Supermassive black holes in non-spherical galactic nuclei and enhanced rates of star capture events

> Eugene Vasiliev David Merritt

Rochester Institute of Technology

Plan of the talk

- Capture of stars by a supermassive black hole
- Orbits around black holes in non-spherical nuclei
- Difference between spherical, axisymmetric and triaxial nuclear star clusters
- Two-body relaxation in galactic nuclei
- Empty and full loss cone regimes
- Loss cone draining and refill rates
- Predictions for realistic galaxies; conclusions.

Capture of stars by a supermassive BH

The black hole captures or tidally disrupts stars passing at a distance closer than $r_t \ge r_{\bullet} \equiv \frac{2GM_{\bullet}}{c^2}$, or, equivalently, with angular momentum

$$L^2 < L_{\bullet}^2 = \max\left[\left(\frac{4GM_{\bullet}}{c}\right)^2, GM_{\bullet}r_t\right]$$

The region of phase space with $L < L_{\bullet}$ is called the loss cone.

Nuclear star clusters

- Supermassive black hole M_{bh}
- Stellar cusp (for example, a power law density profile $\rho \sim r^{-\gamma}$)
- Total gravitational potential (non-spherical):

$$\Phi(\overrightarrow{r}) = -\frac{GM_{bh}}{r} + \Phi_{\star} \left(\frac{r}{r_0}\right)^{2-\gamma} \left(1 + \varepsilon \frac{z^2}{r^2} + \eta \frac{y^2}{r^2}\right)$$

- Consider motion inside radius of influence r_{infl} = GM_{bh}/σ²
 => dominant contribution to potential is from SMBH
 => orbits are perturbed Keplerian ellipses
 which precess due to torques from stellar potential
- Orbital time T_{rad} << precession time $T_{prec} \sim r_{infl}/\sigma$

Types of orbits in non-spherical star cluster around a supermassive black hole

Motion in a near-keplerian potential

$$\Phi(\overrightarrow{r}) = -\frac{GM_{bh}}{r} + \Phi_{\star} \left(\frac{r}{r_0}\right)^{2-\gamma} \left(1 + \varepsilon \frac{z^2}{r^2} + \eta \frac{y^2}{r^2}\right)$$

- "Fast" timescale radial period $T_{\rm rad} = \frac{2\pi r^3}{\sqrt{GM_{\bullet}}}$.
- "Slow" timescale precession period due to distributed mass $T_{\text{prec}} = T_{\text{rad}} \frac{M_{\bullet}}{M_{\star}(r)}.$

The separation of fast and slow timescales allows for the existence of an additional integral of motion $\mathcal{H} = \oint_{\text{orbit}} \Phi_{\star}(r)$.

In both axisymmetric and triaxial cases the motion is **completely integrable**. Integrals of motion: **E** (total energy), **H** (secular hamiltonian), **L**_Z (z-component of angular momentum) in axisymmetric case / another integral in triaxial case.

Evolution of angular momentum of an orbit in a non-spherical nuclear star cluster

Three integrals of motion: total energy **E**, secular hamiltonian **H**, and a third integral **W** which is reduced to z-component of angular momentum L_z in axisymmetric systems. Total angular momentum squared, L^2 , is not conserved but experiences oscillations between R_{min} and R_{max} with characteristic period ~ T_{prec} , and amplitude ~ ϵ .

"Extended loss region" in a non-spherical nuclear star cluster

The region of phase space (E, H, W) occupied by orbits for which the squared angular momentum L² may drop below the capture boundary L², is called "extended loss region"

- For axisymmetric systems, the condition of being in the extended loss region is L_Z < L. and (L²) < ε (i.e. only a fraction ~ ε of orbits with z-component of angular momentum below capture boundary may actually be captured).
- For triaxial systems, all pyramid orbits^(*) are centrophylic (i.e. may attain arbitrary low values of angular momentum), their fraction in the total population is ~ ε.
 - (*) relativistic effects change this conclusion for most tightly-bound orbits

Difference between spherical, axisymmetric and triaxial nuclear star clusters

	Spherical	Axisymmetric	Triaxial
Fraction of stars with L ² _{min} < X	$\propto X$	$\propto \sqrt{X\epsilon}$	3∞
Fraction of time that such a star has L ² < X (i.e. capture probability)	1	\sqrt{X}	Х
Survival time of such stars (assuming they are captured immediately after reaching L ² < R	T _{rad} (10 ¹⁻⁵ yr)	T _{prec} (10 ⁵⁻⁶ yr)	may be longer than 10 ¹⁰ yr
and reaching E arc _{capt}	(for MW nucleus)		
but that may not be true in the presence of relaxatio	n timescale	fraction of stars	increases

Two-body relaxation in galactic nuclei and the concept of empty/full loss cone

Relaxation time $T_{rel} = \frac{0.34 \, \sigma(r)^3}{G^2 \, \overline{m}_\star \, \rho_\star(r) \, \ln \Lambda}$ – timescale for diffusion in E and L

Definition of "classical" loss cone for the spherical case:

Loss cone is the region in phase space in which an orbit *would be captured*^(*) at the nearest pericenter passage, i.e. at most within 1 radial period, having $L^2 < L^2_{\bullet}$ ^(*) in the absence of relaxation

The question is how fast the changes in L occur compared to radial period:

 $q = \Delta L^2 / L^2$.

q << 1 – empty loss cone regime:

stars are captured as soon as they enter LC; population of stars with L<L_• is small

q >> 1 - full loss cone:

stars may move in and out of LC many times before being captured at the end of T_{rad} , distribution function of stars inside LC is the same as outside (near its boundary)

The concept of empty/full loss cone

Empty LC:

stars barely have time to enter LC before they get captured after T_{rad}

Full LC: stars may enter and exit LC many times during one

 $\mathsf{T}_{\mathsf{rad}}$

Empty/full loss cone regimes in spherical galaxies

- Distribution function of stars in angular momentum is a solution to Fokker-Planck (diffusion) equation with a "sink" at loss cone boundary
- The global quasi-stationary solution at given E has a logarithmic profile: N(L²) = N₀ + A*log(L)
- In the empty loss cone regime, the capture rate is dominated by the slope of N(L), i.e. limited by the diffusion coefficient
- In the full loss cone regime, capture rate is simply the size of loss cone divided by T_{rad}
- Stars close to BH are in empty regime, outer parts of the galaxy may be in full loss cone regime

Non-spherical galaxies: Loss cone draining vs. relaxation

- Draining time of the loss region may be >10¹⁰yr in the triaxial case, and the capture rate from the loss region depends on the efficiency of changing of ang.momentum due to regular precession rather than due to 2-body relaxation.
- After all orbits with L²_{min}<L². have been drained, the influx of stars from higher L is still limited by diffusion (relaxation)
- Because the size of loss region is larger that spherical loss cone, flux will be larger in the diffusionlimited regime
- In the full loss cone regime there is almost no difference from the spherical case

Conclusions

- In non-spherical nuclear star clusters the star angular momentum L is changed not only due to 2-body relaxation, but also due to regular precession in the smooth additional potential of stellar cluster
- This facilitates the capture of stars at low L: the "extended loss region" is where L²_{min}<L², not just L²<L².
- Draining time of this region $T_{drain} \sim T_{prec} \sim 10^{5-6}$ yr in axisymmetric case and much longer, comparable to Hubble time, in triaxial case
- For T >> T_{drain}, capture rate is determined by relaxation with a larger effective capture boundary. Compared to the spherical case, the enhancement in total capture rate is moderate (~factor of few) and is important only in the range of energies where the loss cone would be empty in the spherical case.
- For giant elliptical galaxies, which are deeply in the empty loss cone regime, the enhancement may be more dramatic.
- This applies to the rates of tidal disruption events, EMRI, binary SMBH, ...