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Photometric models

I based on star counts

I take into account selection effects

I fit a parametrized density profile

[Wegg+ 2015]

[Bovy 2017]



Mass models

constrain the total gravitational potential using various data:

I rotation curve: masers, gas terminal velocities, ...

I vertical force as a function of altitude in the Solar neighborhood

I tidal streams and the motion of galactic satellites

I moving groups associated with non-axisymmetric perturbations

fit a parametrized
potential model
(e.g., Sérsic bulge
+ exponential disk
+ NFW halo).

[from Bland-Hawthorn & Gerhard 2016]



Kinematic models

I based on stellar kinematics in the Solar neighborhood

I take into account selection effects

I fit a parametrized distribution function

[Sharma+ 2014] [Binney+ 2014]



Kinematic + population synthesis models

I group observed stars by chemical abundances and ages

I use different distribution functions for different populations,
or an extended DF linking the stellar properties and kinematics

I Example: Besançon galaxy model [Robin+ 2003, 2017]

[Das & Binney 2016] [Trick+ 2017]



Self-consistent models

I Stars are described by a distribution function f which
must depend only on the integrals of motion (Jeans theorem):

f = f
(
I(x, v)

)
, I = {E , L, . . . }.

depend on the potential Φ

I The density of stars is just the 0th moment of
the distribution function:

ρ(x) =

∫∫∫
d3v f (x, v).

I The potential is related to the total density (stars + dark matter)
through the Poisson equation:

∇2Φ(x) = 4π G ρ(x).
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Iterative approach

1. Assume a particular distribution function f
(
I
)
;

2. Adopt an initial guess for Φ(x);

3. Establish the integrals of motion I(x, v) in this potential;

4. Compute the density ρ(x) =

∫∫∫
d3v f

(
I(x, v)

)
;

5. Solve the Poisson equation to find the new potential Φ(x);

6. Repeat until convergence.

Origin: Prendergast & Tomer 1970;

used in Kuijken & Dubinski 1995, Widrow+ 2008, Taranu+ 2017 (GalactICs),

Piffl+ 2014, Cole & Binney 2016, Sanders & Evans 2016 (action-based formalism).



Actions as integrals of motion

I One may use any set of integrals of motion,
but actions are special:

I For bounded multiperiodic motion, actions are defined as

J =
1

2π

∮
p dx, where p are canonically conjugate momenta for x.

I Action/angle variables {J,θ} are the most natural way of
describing the motion: from Hamilton’s equations we have

dJi
dt

= −∂H
∂θi

= 0 (actions are integrals of motion), and

dθi
dt

=
∂H

∂Ji
≡ Ωi (angles increase linearly with time);

here H(J) is the Hamilonian and Ω(J) are the frequencies.



Examples of action/angle variables
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The meaning of the action/angle variables may vary for different
classes of orbits, but generally describes the extent of oscillation
in a particular direction.



Pros and cons of action/angle variables

+ Most natural description of motion (angles change linearly with
time); once J and Ω have been found, orbit computation is trivial.

+ Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

+ Canonical coordinates: the volume of phase space
d3x d3v = d3J d3θ.

+ Actions are adiabatic invariants (are conserved under slow
variation of potential).

+ Serve as a good starting point in perturbation theory.

— No general way of expressing the Hamiltonian H ≡ Φ(x) + 1
2v2

in terms of actions (i.e., solving the Hamilton–Jacobi equation).

— Not easy to compute them in a general case.

+ Efficient methods for conversion between {x, v} and {J,θ}
have been developed in the last few years.



“Classical” methods

I Spherical systems:
two of the actions can be taken to be the azimuthal action
Jφ ≡ Lz and the latitudinal action Jϑ ≡ L− |Lz |;
the third one (the radial action) is given by a 1d quadrature:

Jr =
1

π

∫ rmax

rmin

dr
√

2[E − Φ(r)]− L2/r2,

where rmin, rmax are the peri- and apocentre radii.
Angles are given by 1d quadratures. For special cases (the
isochrone potential, and its limiting cases – Kepler and harmonic
potentials), these integrals are computed analytically.
Note: a related concept in celestial mechanics are the Delaunay variables.

I Flattened axisymmetric systems – the epicyclic approximation:
motion close to the disk plane is nearly separable into the in-plane
motion (Jφ and Jr as in the spherical case) and the vertical
oscillation with a fixed energy Ez in a nearly harmonic potential (Jz).



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are
much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable
in these coordinates (λ, ν).

0 1 2 3 4 5 6
R

4

3

2

1

0

1

2

3

4

z

Spherical

0 1 2 3 4 5 6
R

4

3

2

1

0

1

2

3

4

Cylindrical

0 1 2 3 4 5 6
R

4

3

2

1

0

1

2

3

4

Spheroidal



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are
much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable
in these coordinates (λ, ν).
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Stäckel fudge (Binney 2012)

The most general form of potential that satisfies the separability

condition is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p2λ =

[
E − L2z

2(λ−∆2)

]
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2ν =

[
E − L2z

2(ν −∆2)

]
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, this allows to compute the actions:

Jλ =
1

π

∫ λmax

λmin

pλ dλ, Jν =
1

π

∫ νmax

νmin

pν dν.

1Note that the potential of the Perfect Ellipsoid (de Zeeuw 1985) is of the
Stäckel form, but it is only one example of a much wider class of potentials.



Stäckel fudge in practice
A rather flexible approximation: for each orbit, we have the
freedom of using two functions f1(λ), f2(ν) (directly evaluated
from the actual potential Φ(R, z)) to describe the motion in two
independent directions.
These functions are different for each orbit (implicitly depend on
E , Lz , I3).
Moreover, we may choose the interfocal distance ∆ of the auxiliary
prolate spheroidal coordinate system for each orbit independently.
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Accuracy of Stäckel fudge

Accuracy of action conservation using the Stäckel fudge:
. 1% for most disk orbits, . 10% even for high-eccentricity orbits.

Interpolation of Jr , Jz on a 3d grid of E , Lz , I3:
10x speed-up at the expense of a moderate decrease in accuracy.
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Advantages of using actions in iterative modelling

1. Action/angle variables are canonical =⇒

the total mass of the model is computed trivially

M =

∫
f
(
x, v
)
d3x d3v =

∫
f
(
J
)
d3J (2π)3,

does not depend on Φ, does not change between iterations.

2. Multicomponent models:

trivial superposition of separate fk(J) without changing
the functional form of each component;

addition of a new component =⇒
adiabatic modification of existing density profiles
(e.g., dark matter halo response to the formation of a baryonic disk).

3. Faster and more robust convergence (∼ 5 − 10 iterations).



How to compute the potential in a general case

1. Direct integration:

Φ(x) = −
∫∫∫

d3x ′ ρ(x′)× G

|x− x′|
.

3. Spherical-harmonic expansion:

Φ(r , θ, φ) =
∞∑
l=0

l∑
m=−l

Φlm(r)Ym
l (θ, φ),

Φlm(r) = − 4πG

2l + 1
×

×
[
r−1−l

∫ r

0
dr ′ ρlm(r ′) r ′ l+2 + r l

∫ ∞
r

dr ′ ρlm(r ′) r ′ 1−l
]
,

ρlm(r) =

∫ π

0
dθ

∫ 2π

0
dφ ρ(r , θ, φ)Ym∗

l (θ, φ).



How to compute the potential in cylindrical coordinates

2. Azimuthal-harmonic (Fourier) expansion:

Φ(R, z , φ) =
∞∑

m=−∞
Φm(R, z) eimφ,

ρm(R, z) =
1

2π

∫ 2π

0
dφ ρ(R, z , φ)e−imφ,

Φm(R, z) = −
∫∫

dR ′ dz ′ ρm(R ′, z ′)× Ξm(R, z ,R ′, z ′),

Ξm(R, z ,R ′, z ′) ≡
∫ ∞
0

dk 2πG Jm(kR) Jm(kR ′) exp(−k |z − z ′|) =

=
2
√
π Γ
(
m + 1

2

)
2F1

(
3
4 + m

2 ,
1
4 + m

2 ; m + 1; ξ−2
)

√
RR ′ (2ξ)m+1/2 Γ(m + 1)

where ξ ≡ R2 + R ′2 + (z − z ′)2

2RR ′
.

analytic expr. for Green’s function:



How to compute the potential: summary of methods

1. Direct integration:

Φ(x) = −
∫∫∫

d3x ′ ρ(x′)× G

|x− x′|
.

2. Azimuthal harmonic expansion:

Φ(R, z , φ) =
∞∑

m=−∞
Φm(R, z) eimφ.

3. Spherical harmonic expansion:

Φ(r , θ, φ) =
∞∑
l=0

l∑
m=−l

Φlm(r)Ym
l (θ, φ).

4. Basis-set expansion:

Φ(r , θ, φ) =
∞∑
n=0

∞∑
l=0

l∑
m=−l

Φnlm Anl(r)Ym
l (θ, φ).

(example: self-consistent field method of Hernquist&Ostriker 1992)

interpolated functions



Two types of potential approximations used in models

I for disk-like components – azimuthal-harmonic expansion;

I for spheroidal components – spherical-harmonic expansion.
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Gravitational potential extracted from N-body models

The spherical-harmonic and azimuthal-harmonic potential
approximations can also be constructed from N-body models.

Advantages:
fast evaluation, smooth forces, suitable for orbit analysis.

Real N-body model
(from Roca-Fabrega et al. 2013, 2014)

Potential approximation
(suitable for test-particle integrations,

e.g. Romero-Gomez et al. 2011)



Self-consistent models for the Milky Way

Observational constraints:

I gas terminal velocities [Malhorta 1995]

I masers with 6d phase-space coords [Reid+ 2014]

I proper motion of SgrA* [Reid & Brunthaler 2004]

I vertical density profile in the Solar neighborhood [Jurić+ 2008]

I kinematics of local stars from RAVE [Kordopatis+ 2013] and TGAS

I microlensing depth towards Galactic bulge [Sumi & Penny 2016]



Self-consistent models for the Milky Way

Modelling procedure:

I Assume the parameters for the stellar and dark matter DFs

I Iteratively find the self-consistent potential/density

corresponding to this DF:

5
−

1
0
it
er
.

I Assume an initial guess for the potential

I Initialize the action mapper for this potential

I Recompute the density by integrating the DFs over velocity

I Recompute the potential

I Compute the likelihood of the model given the data
(compare the velocity distributions, microlensing depth, rotation curve)

I Adjust the parameters of the DFs

The result: ∼ 15 parameters of DFs (mass, scale lengths and heights,

velocity dispersions, etc.) and the final self-consistent potential.



Self-consistent models for the Milky Way

[Cole & Binney 2016]

using the previous implementation



Advantages of models based on distribution function

I Clear physical meaning

(localized structures in the space of integrals of motion);

I Easy to compare different models

(how to compare two N-body or N-orbit models?);

I Easy to compare models to discrete observational data;

I Easy to sample particles from the distribution function

(convert to an N-body model);

I Stability analysis

(perturbation theory most naturally formulated in terms of actions);

Caveats:

I Implicitly rely on the integrability of the potential,

ignore the presence of resonant orbit families (but see Binney 2017);

I So far implemented only for axisymmetric models

(not a fundamental limitation).



AGAMA library – All-purpose galaxy modeling architecture

I Extensive collection of gravitational potential models

(analytic profiles, azimuthal- and spherical-harmonic expansions);

I Conversion to/from action/angle variables

(fast and accurate method for spherical potentials, Stäckel fudge for

axisymmetric potentials, torus mapping);

I Action-based distribution functions; generation of N-body models

and determination of best-fit parameters of DF and potential;

I Self-consistent multicomponent models with action-based DFs;

I Schwarzschild orbit-superposition models;

I Efficient and carefully designed C++ implementation, examples,

Python and Fortran interfaces, plugins for galpy, NEMO, AMUSE;

https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama


Outlook

I Wealth of observational data calls for adequate modelling
approaches

I State-of-the-art self-consistent models based on
distribution functions in action space

I Work in progress on incorporating data from other surveys
such as APOGEE, LAMOST, and eventually Gaia DR2

I Software available for the community

Thank you!
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