Gaia EDR3 view on Galactic globular clusters

Eugene Vasiliev

Institute of Astronomy, Cambridge

distance

10

MW-Gaia workshop, 10 February 2021

 $DR1 \implies DR2$

Determination of cluster properties and membership

Criteria for selecting a "clean" subset of stars:

 $G \ge 13$; RUWE < 1.15; $astrometric_excess_noise_sig < 2$; $ipd_gof_harmonic_amplitude < exp [0.18 (G - 33)]$; $ipd_frac_multi_peak \le 2$; $visibility_periods_used \ge 10$; $phot_bp_rp_excess_factor < C^{\star}(bp_rp) + 3 \epsilon_{C^{\star}}(G)$; usually only 5p sources (when have enough of them).

Mixture modelling approach: maximize $\ln \mathscr{L} \equiv \sum_{i=1}^{N_{\text{stars}}} \ln \left[\eta f_{\text{memb}}(\mathbf{x}_i \mid \boldsymbol{\theta}_{\text{memb}}) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i \mid \boldsymbol{\theta}_{\text{field}}) \right],$ membership probability of *i*-th star: $p_i = \frac{\eta f_{\text{memb}}(\mathbf{x}_i)}{\eta f_{\text{memb}}(\mathbf{x}_i) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i)}$ fraction of members

Results: $\overline{\varpi}$, $\overline{\mu}$, $\sigma_{\mu}(R)$, $\mu_{rot}(R)$, η , p_i , ...

1.1 Statistical uncertainties are slightly underestimated

1.1 Statistical uncertainties are slightly underestimated

Actual vs. formal uncertainty:

 $\epsilon_{\rm actual}^2 = \eta^2 \, \epsilon_{\rm formal}^2 + \epsilon_{\rm add}^2 \text{,} \label{eq:electron}$

error inflation factor

$$\begin{split} \eta &= (1+\Sigma/\Sigma_0)^{\zeta}, \\ \Sigma_0 &= 10 \text{ stars/arcmin}^2, \\ \zeta &= 0.04, \end{split}$$

 $\epsilon_{\rm add}~=~0.01$ mas.

1.1 Statistical uncertainties are slightly underestimated

1.2 Systematic errors are spatially correlated

1.2 Systematic errors are spatially correlated

Spatial covariance function: $V_{\overline{\omega}}(\theta) = \langle (\overline{\omega}_i - \overline{\omega}) (\overline{\omega}_j - \overline{\omega}) \rangle$, where θ is the angular distance between stars *i* and *j*.

see Lindegren+ 2012.03380, Maíz Apellániz+ 2101.10206 for $V_{\varpi}(\theta)$ determined on scales $\theta \gtrsim 1^{\circ}$ from LMC stars and quasars.

For bright stars (13 < G < 18): $\epsilon_{\varpi,sys} \equiv \sqrt{V_{\varpi}(\theta = 0)} \simeq 0.01 \text{ mas};$ DR2: for fainter stars it may be $\sim 1.5 - 2 \times$ higher. $\epsilon_{\varpi,sys} \sim 0.043$ Same for PM: $\epsilon_{\mu,sys} \simeq 0.025 \text{ mas/yr}.$ $\epsilon_{\mu,sys} \sim 0.066$

1.3 [Corrected] parallaxes might be slightly overestimated

2.1 Internal kinematics: rotation, dispersion

2.2 Dynamical distance determination

2.3 PM anisotropy profiles

variety of profiles, mostly weakly radial or isotropic

2.4 Perspective effects in the radial PM component

Perspective contraction/expansion due to line-of-sight motion: $\mu_R(R) = \xi R, \ \xi_{\text{expected}} = -v_{\text{LOS}}/D \times (\pi/180^{\circ}/4.74) \text{ mas/yr/degree}.$

(error bars take into account spatially correlated systematics)

2.5 Orbits of clusters in the Milky Way

distance errors are the major source of uncertainty in orbit parameters

Summary: Gaia EDR3 \iff globular clusters

- Statistical uncertainties are underestimated by 10 20% in dense regions (even for the clean subset);
- ► Spatially correlated systematic errors on sub-degree scales: $\epsilon_{\varpi} \simeq 0.01 - 0.02$ mas, $\epsilon_{\mu} \simeq 0.025$ mas/yr;
- \blacktriangleright Parallax zero-point correction overshoots by ~ 0.008 mas.
- Mean parallaxes, PM and orbits determined for 170 globular clusters;
- \blacktriangleright PM dispersions and dynamical distances for \sim 100 clusters;
- Rotation detected in ~ 20 clusters;
- $\blacktriangleright\,$ PM anisotropy measured in \sim 20 clusters.