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[Schödel+2014] [Gillessen+2009]

[Feldmeier+2015]

[Feldmeier+2017]

[Chatzopoulos+2015]



Ingredients and challenges

I Newtonian potential M• + extended mass distribution M?(< r)

I Density profile of stars (cusp vs. core)

I Distinction between young and old stellar populations

I Geometry of stellar distribution (spherical vs. flattened)

I Stellar profile outside the central few pc

I Non-uniform dust extinction

I Kinematics: 3d velocity field (proper motion, line-of-sight velocity)

I Substructures, young stellar disk(s)

I Degeneracy between M• and R0 (distance to MW center)



Black hole mass growth
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Summary of recent stellar-dynamical models
Reference data method M•/10

6 M�

Schödel, Merritt &
Eckart 2009

6000 PM R < 0.8 pc sph.isotr.Jeans
sph.aniso.Jeans

3.6+0.2
−0.4

3.5+0.15
−0.35

Do+ 2013 PM (Yelda+2013)

265 vlos (Keck/OSIRIS)

sph.iso.Jeans
sph.aniso.Jeans

3.77+0.62
−0.52

5.76+1.76
−1.26

Feldmeier+ 2014 v los, σlos integrated light

(ISAAC) R < 4 pc
axi.aniso.Jeans 1.7+1.4

−1.1

Fritz+ 2016 10000 PM R < 1.4 pc
2500 vlos (VLT/SINFONI)

sph.isotr.Jeans
same+M/L=const

2.26±0.26

4.35±0.12

Chatzopoulos+ 2015 same data axi.isotr.Jeans 3.9±0.5

Feldmeier+ 2017 LOSVD (v , σ, h3, h4)
from F+14

triax.Schwarzschild 3.0+1.1
−1.3

Magorrian 2018 PM+vlos from F+16
PM from S+09

sph.Schwarzschild 3.76±0.22



Impact of kinematic diversity

I More measured velocity components =⇒ better constraints

I More flexible modelling assumptions =⇒ loose constraints

[Magorrian 2018]



Caveats of Jeans models
I May suffer from mass-anisotropy degeneracy

I Do not guarantee a positive distribution function

I Usually require binning of data

[Do+ 2013]

[Feldmeier+ 2014]

[Chatzopoulos+ 2015]



The role of density profile

[Feldmeier+ 2017]

[Schödel+ 2018]

Lower Σ? =⇒ higher M•

Challenges:

Crowding (esp. faint stars)

Nonuniform extinction

Gas emission (for unresolved stars)

Distinction between young/old stars



Formation scenarios
Migration of globular clusters In-situ star formation

from the Galactic bulge

to the Galactic center

due to dynamical friction

from the gas flowing

into the Galactic center



Formation scenarios
Migration of globular clusters In-situ star formation

Capuzzo-Dolcetta, Miocchi, Di Matteo,
Antonini, Mastrobuono-Battisti, Spera,

Arca-Sedda, Bortolas, Rastello, . . .

Italian school “American” school

Loose, Milosavljević, Bekki, Perets, . . .



Formation scenarios

Italian school “American” school



Formation scenarios

Migration In-situ

Kinematics − (high σR=0, low v rot) [Hartmann+2011]

+ (at least for MW NSC) [Tsatsi+2016]

+ (rotation)

Stellar ages + mixture of ages, most stars ≥ 5 Gyr
[Blum+2003; Pfuhl+2011; Kacharov+18]

+ young stars ∼ 107 yr
[Krabbe+1995]

Chemistry ? large spread – possibly superposition
of many populations

+ most stars have [Fe/H]> 0
[Do+15; Feldmeier+16]

Density +∗ (seen next slide) +



Evolution

[Norris+2014, see also

Walcher+2006; Misgeld&Hilker 2011]
[Kocsis&Tremaine 2011]

I Nuclear star clusters are among
the densest stellar systems in the Universe!

I Collisionless processes (e.g., mergers of
globular clusters) cannot increase
the phase-space density ρ/σ3 ∝ T−1

rel .

I However, collisional evolution may be
important: relaxation time Trel . THubble.



Aspects of dynamical evolution

I Formation (or not?) of a Bahcall–Wolf cusp

I Mass segregation

I Resonant relaxation

I Relativistic effects

I The origin of S-stars

I Hypervelocity stars

I Exotic objects



The mythical Bahcall–Wolf cusp

In a relaxed stellar system around a massive black hole, the density
should follow a power law: ρ ∝ r−7/4 (single-mass case),
or ρ ∝ r−3/2 (lighter component in the multimass case) [Bahcall&Wolf 1976,1977].

However, the observed distribution of old stars defies the expectations:

[Buchholz+2009] [Do+2009]



The mythical Bahcall–Wolf cusp

Theorists were quick to come up with plausible explanations:

[Merritt 2009]

I Incomplete relaxation starting from
an initially cored profile or a ”hole”
left by a binary black hole [Merritt 2009].

I Destruction of red giants by stellar
collisions [Dale+2009, Davies+2011].

I Stripping of stellar envelopes by collisions
with gaseous disk [Amaro-Seoane&Chen 2014].

I Star formation at r & 1 pc [Aharon&Perets 2015].



The mythical Bahcall–Wolf cusp

However, more recent observations do not support the existence of a core,
lining up nicely with traditional evolution models:

[Schoedel+2018; Gallego-Cano+2018] [Baumgardt+2018]



Mass segregation

Heavy objects (BH, NS) sink to the center due to dynamical friction.
In steady state, their density profile is steeper (r−1.75 . . . r−2.1)
[Bahcall&Wolf 1976; Alexander&Hopman 2009; Preto&Amaro-Seoane 2009].

This is important for GW astronomy (EMRI and all that) [Amaro-Seoane&Preto 2011].

[Preto&Amaro-Seoane 2009] [Baumgardt+2018]



Resonant relaxation
Introduced by Rauch&Tremaine 1996.

Idea: Tprecession � Tradial =⇒ coherent interactions between pairs of stars.

Affects only angular momentum, not energy.

I Scalar:
I Near-Keplerian systems (extended mass around

a SMBH ⇒ in-plane precession)

I Changes eccentricity e (⇔ |L|)
I Quenched by relativistic precession for e → 1

Hopman&Alexander 2006; Madigan+2011; Merritt+2011; Merritt 2015a,b,c,d;

Bar-Or&Alexander 2014,2016; Sridhar&Touma 2016; Alexander 2017a,b; Fouvry&Bar-Or 2018

I Vector:
I Any spherical system (constant orbital planes)

I Changes orbital inclination (~L but not |L|)

Kocsis&Tremaine 2011,2015; Meiron&Kocsis 2018; Hamers+2018



Relativistic effects

The ”Schwarzschild barrier” discovered by Merritt,Alexander,Mikkola&Will 2011:
quenching of RR by relativistic precession of high-eccentricity orbits =⇒
RR appears to have little net effect on the rate of captures or EMRI.

[Merritt 2015d] [Bar-Or&Alexander 2016]



Origin and dynamics of S-stars

Two main scenarios predicting different
eccentricity distributions:

I Formation in a gaseous disk (e ∼ 0)

I Tidal disruption of binaries [Hills 1988] (e ∼ 1)

Observed: steeper than thermal N(< e) ∝ e2,

certainly affected by RR! (T . 108 yr)
[Alexander 2017]

[see also Perets+2009][Madigan,Hopman&Levin 2011] [Antonini&Merritt 2013]



Probing GR effects by S stars

[GRAVITY collaboration 2018]

[from Hees+2017]

[Waisberg+2018]

S2 pericenter at 1400 RSchw – measured M• to 1%;
measured gravitational redshift (GR not Newton) to 10%;
hope to measure GR precession in a few years;
measurement of BH spin needs a star 10× closer. . .
perturbations from other stars or stellar BHs are important! [Merritt+2010]



Hypervelocity stars

Ejection speed & 1000 km/s ≈ 1 kpc/Myr due to interaction with the SMBH

Illustration of the Hills(1988) mechanism [from Brown 2017]

Not to be confused with hyper-runaway stars (ejected from galactic disk with comparable

speeds due to binary disruption by supernova or to 3- or 4-body encounters)



Hypervelocity stars

B-type HVS found in a dedicated survey

of 12 000 sq.deg. [Brown 2014]

NSC

disk

unknown

After Gaia DR2 [Brown+2018; see also Boubert+2018,

Marchetti+2018; Hattori+2018; Kenyon+2018]



Hypervelocity stars

Ejection rate: from 10−3 − 10−4 yr−1 (full loss cone, Hills 1988)

to 10−5 − 10−6 yr−1 (empty loss cone, Yu&Tremaine 2003);
realistically 10−4 − 10−5 yr−1 [Zhang+2013], & tidal disruption rate.

Link between S-stars and HVS: Gould&Quillen 2003; Ginsburg&Loeb 2006;

Zhang+2013; . . .

Other scenarios:

I single star, binary SMBH [Yu&Tremaine 2003; Sesana+2006]

I same but a SMBH+IMBH pair [Portegies Zwart+2006; Levin 2006;

Baumgardt+2006; Rasskazov+2018]

I eccentric disk via the Lidov–Kozai mechanism [Löckmann+2008; Šubr&Haas 2016]



Exotic objects

Millisecond pulsars, cataclysmic variables:

excess of unresolved γ- and X-ray emission

from galactic center [Fermi, NuSTAR]

produced in globular clusters (migration scenario)

[Brandt&Kocsis 2015; Arca-Sedda+2018; Abbate+2018; Fragione+2018a,b]

BH X-ray binaries:

Tidal capture of MS by BH

[Generozov+2018]

Gravitational-wave sources from BH binaries merging via the Lidov–Kozai mechanism

[Antonini&Perets 2012; Hong&Lee 2015; Rodriguez+2016; Antonini&Rasio 2016;. . . ]



Conclusion


