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Overview of stellar dynamical processes

Consider stellar systems composed of a large number of stars
(N? � 1, for example, a globular cluster with N? ' 105 − 106,
or a nuclear star cluster with N? ' 106 − 108).

I Motion in the common gravitational field of the entire system

(dynamical timescale Tdyn ∼ R
V ∼

R3/2
√
GM

).

I Two-body interactions (relaxation timescale Trel ∼ Tdyn N?/ lnN?).

I Dynamical friction and mass segregation.

I Gravothermodynamics: negative heat capacity ⇒ core collapse.

I Three- and four-body interactions: binary stars as a heat source,
soft and hard binaries, ejection of stars from the core,
gravothermal oscillations, . . .

I External effects (the rest of the galaxy): shocks, tidal truncation
and evaporation.



Stellar dynamical methods

I Scale models for the global evolution based on energy flow
arguments
(Hénon 1961,1965; Gieles+ 2014)

I Fluid/gaseous models (take moments of the Boltzmann equation,
approximate the heat transfer by a closure condition equivalent to
a conductive sphere).
(Lynden-Bell&Eggleton 1980; Bettwieser 1983; Louis&Spurzem 1991;

Amaro-Seoane+ 2004)

I Fokker–Planck models
(Cohn 1979; Quinlan&Shapiro 1990; Takahashi 1995; Einsel&Spurzem 1999)

I Particle-based Monte Carlo methods
(Spitzer&Hart 1971; Hénon 1971; Marchant&Shapiro 1979)

I Direct N-body simulations
(Aarseth; Heggie; Hut; Makino; McMillan; Portegies Zwart; Spurzem; and many others)



Fokker–Planck methods

I Phase-space description: the one-particle distribution function
f (x, v, t), and the gravitational potential Φ satisfying the Poisson

equation ∇2Φ(x, t) = 4πρ(x, t) = 4π

∫
d3v f (x, v, t).

I Collisional Boltzmann equation
∂f

∂t
+ v · ∇xf −∇xΦ · ∇vf =

(
∂f

∂t

)
coll

.

I The collision term uses the approximation of weak scattering ⇒
Fokker-Planck formulation.

I Usually one invokes orbit-averaged approximation (consider the
diffusion in the phase space of integrals of motion, such as energy
E or angular momentum L).

I Discretize the distribution function f on a grid in E or E ,L and
numerically solve the Fokker–Planck PDE to compute the time
evolution of f .



Fokker–Planck methods

I Can include the effect of a central massive black hole (loss cone
processes), mass spectrum (several one-particle distribution
functions, one for each stellar mass), tidal boundary, binary
heating, rotation (axisymmetric geometry), . . .

I (+): Reasonably fast and gives almost noise-free solutions.

I (–): Difficult to include additional physics (such as stellar
evolution, binary evolution or realistic three-body interactions);
restricted to spherical or at most axisymmetric geometry.



N-body methods

I Provide the most-realistic description of the evolution of stellar
system.

I May include all relevant physical processes: direct few-body
interactions, stellar evolution, tidal field.

I Special algorithms and hardware are required to cope with
enormous dynamical range (especially in the presence of hard
binaries – timescales from days to Gyr): adaptive individual
timesteps; regularization of two-body motion and few-body
encounters, neighbour schemes to split the close(fast) and
distant(slow) interactions; hardware acceleration (GRAPE and
GPU boards); non-trivial parallelization approaches; . . .

I Most computationally intensive: a N? = 5 · 105 simulation of the
globular cluster M4 took 3 years...



Monte Carlo methods

I Stand in between Fokker–Planck and N-body methods in terms of
both realism and computational demand.

I May be considered as a way of solving the Fokker–Planck equation
by the method of characteristics (discrete tracer particles moving
in the phase space) instead of traditional grid-based PDE solution.

I Due to particle-based nature of the model, it is easy to include
additional physical effects (as in direct N-body simulations), such
as stellar evolution, continuous mass spectrum, binary stars,
few-body scattering, stellar mergers, etc.

I Designed to study relaxation phenomena, do not resolve processes
on dynamical times (assume dynamical equilibrium).

I Existing implementations restricted to spherical geometry
(with the exception of the present study).



Monte Carlo methods – classification

Name Reference relaxation treatment timestep 1:11 BH2 remarks

Princeton Spitzer&Hart(1971),
Spitzer&Thuan(1972)

local dif.coefs. in velocity,
Maxwellian background f (r, v)

∝ Tdyn − −

Cornell Marchant&Shapiro
(1980)

dif.coef. in E , L, self-consistent
background f (E)

indiv., Tdyn − + particle cloning

Hénon Hénon(1971) local pairwise interaction, self-
consistent bkgr. f (r, v‖, v⊥)

∝ Trel − −

Stodó lkiewicz(1982) Hénon’s block, Trel (r) − − mass spectrum, disc shocks
Stodó lkiewicz(1986) binaries, stellar evolution

Giersz(1998) same same + − 3-body scattering (analyt.)
Mocca Hypki&Giersz(2013) same same + − single/binary stellar evol.,

few-body scattering (num.)

Joshi+(2000) same ∝ Trel (r = 0) + − partially parallelized
Cmc Umbreit+(2012),

Pattabiraman+(2013)
(shared) + + fewbody interaction, single/

binary stellar evol., GPU

Me(ssy)2 Freitag&Benz(2002) same indiv.∝ Trel − + cloning, SPH physical collis.

Raga this study
(Vasiliev 2014)

local dif.coef. in velocity, self-
consistent background f (E)

indiv.∝ Tdyn − + arbitrary geometry

1
One-to-one correspondence between particles and stars in the system

2
Massive black hole in the center, loss-cone effects



The Hénon’s Monte Carlo approach

0. Assume spherical symmetry and dynamical equilibrium.

1. Each particle is characterized by its energy Ei and angular
momentum Li .

2. To distribute particles in space, use the Monte Carlo sampling:
the probability of finding a particle in the interval [r .. r + dr ] is
proportional to the time spent in this interval

dr/vr = dr/
√

2(Ei − Φ(r))− L2
i /r

2.

3. Sort particles in radius and compute the potential using recurrence

relation Φ(ri ) =
∑i

j=1
Gmj

ri
+
∑N

j=i+1
Gmj

rj
.

4. Simulate the effect of two-body relaxation by pairwise interactions
between adjacent stars that change their E and L.
The timestep for this simulation is ∝ Trel.

5. Model additional effects such as stellar evolution, few-body
interactions, collisions or loss-cone captures.

6. Repeat.



Relaxation in the Hénon’s approach

I The relaxation process is a cumulative effect of a multitude of
two-body encounters, each one changes the velocity of the star
only slightly.

I In a single encounter with a field star 2, the velocity of test star 1
is changed by ∆v1 = m2

m1+m2
vrel 2 sin(β/2), where β is the

deflection angle: sinβ/2 = G(m1+m2)
v2

rel p
, vrel is the relative velocity,

and p is the impact parameter.
I The cumulative effect of many encounters with all possible impact

parameters during a time interval ∆t is given by
〈∆v2

1 〉 = 8πG 2 ln Λ 〈ν2 m
2
2 v
−1
rel 〉∆t, where ν2 is the local number

density of field stars.
I Instead of simulating all these independent encounters, one

replaces them with one representative interaction with deflection
angle βeff whose statistical properties are the same:
equating the mean values of 〈∆v2

1 〉 gives
sin2(βeff/2) = 2πG 2 (m1 + m2)2 v−3

rel ν2 ∆t ln Λ, and equating the
dispersion additionally requires 2 sin2(βeff/2) = 1/ ln Λ.



Relaxation in the Hénon’s approach

I Simulate the effect of two-body relaxation in a statistical sense by
following a single scattering event for each particle (encounter with
another particle, adjacent in radius).

I Pick up two stars that are neighbours in radius (to sample the
local velocity distribution properly).

I From the energy Ei , angular momentum Li and radius ri , compute
the radial and tangential components of velocity v‖, v⊥ of each
particle and their relative velocity vrel (assuming random
orientation of tangential components).

I Assign the effective deflection angle βeff of the single encounter
using the above definition; it should not be too large, since we are
simulating slow diffusion and not strong scattering, which imposes
an upper limit on the timestep ∆t.

I Compute new values of Ei ,Li after the encounter;
repeat for all particles.



Hénon’s Monte Carlo approach in practice

I This formulation of Monte Carlo method was proposed by Michel
Hénon in 1971.

I Further improved by Stodó lkiewicz(1982,1986), who introduced
individual timesteps and developed probably the first “all-in-one”
simulation code that included tidal field and shocks, primordial and
dynamically formed binaries, stellar evolution.

I Starting in late 1990s, three independent implementations have
been put forward by Giersz (Copernicus astronomical center in
Warsaw), Rasio et al. (Northwestern University, Illinois), and
Freitag (Bern). The first two are being actively developed at
present, include a wide range of additional physical effects and are
used for studies of globular clusters in our Galaxy. The third
implementation was more specifically targeting galactic nuclei,
included a detailed treatment of stellar collisions and loss cone
effects.



Other Monte Carlo approaches

I Spitzer&Hart(1971) proposed a different way of simulating the
relaxation: instead of pairwise interactions, one applies a
perturbation to velocity based on local (position-dependent) first-
and second-order diffusion coefficients:

∆v‖ = 〈∆v‖〉∆t + ζ1

√
〈∆v2

‖ 〉∆t , ∆v⊥ = ζ2

√
〈∆v2

⊥〉∆t ,

where ζ1, ζ2 are two independent normally distributed random
numbers, ∆t is the timestep, and the coefficients
〈∆v‖〉, 〈∆v2

‖ 〉, 〈∆v2
⊥〉 are computed from the two-body relaxation

theory, averaging the deflection in a single encounter not only over
the impact parameter (as in Hénon’s method), but also over the
magnitude and orientation of vrel.
Thus instead of individual pairwise encounters all stars
independently diffuse in the phase space.
In the original Spitzer’s formulation, orbits of stars are integrated
numerically with timestep ∆t � Tdyn, but he used a simplifying
assumption of spherical symmetry.



Other Monte Carlo approaches

I Spitzer&Shapiro(1972) went one step further and switched from
local diffusion coefficients in velocity to the coefficients in energy E
and angular momentum L, averaged over radial motion
(assuming spherical symmetry):

〈∆E 〉 = v〈∆v‖〉+
1

2
〈∆v2

‖ 〉+
1

2
〈∆v2

⊥〉 , 〈∆E 2〉 = v2〈∆v2
‖ 〉 , . . . ,

〈X 〉avg ≡
[∫ rapo

rperi

dr 〈X 〉
vrad

]/[∫ rapo

rperi

dr

vrad

]
.

In this orbit-averaged approach, one does not need to integrate the
orbits explicitly, just follow the changes in particle’s integrals of
motion Ei ,Li which occur on the relaxation timescale.

I Shapiro et al. further developed this approach to include the effect
of a central massive black hole (capture of particles with low L),
stellar collisions, adaptive refinement of particles in central region
of the model, and other sophistications.



Interlude: simulations of collisionless systems

A stellar system in which the relaxation time Trel � THubble is
called collisionless. Example: massive galaxies, but not necessarily
ultracompact dwarf galaxies or nuclear star clusters.
The evolution of such systems is governed by the collisionless
Boltzmann equation (CBE) for the distribution function f (x, v, t),
which may be solved by

I direct integration of CBE on a grid in phase space;
I method of characteristics: sample the distribution function by N

particles and allow them to move in the mean gravitational field.
The key difference between methods is the way of solving the
Poisson equation:

I Grid-based methods (including adaptive mesh refinement) employ
Fourier transform to find the potential discretized on a grid in space;

I Direct summation over all particles (impractical) or an approximation
based on a hierarchical spatial tree or the fast multipole method;

I For systems with well-defined center – expansion of potential/density
pair over a suitable basis set, usually involving spherical harmonics.



Self-consistent field method

The idea is to expand both density and potential of the system
using a suitable (usually orthogonal) set of basis functions which
are themselves solutions of Poisson equation (Hernquist&Ostriker 1992):

ρ(x) =
∑

n

Cnρn(x) , Φ(x) =
∑

n

CnΦn(x) , ∇2Φn(x) = 4πρn(x) for ∀n.

Usually one takes the basis functions to be products of some
function in radius and spherical harmonics:
Φn(r) = Φn,l(r)Ym

l (θ, φ); n ≡ {n, l ,m}.
The coefficients of expansion Cn are computed from the positions
of all N particles as Cn =

∫
d3x Φn(x) ρ(x) =

∑N
i=1 Φn(xi )mi .

The simulation workflow is:

1. Compute the coefficients of potential from particle positions;

2. Move particles according to forces obtained by differentiating
the potential, with a timestep ∆t � Tdyn.



Self-consistent field method

I This method works rather accurately for systems that have a
well-defined center and are well approximated by a moderate
number (∼ few dozen) of expansion terms.

I Since particles do not interact with each other explicitly, but their
motion is mediated by a smooth potential which represents the
mean field, this method is well suited for collisionless simulations.

I However, it is not entirely free of numerical relaxation, since the
discreteness noise in the expansion coefficients lead to
time-dependent fluctuations in the potential. In fact, the
magnitude of numerical relaxation is only a factor of few lower that
for other methods with the same N.

I A possible way to reduce fluctuations:

1. use longer time intervals between updating the potential expansion
coefficients (but keep short enough timesteps for integrating the orbits);

2. during each update interval, store several sampling points for each
particle, to increase the effective number of points used in computing
coefficients and hence to reduce discreteness noise.



Temporal smoothing in the SCF method

Using a longer interval between potential recomputation and
increasing the number of sampling points per particle does help to
reduce the artificial relaxation rate by 1− 2 orders of magnitude.
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The novel Monte Carlo method for arbitrary geometry

The combination of the temporally-smoothed SCF approach for
representing arbitrary non-spherical potential with the Spitzer’s
formulation of two-body relaxation using local velocity diffusion
coefficients leads to a new implementation of the Monte Carlo
method suitable for arbitrary geometry.

I Gravitational potential:
particles move in a smooth potential represented by a basis-set expansion.

I Orbit integration:
variable timestep Runge-Kutta; orbits are computed in parallel, independently

from each other, during each update interval.

I Two-body relaxation:
apply perturbation to particle velocity using local diffusion coefficients.

I Potential and distribution function update:
update interval � dynamical time ⇒ temporal smoothing; use many sampling

points per particle during each update interval ⇒ reduce discreteness noise.



The treatment of two-body relaxation
Local (position-dependent) velocity diffusion coefficients:

v〈∆v‖〉 = −
(

1 + m
m?

)
I1/2 ,

〈∆v 2
‖〉 = 2

3

(
I0 + I3/2

)
,

〈∆v 2
⊥〉 = 2

3

(
2I0 + 3I1/2 − I3/2

)
,

here m and m? are masses of the test and field stars, and

I0 ≡ Γ

∫ 0

E

dE ′ f (E ′),

In/2 ≡ Γ

∫ E

Φ(r)

dE ′ f (E ′)

(
E ′ − Φ(r)

E − Φ(r)

)n/2

,

Γ ≡ 16π2G 2m? ln Λ = 16π2G 2Mtot × (N−1
? ln Λ).

After each timestep, the perturbations to the velocity are computed as

∆v‖ = 〈∆v‖〉∆t + ζ1

√
〈∆v 2

‖〉∆t ,

∆v⊥ = ζ2

√
〈∆v 2

⊥〉∆t ,

where ζ1, ζ2 are two independent normally distributed random numbers.

distribution function of stars

gravitational potential

(isotropic approximations)

scalable amplitude of perturbation



Application to massive black holes in galactic nuclei

The primary motivation for the development of the new Monte
Carlo method is to study the dynamical evolution of galactic nuclei
with single/binary massive black holes (MBH).

I Stars with low angular momentum interact with the central MBH(s):
are captured, tidally disrupted, or scattered away by the binary.

I These processes depend on the efficiency of angular momentum variation of
stars, which changes both due to two-body relaxation (collisional) and because
of torques in a non-spherical potential (collisionless).

I The number of stars in a realistic galactic nucleus (106 − 109) far exceeds the
presently accessible range for collisional N-body simulations.

I Scaling to a different number of particles would distort the interplay between
collisional and collisionless effects.

I Need to adjust the relaxation rate independently from the particle number.

The new Monte Carlo method is ideally suited for this task.



Loss cone in non-spherical stellar systems

The loss cone is the low angular momentum region of phase space,
where stars are interacting with the single or binary black hole and
are eliminated from the system (captured or ejected).

In a non-spherical potential, the angular momentum L of any star
is not conserved, but experiences oscillations.

Therefore, much larger number of stars can attain low values of L
and enter the loss cone at some point in their (collisionless)
evolution, regardless of two-body relaxation.
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An example of orbit in a triaxial potential
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Feeding rates of a single MBH

The Monte Carlo method has been applied to the problem of massive black hole by
star captures. We computed the capture rates for a family of models of galactic
nuclei (the black hole mass M• ranging from 107 to 109 M� and the radius of
influence given by rinfl = 45 (M•/108 M�)0.56 pc), in three geometries.

These models are far beyond the
reach of conventional N-body
simulations, although we have
calibrated the Monte Carlo code
against a direct N-body simula-
tion in the low N regime
(. 106).

Black holes with M• & 107 M�
are deep in the empty loss cone
regime, and the inclusion of
non-spherical torques greatly
increases the capture rate.

This study confirmed our earlier
analysis based on the
Fokker–Planck formalism, and
extended it to triaxial systems.
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Evolution of binary MBH and the final-parsec problem

I Galaxy mergers result in formation of binary MBH.

I A star passing near the orbit of a binary MBH experiences a
complex 3-body interaction, which typically results in the ejection
of the star with a higher energy than it had before the encounter.
Thus a star carries away the energy and angular momentum from
the binary, so that its semimajor axis a decreases.

I If the density of incoming stars is kept constant, the binary shrinks

at a constant rate:
d

dt

(
1

a

)
≈ 16

G ρ

σ
≡ Hfull [Quinlan 1996].

I However, the reservoir of low-L stars (the loss cone) is quickly
depleted, so in the absense of efficient repopulation mechanisms
the binary stalls at a separation a ∼ 1 pc.

I This has been called the final-parsec problem [Milosavljevic&Merritt 2002].

I If, however, the loss cone is refilled efficiently enough, the binary
continues to shrink, and below a ∼ 10−2 pc the emission of
gravitational waves leads to a quick coalescence.



Evolution of binary MBH and the final-parsec problem
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Evolution of binary MBH with the Monte Carlo method

Follow the evolution of binary MBH in a series of short “episodes”:

I during each episode, evolve particles in a time-dependent potential
of binary MBH moving on a Keplerian orbit with fixed parameters;

I at the end of episode, record the changes of energy and angular
momentum of each particle during each close encounter with the
binary, sum them up and adjust the orbit of the binary using
conservation laws [e.g. Sesana+ 2007, Meiron&Laor 2012];

I this automatically provides the correct rate of the loss cone
repopulation (due to both non-spherical torques and two-body
relaxation) and change of shape of the gravitational potential.



Preliminary results of Monte Carlo simulations

I Monte Carlo simulations are in qualitative agreement with direct
N-body simulations, performed with N ≤ 106 (verification of the method).

I The rate of binary shrinking does not stay constant, but decreases
with time; it is never even close to the full loss cone rate Hfull.

I Long-term evolution of both spherical and axisymmetric systems
leads to the stalling of the binary in the absense of relaxation.

I In the triaxial case there is no stalling, and little additional “benefit”
from relaxation (loss cone repopulation is mainly due to collisionless torques).
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Summary

I The Monte Carlo method for dynamical evolution of stellar
systems offers an efficient and rather accurate alternative to direct
N-body simulations, and can be applied in the regime of high N
which is presently infeasible for direct simulations.

I An extension of the method to non-spherical geometry is rather
straightforward and is based on the self-consistent field method
with temporal smoothing.

I This method is very well suited to simulations of galactic nuclei
with massive black holes, due to its ability to properly represent
the balance between collisionless and collisional effects by
adjusting the relaxation rate.

I Its application to the feeding of MBH by stellar captures shows
that in axisymmetric and triaxial systems this feeding rate is much
higher than in the spherical case, especially for M• & 108 M�.

I Another application to the evolution of binary MBH demonstrates
that the final-parsec problem in the collisionless limit still exists in
spherical and axisymmetric cases, but not in the triaxial one.
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