Relaxation and black hole feeding rates in non-spherical galactic nuclei

Eugene Vasiliev David Merritt

Rochester Institute of Technology

Plan of the talk

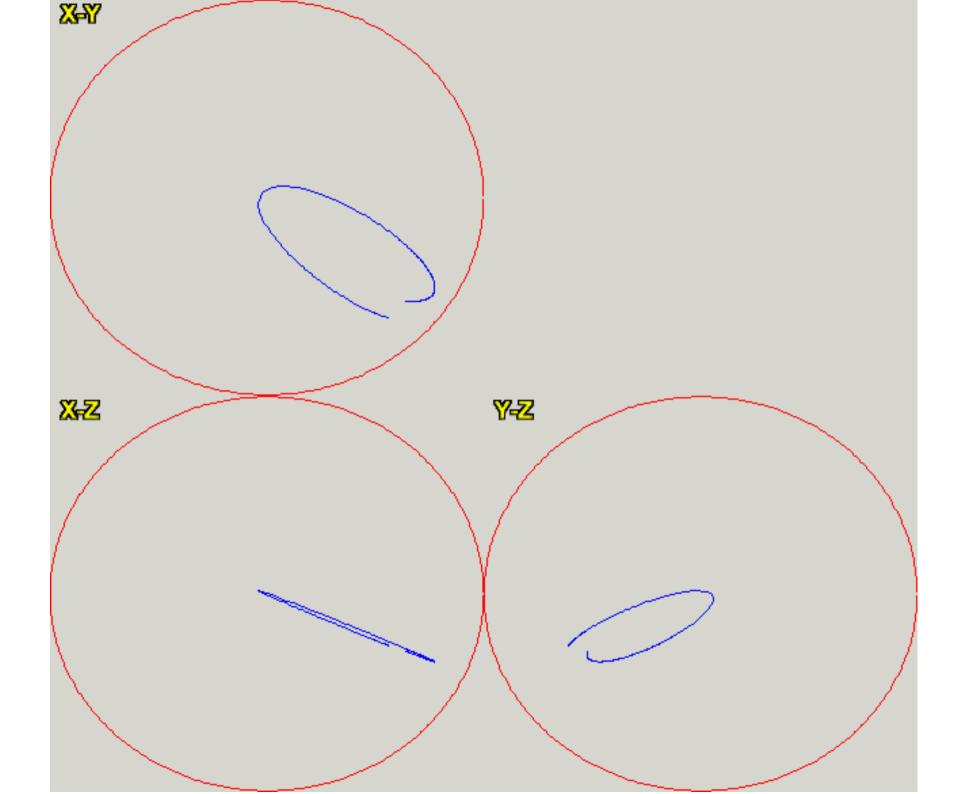
- Orbits around black holes in non-spherical nuclei
- Difference between spherical, axisymmetric and triaxial nuclear star clusters
- Two-body relaxation in galactic nuclei
- Empty and full loss cone regimes
- Fokker-Planck models and N-body simulations
- Predictions for realistic galaxies; conclusions.

Nuclear star clusters

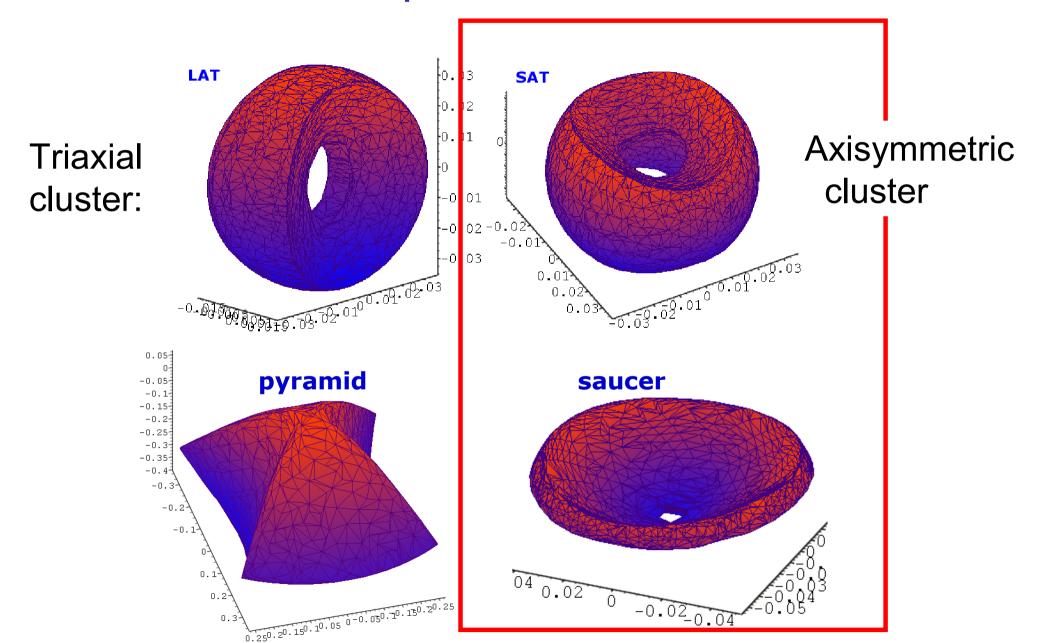
- Supermassive black hole M_{bh}
- Stellar cusp (for example, a power law density profile $\rho \sim r^{-\gamma}$)
- Total gravitational potential:

$$\Phi(\overrightarrow{r}) = -\frac{GM_{bh}}{r} + \Phi_{\star} \left(\frac{r}{r_0}\right)^{2-\gamma} \left(1 + \varepsilon \frac{z^2}{r^2} + \eta \frac{y^2}{r^2}\right)$$

- Consider motion inside radius of influence r_{infl} => dominant contribution is from SMBH => orbits are perturbed Keplerian ellipses which precess due to torques from stellar potential (motion outside r_{infl} is discussed towards the end of talk).
- Orbital time t_{orb} << precession time $t_{prec} \sim r_{infl}/\sigma$

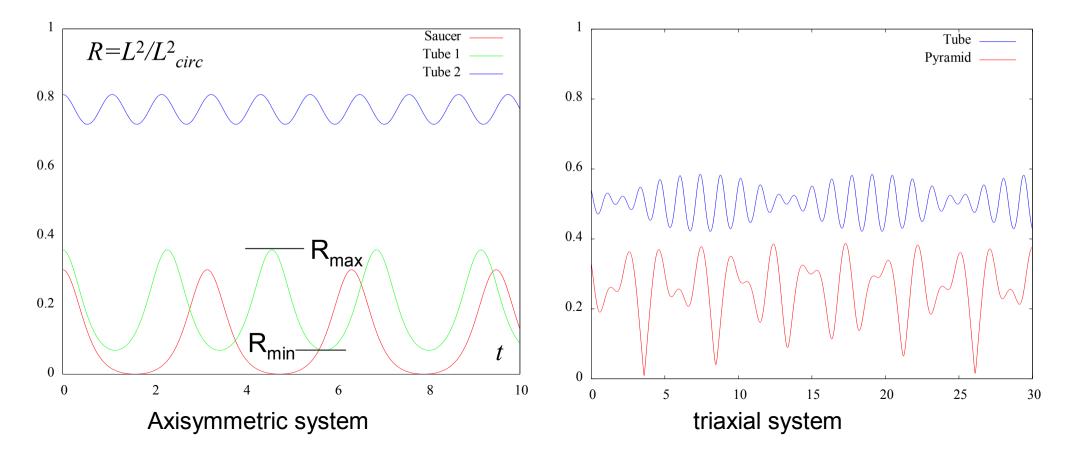


Types of orbits in non-spherical star cluster around a supermassive black hole



Evolution of angular momentum of an orbit in a non-spherical nuclear star cluster

Three integrals of motion: total energy E, secular hamiltonian H, and a third integral which is reduced to z-component of angular momentum L_z in axisymmetric systems. Total angular momentum squared, L^2 , is not conserved but experiences oscillations between R_{min} and R_{max} with characteristic period $T_{osc} \sim T_{prec}$, and amplitude $\sim \epsilon$.



Difference between spherical, axisymmetric and triaxial nuclear star clusters

	Spherical	Axisymmetric	Triaxial
Fraction of stars with L ² _{min} < X	$\propto X$	$\propto \sqrt{X\epsilon}$	$3 \propto$
Fraction of time that such a star has L ² < X	1	\sqrt{X}	Х
Survival time of such stars (assuming they are captured immediately after reaching L ² < R _{capt})	T _{rad} (10 ¹⁻⁵ yr)	Т _{оsc} (10 ⁵⁻⁶ yr)	may be longer than 10 ¹⁰ yr
	(for MW nucleus)		
but that may not be true			
in the presence of relaxation			

Two-body relaxation in galactic nuclei and the concept of empty/full loss cone

Relaxation time $T_{rel} = \frac{0.34 \, \sigma(r)^3}{G^2 \, \overline{m}_\star \, \rho_\star(r) \, \ln \Lambda}$ – timescale for diffusion in E and L

Loss cone is the region in phase space in which an orbit is captured on the nearest pericenter passage, i.e. at most within 1 radial period, having $L^2/L^2_{circ} = R < R_{lc}$.

The question is how fast the changes in L occur compared to radial period:

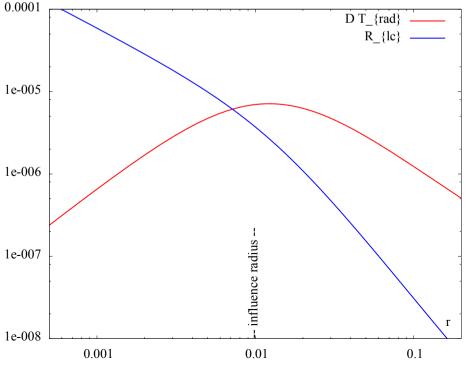
 $q = \Delta R^2 / R^2_{lc}$,

q << 1 – empty loss cone regime:

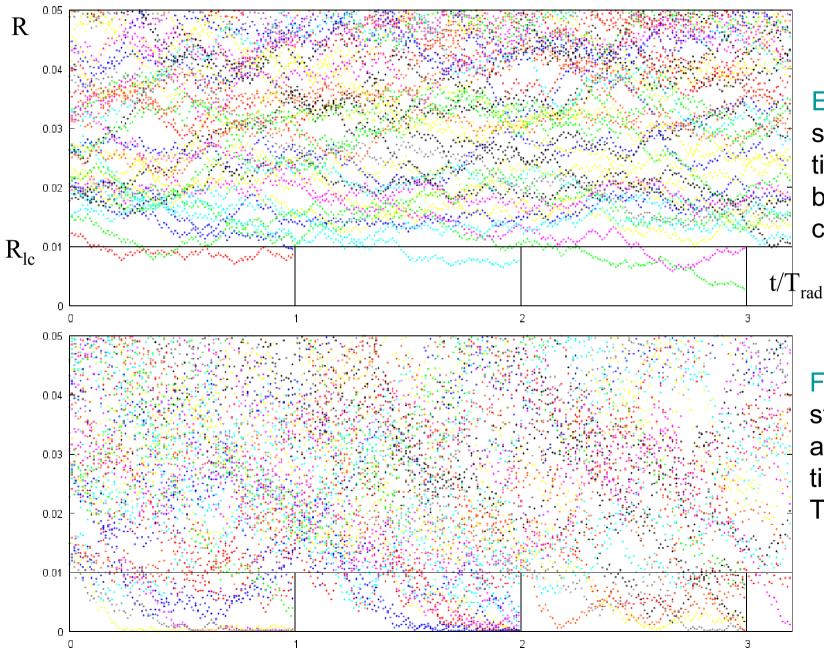
stars are captured as soon as they enter LC; $_{1e-0}$ population of stars with L²<R_{lc} is negligible

q >> 1 – full loss cone:

stars may move in and out of LC many times before being captured at the end of T_{rad}, d.f. of stars in LC is the same as elsewhere



The concept of empty/full loss cone



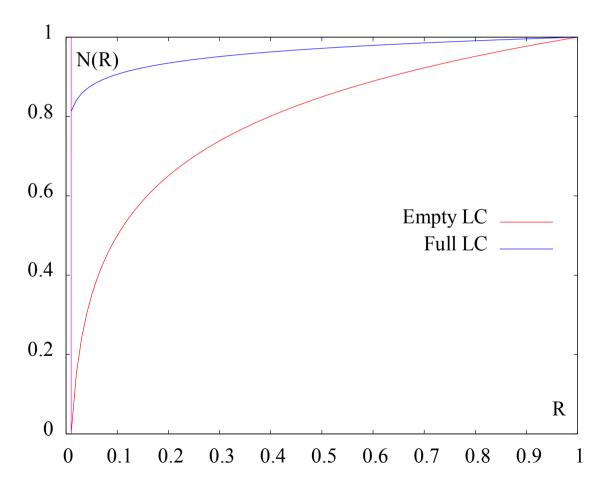
Empty LC: stars barely have time to enter LC before they get captured after T_{rad}

Full LC:

stars may enter and exit LC many times during one

 $\mathsf{T}_{\mathsf{rad}}$

The concept of empty/full loss cone



• In the empty LC regime, $N(R_{lc}) \sim 0$, $N(R) \sim \log R$, capture rate is limited by diffusion (gradient of N(R)): $F \sim T^{-1}_{rel} / (\log(1/R_{lc}) - 1)$ for standard 2-body relaxation

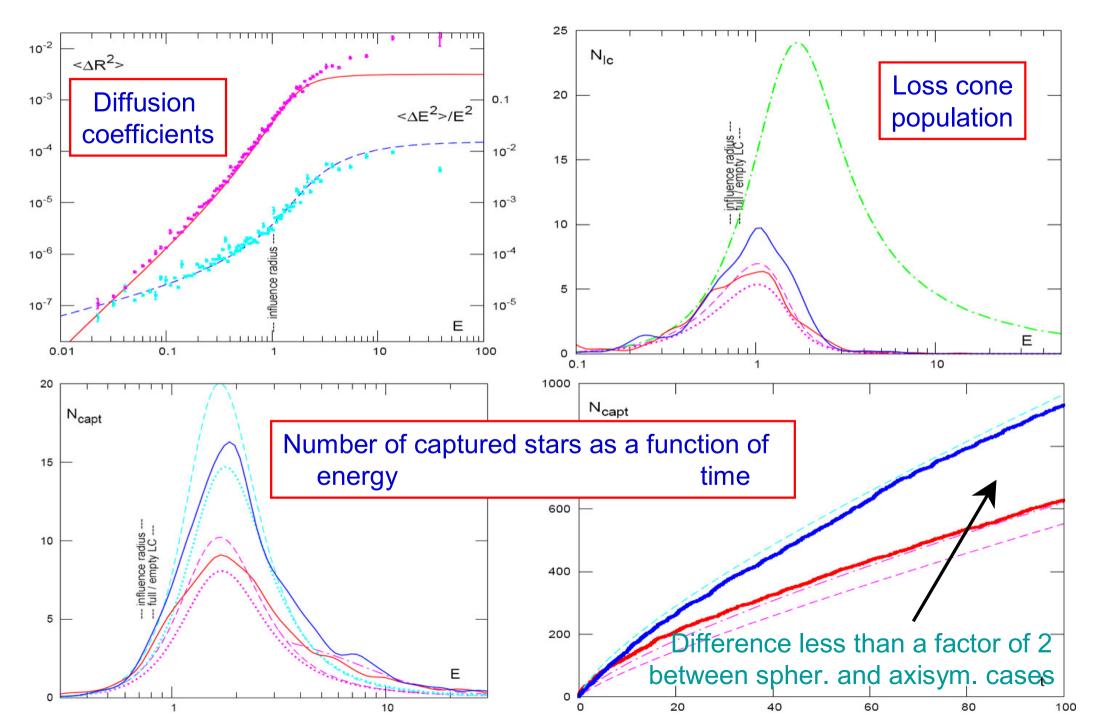
• In the full LC regime,
$$N(R_{lc}) \sim N(R) \sim 1,$$
 capture rate is $F \sim R_{lc}/T_{rad}$

does not depend on diffusion coefficient or even on the mechanism of LC refill as long as it is efficient enough to keep it full!

Loss cone draining vs. relaxation

- Regular precession may shuffle stars in angular momentum more efficiently than 2-body relaxation
- The capture rate cannot exceed F_{full LC}, but can be larger than in the spherical case if it was in the empty loss cone regime
- After all orbits with L²_{min}<R_{capt} have been drained, the influx of stars from higher L is still limited by diffusion (relaxation in angular momentum)
- For triaxial nuclei, the draining time of pyramid orbits may be >1010yr.
 For axisymmetric systems, adequate description of relaxation is needed (in terms of Fokker-Planck equation in terms of the variables which are integrals of motion in the absence of relaxation).
- Comparison with N-body simulations to determine applicability of F-P description; extrapolation of F-P results into the range of parameters inaccessible for direct N-body.

Comparison of Fokker-Planck models with N-body simulations



Conclusions

- In non-spherical nuclear star clusters the star angular momentum L is changed not only due to 2-body relaxation, but also due to regular precession
- This facilitates the capture of stars at low L: the "expanded" loss region is where L²_{min} < L²_{capt}, not just L² < L²_{capt}
- Draining time of this region is $\sim T_{prec} \sim 10^{5-6}$ yr in axisymmetric case and much longer, comparable to Hubble time, in triaxial case
- Compared to the spherical case, the difference in total capture rate for axisymmetric case is relatively small (~factor of 2) and is important only in the transition regime between empty and full loss cone
- For giant elliptical galaxies, which are deeply in the empty loss cone regime for a spherical case, the enhancement may be more dramatic