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Overview

Goal:

study the evolution of self-gravitating stellar systems
driven by two-body relaxation.

Methods:
» semianalytic, scaling models [Hénon 1967,75; Gieles+ 2014]
> fluid models [Lynden-Bell&Eggleton 1980; Louis&Spurzem 1991]

CFokker—Planck models3Cohn 1980s; Takahashi 1990s; Spurzem- 2000s]

» Monte Carlo methods [Spitzer+ 1970s; Hénon 1971; Marchant&Shapiro
1979; Giersz 1998; Joshi+ 2000; Freitag&Benz 2002; Vasiliev 2015]
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1 » N-body simulations [Aa 1960s—..., B, C, D, H&H, .. ]



Fundamentals of Fokker—Planck models

> Stellar system is described in terms of a smooth potential ®(x; t)
and a smooth distribution function f(E [, L, ...]; t).

» Evolution is slow (compared to dynamical time) =
use the orbit-averaged approximation (all quantities may depend
only on the integrals of motion and time).

» Two-body relaxation (large number of uncorrelated encounters)
leads to the diffusion of f in the space of integrals of motion.

» Advection and diffusion coefficients depend on f themselves
(non-linear parabolic PDE for f).

» Potential is recomputed from DF: first obtain the density
p(x) = [ f(...)dv, then solve the Poisson equation
(integro-differential equation for {f, ®}).



Additional assumptions in my implementation

» Spherical symmetry.
» Isotropic distribution function f(E).

» Standard (" Chandrasekhar/Spitzer") relaxation prescription.

Motivation

» Captures essential thermodynamical evolution.
» Clean, noise-free laboratory.

» Enough flexibility for many situations

(mass spectrum, star formation, loss cone, ... )

> Fast! (few seconds to minutes per run).



Mathematical details

Phase volume h instead of energy E as the independent variable:
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» Mass of stars in the interval dh is dM = f(h)dh

» DF is conserved under adiabatic change of potential

(when updating the potential via Poisson equation, f(h) does not change)



Mathematical details

Flux-conservative form of the Fokker—Planck equation:
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High-accuracy finite-element method for discretized PDE.



The rise and fall of a Bahcall-Wolf cusp
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The rise and fall of a Bahcall-Wolf cusp
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Interesting facts about the Bahcall-Wolf solution

» The density distribution around a central black hole forms
a cuspy profile p oc r=7/4, while the DF is f(E) o |E|Y/*.

» However, its amplitude does not stay constant, but evolves with time

(mass flux is very small but can have either sign).

» Black hole acts as a source of energy, heating up the stellar system
(energy flux is finite and always directed away from the BH).

> Energy is transported by conduction, not advection.

» Heating rate does not depend on whether stars are consumed by
the BH or not, and is determined by the maximum thermal
conductivity of the stellar system.

» At late times, the system expands self-similarly: r(t) oc t=2/3
[e.g. Hénon 1975].



[Re-]growth of a Bahcall-Wolf cusp

Milky Way nucleus: M, = 4 x 10° M; initial profile: p oc r™7,
with v = 1/2 "core" [Merritt 2010] or v = 3/2 "cusp”.
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[Re-]growth of a Bahcall-Wolf cusp

Milky Way nucleus: M, = 4 x 10° M; initial profile: p oc r™7,
with v = 1/2 "core" [Merritt 2010] or v = 3/2 "cusp”.
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Two-component model with mass segregation

Stars: my = 1 Mg, stellar black holes (1% by mass): mp = 10 M.

initial profile: v =1/2 "core”
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Two-component model with mass segregation

Stars: my = 1 Mg, stellar black holes (1% by mass): mp = 10 M.
initial profile: v =1/2 "core”
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Models of the Milky Way nuclear star cluster

surface density, M /pc?
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Models of the Milky Way nuclear star cluster

surface density, M /pc?
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Summary

v

Fokker—Planck approach is still useful

v

Bahcall-Wolf cusp is a live creature

v

Thermodynamical evolution is important

v

The code is available for the community:
https://td.1lpi.ru/~eugvas/phaseflow
see https://arxiv.org/abs/1709.04467



https://td.lpi.ru/~eugvas/phaseflow
https://arxiv.org/abs/1709.04467

