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Definition of action/angle variables

I The instantaneous state of each star is given by 3 coordinates and
3 velocities: x, v.
Not so helpful because all 6 variables change with time.

I An orbit in a given potential is characterized by its integrals of
motion, which stay constant, and location along the trajectory.

I The integrals can be chosen in different ways; any function of
them is also an intergral.

I Action/angle variables {J,θ} are the most natural way of
describing the motion: from Hamilton’s equations we have

dJi
dt

= −∂H
∂θi

= 0 (actions are integrals too), and

dθi
dt

=
∂H

∂Ji
≡ Ωi (angles increase linearly with time);

here H(J) is the Hamilonian and Ω(J) are the frequencies.



Examples of action/angle variables
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Actions are computed as J =
1

2π

∮
p dx, where p are canonically

conjugate momenta for x.
The meaning of the action/angle variables may vary for different
classes of orbits.



Pros and cons of action/angle variables

+ Most natural description of motion (angles change linearly with
time); once J and Ω have been found, orbit computation is trivial.

+ Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

+ Canonical coordinates: the volume of phase space
d3x d3v = d3J d3θ.

+ Actions are adiabatic invariants (are conserved under slow
variation of potential); serve as a good starting point in
perturbation theory.

— No general way of expressing the Hamiltonian H ≡ Φ(x) + 1
2v2

in terms of actions (i.e., solving the Hamilton–Jacobi equation).

— Not easy to compute them in a general case.

+ Efficient methods for conversion between {x, v} and {J,θ}
have been developed in the last few years.



“Classical” methods

I Spherical systems:
two of the actions can be taken to be the azimuthal action
Jφ ≡ Lz and the latitudinal action Jϑ ≡ L− |Lz |;
the third one (the radial action) is given by a 1d quadrature:
Jr = 1

π

∫ rmax

rmin
dr
√

2[E − Φ(r)]− L2/r2, where rmin, rmax are the
peri- and apocentre radii.
Angles are given by 1d quadratures. For special cases (the
isochrone potential, and its limiting cases – Kepler and harmonic
potentials), these integrals are computed analytically.
Note: a related concept in celestial mechanics are the Delaunay variables.

I Flattened axisymmetric systems – the epicyclic approximation:
motion close to the disc plane is nearly separable into the in-plane
motion (Jφ and Jr as in the spherical case) and the vertical
oscillation with a fixed energy Ez in a nearly harmonic potential
(Jz).



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are
much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable
in these coordinates (λ, ν).
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State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are
much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable
in these coordinates (λ, ν).
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Stäckel fudge (Binney 2012)

The most general form of potential that satisfies the separability

condition is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p2
λ =

[
E − L2

z

2(λ−∆2)

]
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2
ν =

[
E − L2

z

2(ν −∆2)

]
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, this allows to compute the actions:

Jλ = 1
π

∫ λmax

λmin
pλ dλ, Jν = 1

π

∫ νmax

νmin
pν dν.

1Note that the potential of the Perfect Ellipsoid (de Zeeuw 1985) is of the
Stäckel form, but it is only one example of a much wider class of potentials.



Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the
freedom of using two functions f1(λ), f2(ν) (directly evaluated
from the actual potential Φ(R, z)) to describe the motion in two
independent directions.
These functions are different for each orbit (implicitly depend on
E , Lz , I3).
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Moreover, we may choose the interfocal distance ∆ of the auxiliary
prolate spheroidal coordinate system for each orbit independently.



Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the
freedom of using two functions f1(λ), f2(ν) (directly evaluated
from the actual potential Φ(R, z)) to describe the motion in two
independent directions.
These functions are different for each orbit (implicitly depend on
E , Lz , I3).
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Moreover, we may choose the interfocal distance ∆ of the auxiliary
prolate spheroidal coordinate system for each orbit independently.



Importance of the interfocal distance parameter ∆
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Other methods for determining the actions

I Methods with limited and uncontrollable accuracy:

* Adiabatic approximation (correction for the energy of vertical motion

in the epicyclic approach) [McMillan&Binney 2011, Schönrich&Binney 2012].

* Fitting a Stäckel potential to a numerically-integrated orbit [Sanders 2012].

* Triaxial Stäckel fudge [Sanders&Binney 2015].

I Methods based on canonical transformation between true {J,θ}
and “toy” {JT ,θT} in some simple potential (e.g., isochrone),
for which the mapping between position/velocity and action/angle
coordinates is known [McGill&Binney 1990]. This transformation is
described by a generating function S(J,θT ), which can be
expanded into Fourier series in θT ; the accuracy of this
approximation depends on the number of terms in the expansion.

* Fitting a toy Hamiltonian to numerically integrated orbits

[Fox 2012, Sanders&Binney 2014, Ueda et al.2014, Bovy 2014].

* Using the inverse transformation – torus mapping, i.e., procedure for

computing {x, v} from {J,θ} [McMillan&Binney 2008] iteratively to

improve the accuracy of actions [Sanders 2014].



Problems with (near-)resonant orbits
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For the resonant orbits the meaning of actions and angles is
different from neighbouring non-resonant orbits (they describe the
oscillation around a different parent closed orbit).

The canonical-transformation methods fail because of the problem
of “small denominators” that breaks down the convergence of
series expansion.

While the methods for dealing with resonant orbits in torus
mapping have been introduced long time ago [Kaasalainen&Binney 1994,

Kaasalainen 1995], they have not yet been implemented in practical
applications.
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Applications of action/angle variables

I Action-based distribution functions for disk and halo components
[Ting et al.2013, Posti et al.2015, Williams&Evans 2015];

I Extended distribution functions that describe multiple stellar
populations [Sanders&Binney 2015, Das&Binney in prep.];

I Radial migration – Jφ changes while Jr , Jz are ≈const
[Sellwood&Binney 2002];

I Resonant diffusion formulated as perturbation theory in
action-angle variables [Fouvry et al.2015];

I Adiabatic compression of halo as a process that conserves actions
[Pontzen&Governato 2013, Piffl et al.2015];

I Self-consistent multi-component models [Piffl&Binney 2015];

I Tidal streams – extended in real space, but clustered in action
space [Bovy 2014, Sanders&Binney 2014, Sanderson et al.2015];

I ...



The software for action-based modeling

I An extensive and versatile collection of gravitational potential
models: analytic models such as double-exponential disc
(using the efficient approach of Dehnen&Binney 1998),
accurate and efficient general-purpose potential approximations
for analytic density profiles and for N-body models.

I Powerful orbit analysis tools (fundamental frequencies, orbit
classification, chaos detection techniques).

I Conversion between position/velocity and action/angle variables:
Stäckel fudge, Torus modeling, orbit-based approaches.

I Action-based distribution functions; generation of N-body models
and mock catalogues and determination of best-fit parameters of
DF and potential taking into account the selection function.

I Self-consistent DF-based models (potential-density profile
determined by DF).

I Efficient and carefully designed C++ implementation, Python
interface, compatibility with other software such as galpy, pynbody.

(features already implemented but not yet incorporated int the library are in grey).



Summary

I Action/angle variables are a useful tool in galactic dynamics;

I There exist efficient methods for computing the actions in

realistic galactic potentials;

I Constructing the DF-based models in terms of actions offers

important advantages;

I “Reference implementation” available to the community.

(see the presentation of software later today).

Thank you!



Presentation of the ABGal library:
Action-based galaxy modeling framework2

I Computation of gravitational potential and forces;

I Orbit integration and analysis;

I Conversion between position/velocity and action/angle coordinates;

I Distribution functions (extended DF – age, metallicity, [α/Fe], ...);

I Selection functions;

I Framework for finding best-fit parameters of a model given the
observational or mock data.

I Generation of mock data from DFs.

https://github.com/GalacticDynamics-Oxford/ABGal

2Provisional name; alternative suggestions are welcome!

https://github.com/GalacticDynamics-Oxford/ABGal


Gravitational potentials

I Analytic density models are plenty; corresponding potentials are
scarce or often expensive to compute (e.g., requires
[multidimensional] integration);

I N-body models have self-consistent potential ready, but it’s also
expensive to compute (even with tree-code), and also too noisy;

Universal recipe?

I For halo-like components – spherical-harmonic expansion:

Φ(r , θ, φ) =
∑lmax

l=0

∑l
m=−l Φlm(r)× Ym

l (θ, φ);

I For strongly flattened, disc-like components – Fourier expansion
in φ with 2d interpolation of coefficients in R, z plane:

Φ(R, z , φ) =
∑mmax

m=−mmax
Φm(R, z)× {cos mφ, sin mφ}.



Gravitational potentials

+ Provides smooth potential and forces suitable for orbit integration;

+ Second derivatives of potential for orbit analysis;

+ Coefficients may be computed either from an analytic density
model, or from an N-body snapshot;

+ May vary the degree of symmetry (from spherical to triaxial and
beyond);

+ Completely non-parametric;

+ Once initialized, force computation is very fast;

— Suitable only for isolated well-centered systems with no
substructure.

+ Ready to use out of the box!
(C/C++ and Python interfaces; NEMO, AMUSE and galpy
wrappers).



Gravitational potential approximations

Real N-body model
(from Roca-Fabrega et al. 2013, 2014)

Potential approximation
(suitable for test-particle integrations,

e.g. Romero-Gomez et al. 2011)



Orbit integration and analysis

I Interactive graphical interface;

I Orbit classification tools
(e.g., Fourier analysis);

I Chaos detection methods
(e.g., Lyapunov exponents);

I Tools for exploring the phase
space (frequency maps,
(Poincaré surfaces of section).

It can do quite a bit more,
including orbit-superposition models using the Schwarzschild’s method.

http://td.lpi.ru/~eugvas/smile/

http://td.lpi.ru/~eugvas/smile/


Action/angle finders

I From {x, v} to {J,θ} – Stäckel fudge [Binney 2012]
(ABGal: more accurate and & 5x faster than all other implementations,

including the original one);

I From {J,θ} to {x, v} – Torus mapping [McMillan&Binney 2008]

(ABGal: 2x speedup, more flexible interface, plans to extend it for resonant orbits);

Demo programs:

I Test the accuracy of Stäckel fudge (variation of actions along
numerically computed orbits);

I Fit an action-based DF to particles from an N-body simulation
(with a self-consistently computed potential);

I Create an N-body model by sampling from a DF;

I Python example: compare the speed and accuracy of action
finders between ABGal and galpy.



Selection function

P(S |u) = p(S |l , b, s, v‖, µl , µb, [Fe/H])

= p(S |l , b) p(S |µl , µb)P(S |s, [Fe/H])
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