method.

Thank you!