Gaia EDR3 view on Galactic globular clusters

Eugene Vasiliev

Institute of Astronomy, Cambridge

1 10 100 distance

IAP seminar, 17 June 2021

based on: Vasiliev & Baumgardt (2102.09568), Baumgardt & Vasiliev (2105.09526

The Gaia [r]evolution

The Gaia [r]evolution

pre-Gaia \implies DR1 \implies DR2 \implies EDR3 \implies DR3, 4, 5

Determination of cluster membership

Determination of cluster membership

Determination of cluster membership and parameters

A hard cutoff in PM space is not always possible and is conceptually unsatisfactory.

A more mathematically well-grounded alternative: mixture modelling [Gaussian or more general].

Write down the distribution functions for both cluster and field populations, and vary their parameters θ to maximize the likelihood of the observed data data:

true DF convolved with errors measurements:
$$\varpi, \mu, R$$
 measurement uncertainties

$$\ln \mathscr{L} \equiv \sum_{i=1}^{N_{\text{stars}}} \ln \left[\eta f_{\text{memb}}(\mathbf{x}_i, \, \delta \mathbf{x}_i \mid \boldsymbol{\theta}_{\text{memb}}) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i, \, \delta \mathbf{x}_i \mid \boldsymbol{\theta}_{\text{field}}) \right]$$
fraction of members parameters of distributions

Results: cluster properties $\overline{\varpi}$, $\overline{\mu}$, $\sigma_{\mu}(R)$, $\mu_{\text{rot}}(R)$, η , ... and membership probability of each star: $p_i = \frac{\eta f_{\text{memb}}(\mathbf{x}_i)}{\eta f_{\text{memb}}(\mathbf{x}_i) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i)}$.

6d kinematics of star clusters

Orbits of star clusters

Clusters in the space of integrals of motion

Clusters in the space of integrals of motion

Jackson Pollock, "Convergence"

Kliment Redko, "Uprising"

Distances to star clusters

Internal kinematics: rotation, dispersion

PM anisotropy profiles

variety of profiles, mostly weakly radial or isotropic

Perspective effects in the radial PM component

Perspective contraction/expansion due to line-of-sight motion: $\mu_R(R) = \xi R, \ \xi_{\text{expected}} = -v_{\text{LOS}}/D \times (\pi/180^\circ/4.74) \text{ mas/yr/degree}.$ 0.2 20 0.1 15 0.0 1.0-neasured count 10 5 -0.3 -0.4 0 0.2 -0.4 - 0.3 - 0.2 - 0.1 0.00.1 -2 -1 0 1 2 $(\xi_{
m meas} - \xi_{
m exp})/\epsilon_{\xi}$ -2 ξ_{expected}

(error bars take into account spatially correlated systematics)

Caveat 1: statistical uncertainties are slightly underestimated

Caveat 1: statistical uncertainties are slightly underestimated

Actual vs. formal uncertainty:

$$\epsilon_{\rm actual}^2 = \eta^2 \, \epsilon_{\rm formal}^2 + \epsilon_{\rm add}^2,$$

error inflation factor

$$\begin{split} \eta &= (1+\Sigma/\Sigma_0)^{\zeta}, \\ \Sigma_0 &= 10 \text{ stars/arcmin}^2, \\ \zeta &= 0.04, \end{split}$$

 $\epsilon_{\rm add}~=~0.01$ mas.

See also uncertainty calibration studies:

Fabricius+ 2012.06242, Maíz Apellániz+ 2101.10206, El-Badry+ 2101.05282:

 $\eta \sim 1.1-1.3$ for well-behaved sources

Caveat 2: variation of parallax zero point across CMD

stars coloured by the offset of ϖ from the mean value for each cluster

Analysis of parallaxes in the Large Magellanic Cloud

Analysis of parallaxes in the Large Magellanic Cloud

spatial correlations in the mean parallax of stars described by a covariance function $V_{\varpi}(\theta) = \langle (\varpi_i - \overline{\varpi}) (\varpi_j - \overline{\varpi}) \rangle$, where θ is the angular distance between stars *i* and *j*.

Analysis of parallaxes in the Small Magellanic Cloud

Analysis of parallaxes in the Sagittarius dSph

16 16

18

mean parallax of Sgr stars

Caveat 3: spatially correlated systematic errors

Spatial covariance function: $V_{\varpi}(\theta) = \langle (\varpi_i - \overline{\varpi}) (\varpi_j - \overline{\varpi}) \rangle$, where θ is the angular distance between stars *i* and *j*.

see also Lindegren+ 2012.03380, Maíz Apellániz+ 2101.10206 for $V_{\varpi}(\theta)$ determined on scales $\theta \gtrsim 1^{\circ}$ from LMC stars and quasars.

For bright stars (13 < G < 18): $\epsilon_{\varpi,sys} \equiv \sqrt{V_{\varpi}(\theta = 0)} \simeq 0.01 \text{ mas};$ DR2: for fainter stars it may be $\sim 1.5 - 2 \times$ higher. $\epsilon_{\varpi,sys} \sim 0.043$ Some for PM: $\epsilon_{\varpi,sys} \sim 0.025 \text{ mag}/w$

Same for PM:
$$\epsilon_{\mu,sys} \simeq 0.025$$
 mas/yr.

Caveat 4: parallaxes appear to be slightly overestimated

Caveat 4: parallaxes appear to be slightly overestimated

$$egin{aligned} &arpi_i - 1/D_i \sim \mathcal{N}(\Deltaarpi, \ \epsilon^2_{arpi,i} + \epsilon^2_{arpi, ext{sys}}), \ &\Deltaarpi \simeq 0.01 \, ext{mas}, \ &\epsilon_{arpi, ext{sys}} \simeq 0.01 \, ext{mas}. \end{aligned}$$

See also zero-point calibration studies by Riess+ 2012.08534 (cepheids), Bhardwaj+ 2012.13495 (RR Lyrae), Stassun & Torres 2101.03425, Ren+ 2103.16096 (eclipsing binaries), Zinn 2101.07252 (asteroseismology), Huang+ 2101.09691 (red clump stars), Groenewegen 2106.08128 (quasars)

Summary: Gaia EDR3 \iff globular clusters

- Mean parallaxes, PM and orbits determined for 170 globular clusters;
- ▶ PM dispersions and dynamical distances for ~ 100 clusters;
- Rotation detected in \sim 20 clusters;
- \blacktriangleright PM anisotropy measured in \sim 15 clusters.
- Statistical uncertainties are underestimated by 10 20% in dense regions (even for the clean subset);
- Spatially correlated systematic errors on sub-degree scales: $\epsilon_{\varpi} \simeq 0.01 - 0.02$ mas, $\epsilon_{\mu} \simeq 0.025$ mas/yr;
- \blacktriangleright Parallax zero-point correction overshoots by ~ 0.01 mas.

Despite these caveats, *Gaia* is great and EDR3 significantly improves its quality!

