Action-based self-consistent models

Eugene Vasiliev

Oxford University

May 16, 2016

Plan of the talk

Overview of self-consistent modelling

Actions as the integrals of motion

Models specified by distribution functions

Non-parametric distribution functions

Conclusions

1. Collisionless Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{x}} \frac{\partial f}{\partial \mathbf{v}} = 0.$$

(Assumption: a galaxy is a collisionless system in a steady state)

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

 $\nabla^2 \Phi(\mathbf{x}) = 4\pi \ G \ \rho(\mathbf{x}).$ density

(Assumption: Newtonian gravity)

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

$$\nabla^2 \Phi(\mathbf{x}) = 4\pi \ G \rho(\mathbf{x}).$$
 density

(Assumption: Newtonian gravity)

3. The link:

$$\rho(\mathbf{x}) = \iiint d^3 v \, f(\mathbf{x}, \mathbf{v}).$$

(Assumption: self-consistency)

Ways of solving the equations

1. Collisionless Boltzmann equation:

Jeans theorem states that the DF may depend only on the integrals of motion

$$f = f(\mathcal{I}(\mathbf{x}, \mathbf{v})), \quad \mathcal{I} = \{E, L, \dots\}.$$

depend on the potential Φ

2. Poisson equation:

$$\Phi(\mathbf{x}) = - \int \int \int d^3 x' \ G \
ho(\mathbf{x}') imes rac{1}{|\mathbf{x}-\mathbf{x}'|}.$$

3. The link:

$$\rho(\mathbf{x}) = \iiint d^3 v \, f(\mathbf{x}, \mathbf{v}).$$

Self-consistent models of spherical systems

- ► Integrals of motion: energy $E = \Phi(r) + v^2/2$, angular momentum $L = |\mathbf{x} \times \mathbf{v}|$.
- Gravitational potential:

$$\Phi(\mathbf{x}) \equiv \Phi(r) = -4\pi G \left[r^{-1} \int_0^r dr' \, \rho(r') \, r'^2 + \int_r^\infty dr' \, \rho(r') \, r'^{-1} \right]$$

.

Distribution function:

f(E) (isotropic) or f(E, L) (general anisotropic); in the isotropic case

$$\rho(r) = \int_0^{v_{\text{esc}}} 4\pi v^2 \, dv \, f(\Phi(r) + v^2/2) \\
= \int_{\Phi(r)}^0 dE \, 4\pi f(E) \, \sqrt{2[E - \Phi(r)]}$$

Two possible approaches

1. From ρ to f: first compute $\Phi(r)$ and its inverse $r(\Phi)$;

$$\rho(r) = \int_{\Phi(r)}^{0} dE \, 4\pi f(E) \sqrt{2[E - \Phi(r)]} \implies$$
$$f(E) = \frac{d}{dE} \int_{E}^{0} d\Phi \, \frac{d\rho(r(\Phi))}{d\Phi} \, \frac{1}{4\pi\sqrt{2[E - \Phi(r)]}}$$

(Eddington inversion), or its generalizations for anisotropic f(E, L)(Ossipkov–Merritt, Cuddeford, etc.) Examples: isochrone, Hernquist model, etc.

2. From f to ρ :

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\Phi(r)}{dr}\right) = 4\pi G \iiint d^3v \ f(\Phi(r) + v^2/2, \ |\mathbf{x} \times \mathbf{v}|)$$

Examples: Plummer, King, lowered isothermal models, etc.

Axisymmetric systems

Integrals of motion:

 $E = \Phi(R, z) + v^2/2$, $L_z = R v_{\phi}$, third integral $I_3 = ?$ (known analytically in special cases).

Gravitational potential:

 $\Phi(R, z) = ?$ (can be reduced to a 1d integral over $\rho(R, z)$ in special cases, e.g., for $\rho(R^2 + z^2/q^2)$ or $\rho_R(R) \rho_z(z)$, etc.)

Distribution function:

 $f(E, L_z)$ (two-integral) or $f(E, L_z, I_3)$ (general three-integral).

Axisymmetric systems – two approaches

- **1.** From $\rho(R, z)$ to f:
 - Compute $\Phi(R, z)$;
 - Express z as a function of R, Φ ;
 - ► the two-integral f(E, L_z) is obtained by a contour integral over ρ(R, Φ) [Hunter&Qian 1993].
- **2.** From $f(E, L_z)$ to Φ and ρ :

Iterative approach [e.g., Prendergast&Tomer 1970]:

- Assume an initial guess for $\Phi(R, z)$;
- Compute $\rho(R, z) = \iiint d^3 v f(\Phi(R, z) + v^2/2, r v_{\phi});$
- Find new $\Phi(R, z)$ from the Poisson equation;
- Repeat until convergence.

Generalization to $f(E, L_z, I_3) - ?$ (straightforward if we know $I_3...$)

Actions as integrals of motion

- One may use any set of integrals of motion, but actions are special:
- For bounded multiperiodic motion, actions are defined as $J = \frac{1}{2\pi} \oint \mathbf{p} \ d\mathbf{x}, \text{ where } \mathbf{p} \text{ are canonically conjugate momenta for } \mathbf{x}$
- Action/angle variables {J, θ} are the most natural way of describing the motion: from Hamilton's equations we have

$$\frac{dJ_i}{dt} = -\frac{\partial H}{\partial \theta_i} = 0 \text{ (actions are integrals of motion), and}$$

$$\frac{d\theta_i}{dt} = \frac{\partial H}{\partial J_i} \equiv \Omega_i \text{ (angles increase linearly with time)};$$

here $H(\mathbf{J})$ is the Hamilonian and $\Omega(\mathbf{J})$ are the frequencies.

Examples of action/angle variables

The meaning of the action/angle variables may vary for different classes of orbits, but generally describes the extent of oscillation in a particular direction.

Pros and cons of action/angle variables

- + Most natural description of motion (angles change linearly with time); once J and Ω have been found, orbit computation is trivial.
- + Possible range for each action variable is $[0..\infty)$ or $(-\infty..\infty)$, independently of the other ones (unlike *E* and *L*, say).
- + Canonical coordinates: the volume of phase space $d^3x \ d^3v = d^3J \ d^3\theta$.
- + Actions are adiabatic invariants (are conserved under slow variation of potential).
- + Serve as a good starting point in perturbation theory.
- No general way of expressing the Hamiltonian $H \equiv \Phi(\mathbf{x}) + \frac{1}{2}\mathbf{v}^2$ in terms of actions (i.e., solving the Hamilton–Jacobi equation).
- Not easy to compute them in a general case.
- + Efficient methods for conversion between $\{\mathbf{x}, \mathbf{v}\}$ and $\{\mathbf{J}, \boldsymbol{\theta}\}$ have been developed in the last few years.

"Classical" methods

Spherical systems:

two of the actions can be taken to be the *azimuthal action* $J_{\phi} \equiv L_z$ and the *latitudinal action* $J_{\vartheta} \equiv L - |L_z|$; the third one (the *radial action*) is given by a 1d quadrature:

$$J_r = rac{1}{\pi} \int_{r_{\min}}^{r_{\max}} dr \; \sqrt{2[E - \Phi(r)] - L^2/r^2},$$

where r_{\min} , r_{\max} are the peri- and apocentre radii. Angles are given by 1d quadratures. For special cases (the isochrone potential, and its limiting cases – Kepler and harmonic potentials), these integrals are computed analytically. Note: a related concept in celestial mechanics are the Delaunay variables.

► Flattened axisymmetric systems – the epicyclic approximation: motion close to the disc plane is nearly separable into the in-plane motion (J_φ and J_r as in the spherical case) and the vertical oscillation with a fixed energy E_z in a nearly harmonic potential (J_z).

State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.

State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these coordinates (λ, ν) .

Stäckel fudge (Binney 2012)

The most general form of potential that satisfies the separability condition is the Stäckel potential¹: $\Phi(\lambda, \nu) = -\frac{f_1(\lambda) - f_2(\nu)}{\lambda - \nu}$.

The motion in λ and ν directions, with canonical momenta p_{λ}, p_{ν} , is governed by two separate equations:

$$2(\lambda - \Delta^2) \lambda p_{\lambda}^2 = \left[E - \frac{L_z^2}{2(\lambda - \Delta^2)} \right] \lambda - [I_3 + (\lambda - \nu)\Phi(\lambda, \nu)],$$

$$2(\nu - \Delta^2) \nu p_{\nu}^2 = \left[E - \frac{L_z^2}{2(\nu - \Delta^2)} \right] \nu - [I_3 + (\nu - \lambda)\Phi(\lambda, \nu)].$$

Under the approximation that the separation constant I_3 is indeed conserved along the orbit, this allows to compute the actions:

$$J_\lambda = rac{1}{\pi} \int_{\lambda_{\min}}^{\lambda_{\max}} p_\lambda \, d\lambda, \quad J_
u = rac{1}{\pi} \int_{
u_{\min}}^{
u_{\max}} p_
u \, d
u.$$

¹Note that the potential of the Perfect Ellipsoid (de Zeeuw 1985) is of the Stäckel form, but it is only one example of a much wider class of potentials.

Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the freedom of using two functions $f_1(\lambda)$, $f_2(\nu)$ (directly evaluated from the actual potential $\Phi(R, z)$) to describe the motion in two independent directions.

These functions are different for each orbit (implicitly depend on E, L_z, I_3).

Moreover, we may choose the interfocal distance Δ of the auxiliary prolate spheroidal coordinate system for each orbit independently.

Accuracy of Stäckel fudge

Accuracy of action conservation using the Stäckel fudge: $\lesssim 1\%$ for most disc orbits, $\lesssim 10\%$ even for high-eccentricity orbits.

But it is "uncontrollable", accuracy cannot be systematically improved.

Can we do better?

Other methods for action computation

Yes, actions offer the only **systematic** method for computing the integrals of motion in a **non-perturbative** way.

Canonical transformation between true $\{\mathbf{J}, \boldsymbol{\theta}\}\$ and "toy" $\{\mathbf{J}^T, \boldsymbol{\theta}^T\}\$ in some simple potential (e.g., isochrone), for which the mapping between position/velocity and action/angle coordinates is known (Torus construction – McGill&Binney 1990, McMillan&Binney 2008).

This transformation is described by a generating function $S(\mathbf{J}, \boldsymbol{\theta}^T)$, which can be expanded into Fourier series in $\boldsymbol{\theta}^T$; the accuracy of this approximation depends on the number of terms in the expansion.

A **global** map between toy and true action/angles is obtained by interpolating the coefficients of the Fourier expansion as functions of actions – once this map is constructed, the transformations $\{J, \theta\} \iff \{x, v\}$ are fast and accurate (except near resonances). [work in progress...]

Models with a prescribed distribution function

Goal:
$$f(\mathbf{J}) \implies \rho(\mathbf{x})$$

given a particular expression for the distribution function $f(\mathbf{J})$, construct the corresponding self-consistent potential/density pair.

- Assume an initial guess for $\Phi(\mathbf{x})$;
- Construct the mapping $\{\mathbf{x}, \mathbf{v}\} \implies \{\mathbf{J}, \boldsymbol{\theta}\}$ in this potential;

• Compute
$$\rho(\mathbf{x}) = \int \int d^3 v f(\mathbf{J}(\mathbf{x}, \mathbf{v}));$$

- Solve the Poisson equation to find new Φ(x);
- Repeat until convergence.

Advantages of using actions

1. Action/angle variables are canonical \implies

the total mass of the model is computed trivially

$$M = \int f(\mathbf{x}, \mathbf{v}) \ d^3x \ d^3v = \int f(\mathbf{J}) \ d^3J \ (2\pi)^3,$$

does not depend on Φ , does not change between iterations.

2. Multicomponent models:

trivial superposition of separate $f_k(\mathbf{J})$ without changing the functional form of each component;

addition of a new component \implies adiabatic modification of existing density profiles (e.g., dark matter halo response to the formation of a baryonic disc).

3. Faster and more robust convergence ($\sim 5 - 10$ iterations).

How to compute the potential in a general case

1. Direct integration:

$$\Phi(\mathbf{x}) = - \iiint d^3 x' \,
ho(\mathbf{x}') imes rac{G}{|\mathbf{x} - \mathbf{x}'|}.$$

3. Spherical-harmonic expansion:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Phi_{lm}(r) Y_{l}^{m}(\theta,\phi),$$

$$\Phi_{lm}(r) = -\frac{4\pi G}{2l+1} \times \left[r^{-1-l} \int_0^r dr' \,\rho_{lm}(r') \,r'^{l+2} + r' \int_r^\infty dr' \,\rho_{lm}(r') \,r'^{1-l} \right],$$

$$\rho_{Im}(r) = \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \ \rho(r,\theta,\phi) \ Y_I^{m*}(\theta,\phi).$$

How to compute the potential in a general case

2. Azimuthal-harmonic (Fourier) expansion:

$$\Phi(R,z,\phi) = \sum_{m=-\infty}^{\infty} \Phi_m(R,z) e^{im\phi},$$

$$\rho_m(R,z) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \ \rho(R,z,\phi) \mathrm{e}^{-im\phi},$$

$$\Phi_m(R,z) = -\iint dR' \, dz' \, \rho_m(R',z') \times \Xi_m(R,z,R',z'),$$

analytic expr. for Green's function:

$$\begin{split} \Xi_m(R,z,R',z') &\equiv \int_0^\infty dk \; 2\pi G \; J_m(kR) \; J_m(kR') \; \exp(-k|z-z'|) = \\ &= \frac{2\sqrt{\pi} \, \Gamma\left(m+\frac{1}{2}\right) \; _2F_1\left(\frac{3}{4}+\frac{m}{2}, \frac{1}{4}+\frac{m}{2}; \; m+1; \; \xi^{-2}\right)}{\sqrt{RR'} \; (2\xi)^{m+1/2} \, \Gamma(m+1)} \\ &\text{where } \xi \equiv \frac{R^2 + R'^2 + (z-z')^2}{2RR'}. \end{split}$$

How to compute the potential in a general case

1. Direct integration:

$$\Phi(\mathbf{x}) = - \int \int \int d^3 x' \,
ho(\mathbf{x}') imes rac{G}{|\mathbf{x} - \mathbf{x}'|}.$$

2. Azimuthal harmonic expansion:

$$\Phi(R,z,\phi) = \sum_{m=-\infty}^{\infty} \Phi_m(R,z) e^{im\phi}.$$

3. Spherical harmonic expansion:

interpolated functions

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Phi_{lm}(r) Y_l^m(\theta,\phi).$$

4. Basis-set expansion:

$$\Phi(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Phi_{nlm} A_{nl}(r) Y_{l}^{m}(\theta,\phi)$$

(example: self-consistent field method of Hernquist&Ostriker 1992)

Two types of potential approximations used in models

- for disc-like components azimuthal-harmonic expansion;
- for spheroidal components spherical-harmonic expansion.

Gravitational potential extracted from N-body models

The spherical-harmonic and azimuthal-harmonic potential approximations can also be constructed from *N*-body models.

Advantages:

fast evaluation, smooth forces, suitable for orbit analysis.

Real N-body model (from Roca-Fabrega et al. 2013, 2014)

Potential approximation

(suitable for test-particle integrations, e.g. Romero-Gomez et al. 2011)

Models with prescribed density profile

Goal:
$$\rho(\mathbf{x}) \implies f(\mathcal{I})$$

construct a self-consistent model for the given density profile (possibly with additional kinematic constraints).

Need to somehow invert the integral equation

$$\rho(\mathbf{x}) = \iiint d^3 v \ f(\mathcal{I}(\mathbf{x}, \mathbf{v}))$$

Variants of methods:

- ► Based on *N*-body models: made-to-measure and alike...
- Based on orbits: Schwarzschild's orbit-superposition method.
- Based on distribution-function "building blocks": this work.

Schwarzschild's orbit-superposition method

Discretize both the density profile and the distribution function:

 $\rho(\mathbf{x}) \implies$ cells of a spatial grid; mass of each cell is

$$m_c = \iiint_{\mathbf{x} \in V_c} \rho(\mathbf{x}) \, d^3 x$$

 $f(\mathcal{I}) \implies$ collection of orbits:

 $f(\mathcal{I}) = \sum_{k=1}^{N_{\text{orb}}} w_k \, \delta(\mathcal{I} - \mathcal{I}_k)$ each orbit is a delta-function in the space of integrals
adjustable weight of each orbit

Schwarzschild's orbit-superposition method

For each *c*-th cell we require $\sum_k w_k t_{kc} = m_c$, where $w_k \ge 0$ is orbit weight

Schwarzschild's orbit-superposition method

Building blocks for distribution function

Same idea: invert the integral equation

$$\rho(\mathbf{x}) = \iiint d^3 v \ f(\mathcal{I}(\mathbf{x}, \mathbf{v}))$$

by decomposing f into a sum of building blocks (basis functions):

$$f(\mathcal{I}) = \sum_{k=1}^{N_{ ext{basis}}} w_k f_k(\mathcal{I}),$$

computing the projections of all basis functions at a grid of points \mathbf{x}_c

$$\rho_{kc} \equiv \iiint d^3 v \ f_k \big(\mathcal{I}(\mathbf{x}_c, \mathbf{v}) \big),$$

and solving the optimization problem

$$ho_c \equiv
ho(\mathbf{x}_c) = \sum_{k=1}^{N_{\text{basis}}} w_k \,
ho_{kc} \,, \quad w_k \ge 0 \,, \quad c = 1..N_{\text{constraint}},$$

to find the weights of basis functions w_k .

Building blocks for distribution function

Similar approaches suggested previously:

- ► Dejonghe(1989), Merritt&Saha(1993): $f_k(E, L)$ as Fricke components $|E|^{\alpha} L^{-2\beta}$;
- Merritt(1993,1996): histograms (Π-shaped blocks) for f(E, L) or f(E, L_z);
- Kuijken(1994), Pichon&Thiébaut(1998): bilinear interpolation for f(E, Lz);
- Dehnen&Gerhard(1994): Chebyshev polynomial basis for f(E, Lz);
- Magorrian(2014): superposition of multivariate Gaussian 'blobs' for f(E, L).

Building blocks for interpolation

B-splines of degree N:

flexible choice of grid points, locality, smoothness (increases with N), nonnegativity.

Models with non-parametric distribution function

- f(J) represented as an interpolated 3d function in action space (tensor product of 1d B-splines);
- weights of basis functions found by solving a linear or quadratic optimization problem (constraints: values of density at a 3d grid in space);
- smoothness: choice of degree of B-splines;
- regularization: minimum-curvature condition for the 3d interpolant (roughness penalty);
- possibility of determining f(J) from an N-body model or from discrete observational points, using maximum penalized likelihood method (work in progress..).

Advantages of models based on distribution function

Clear physical meaning

(localized structures in the space of integrals of motion);

• Easy to compare different models

(how to compare two *N*-body or *N*-orbit models?);

- Easy to compare models to discrete observational data;
- Easy to sample particles from the distribution function (convert to an N-body model);
- Stability analysis

(perturbation theory most naturally formulated in terms of actions);

Caveats:

- Implicitly rely on the integrability of the potential, ignore the presence of resonant orbit families;
- So far implemented only for axisymmetric models (not a fundamental limitation).

AGAMA library – Action-based galaxy modeling architecture

- Extensive collection of gravitational potential models (analytic profiles, azimuthal- and spherical-harmonic expansions);
- Conversion to/from action/angle variables (fast and accurate method for spherical potentials, Stäckel fudge for axisymmetric potentials, torus mapping);
- Action-based distribution functions; generation of N-body models and determination of best-fit parameters of DF and potential;
- Self-consistent multicomponent models with action-based DFs: (iterative method for f(J) ⇒ ρ(x), non-parametric DF recovery ρ(x) ⇒ f(J));
- Efficient and carefully designed C++ implementation, examples,
 Python interface, compatibility with other software such as galpy;

https://github.com/GalacticDynamics-Oxford/Agama

Conclusions

- Advantage of models based on distribution functions;
- Advantage of actions as arguments of distribution functions;
- Two approaches for construction of self-consistent models;
- Software available for the community.

THANK YOU!