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Overview

Goal:

study the evolution of self-gravitating stellar systems
driven by two-body relaxation.

Methods:
I semianalytic, scaling models [Hénon 1967,75; Gieles+ 2014]

I fluid models [Lynden-Bell&Eggleton 1980; Louis&Spurzem 1991]

I Fokker–Planck models [Cohn 1980s; Takahashi 1990s; Spurzem+ 2000s]

I Monte Carlo methods [Spitzer+ 1970s; Hénon 1971; Marchant&Shapiro

1979; Giersz 1998; Joshi+ 2000; Freitag&Benz 2002; Vasiliev 2015]

I N-body simulations [Aa 1960s–. . . , B, C, D, H&H, . . . ]

com
plexity



Fundamentals of Fokker–Planck models

I Stellar system is described in terms of a smooth potential Φ(x; t)
and a smooth distribution function f (E [, L, . . . ]; t).

I Evolution is slow (compared to dynamical time) =⇒
use the orbit-averaged approximation (all quantities may depend
only on the integrals of motion and time).

I Two-body relaxation (large number of uncorrelated encounters)
leads to the diffusion of f in the space of integrals of motion.

I Advection and diffusion coefficients depend on f themselves
(non-linear parabolic PDE for f ).

I Potential is recomputed from DF: first obtain the density
ρ(x) =

∫
f (. . . ) dv , then solve the Poisson equation

(integro-differential equation for {f ,Φ}).



Additional assumptions in my implementation

I Spherical symmetry.

I Isotropic distribution function f (E ).

I Standard (”Chandrasekhar/Spitzer”) relaxation prescription.

Motivation

I Captures essential thermodynamical evolution.

I Clean, noise-free laboratory.

I Enough flexibility for many situations
(mass spectrum, star formation, loss cone, . . . )

I Fast! (few seconds to minutes per run).



Mathematical details

Phase volume h instead of energy E as the independent variable:

h(E ) ≡
∫∫∫

d3x

∫∫∫
d3v

{
1 if Φ(|x|) + 1

2 |v|
2 < E

0 otherwise

=
16π2

3

∫ rmax(E)

0
r2
{

2
[
E − Φ(r)

]}3/2
dr

= 4π2

∫ L2
circ(E)

0
Jr (E , L) dL2, where Jr is the radial action

=

∫ E

Φ(0)
g(E ) dE , where g(E ) is the density of states

I Mass of stars in the interval dh is dM = f (h) dh

I DF is conserved under adiabatic change of potential
(when updating the potential via Poisson equation, f (h) does not change)



Mathematical details

Flux-conservative form of the Fokker–Planck equation:

advection diffusion source sink

flux in phase space

∂f (h, t)

∂t
=

∂

∂h

[ ︷ ︸︸ ︷
A{f } f (h, t) + D{f } ∂f (h, t)

∂h

]
+ s(h, t)− ν f (h, t)

A = 16π2G 2 m? ln Λ

∫ h

0
dh′ f (h′)

D = 16π2G 2 m? ln Λ

∫ ∞
0

dh′ f (h′) min(h, h′)
g(h)

g(h′)

High-accuracy finite-element method for discretized PDE.



The rise and fall of a Bahcall–Wolf cusp
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Interesting facts about the Bahcall–Wolf solution

I The density distribution around a central black hole forms
a cuspy profile ρ ∝ r−7/4, while the DF is f (E ) ∝ |E |1/4.

I However, its amplitude does not stay constant, but evolves with time
(mass flux is very small but can have either sign).

I Black hole acts as a source of energy, heating up the stellar system
(energy flux is finite and always directed away from the BH).

I Energy is transported by conduction, not advection.

I Heating rate does not depend on whether stars are consumed by
the BH or not, and is determined by the maximum thermal
conductivity of the stellar system.

I At late times, the system expands self-similarly: r(t) ∝ t−2/3

[e.g. Hénon 1975].



[Re-]growth of a Bahcall–Wolf cusp

Milky Way nucleus: M• = 4× 106 M�; initial profile: ρ ∝ r−γ ,
with γ = 1/2 ”core” [Merritt 2010] or γ = 3/2 ”cusp”.
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Two-component model with mass segregation

Stars: m1 = 1M�; stellar black holes (1% by mass): m2 = 10M�.
initial profile: γ = 1/2 ”core”
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Models of the Milky Way nuclear star cluster
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Summary

I Fokker–Planck approach is still useful

I Bahcall–Wolf cusp is a live creature

I Thermodynamical evolution is important

I The code is available for the community:

https://td.lpi.ru/~eugvas/phaseflow

see https://arxiv.org/abs/1709.04467

https://td.lpi.ru/~eugvas/phaseflow
https://arxiv.org/abs/1709.04467

