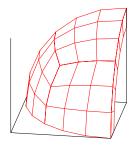
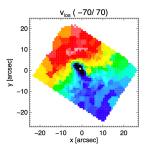
Schwarzschild's orbit superposition method for disc galaxies

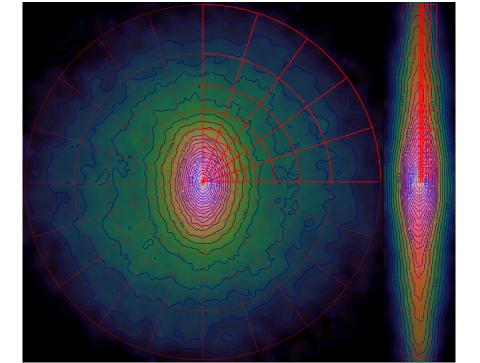

Eugene Vasiliev

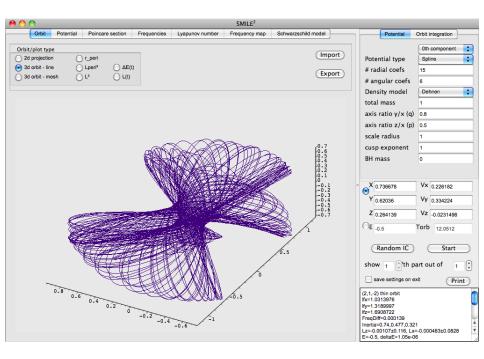

Lebedev Physical Institute

Gaia Challenge 2, Heidelberg, October 2014

Schwarzschild method in brief

- Take a trial potential $\Phi(\mathbf{r})$ and density $\rho(\mathbf{r})$;
- Compute a large number N_{orb} of orbits for many (~ 10²) dynamical times;
- For each orbit, store its contribution t_{oc} to each of N_{cons} constraints; (discretized density; LOSVD; etc.)
- Minimize the residual ∑_c (∑_o t_{oc} w_o − m_c)², where m_c are the required values of constraints, and w_o ≥ 0 are orbit weights to be found;
- If necessary, repeat for a different choice of trial potential Φ; find the one that best fits the data.




Schwarzschild method: pros and cons

- + Does not make (almost) any assumptions on the distribution function;
- + Provides information about orbital structure of the model;
- + Faster than *N*-body based techniques (M2M, iterative, ...);
- $\pm\,$ Does not give an unique solution for DF?
- Discreteness effects ($\mathit{N}_{\rm orb}\sim 10^4, \mathit{N}_{\rm cons}\sim 10^3)$ may obstruct fitting of high-quality data;
- Slow compared to more approximate methods (e.g. Jeans or torus modelling);

SMILE – an implementation of Schwarzschild method

- A flexible choice of potential model: many analytical profiles or several general-purpose approximations: spherical-harmonic spline or basis-set expansion for elliptical galaxies, cylindrical spline for disc galaxies.
- Powerful orbit analysis tools (frequency map, chaos detection).
- Multi-component models with arbitrary geometry (e.g. triaxial).
- ► GUI with integrated visualization and scriptable console versions.
- + Theorist's tool (e.g. creating initial conditions or analyzing orbital structure of *N*-body simulations).
- No support for observational constraints yet.
- + Publicly available at http://td.lpi.ru/~eugvas/smile/ Vasiliev(MNRAS,2013); Vasiliev&Athanassoula (in prep.)

