Dynamics of Milky Way globular clusters and satellite galaxies in the Gaia era

globular clusters
 satellite galaxies

1 10 100 distance

Eugene Vasiliev Institute of Astronomy, Cambridge IAG-USP seminar, 1 September 2021

Gaia mission: the Milky Way in motion

Berry Holl (2008)

Gaia mission timeline

Dec 2013	launch
Sep 2016	DR1: <i>G</i> -band photometry for $> 10^9$ sources, astrometry for 2×10^6 bright stars previously observed by <i>Hipparcos</i> (1990s)
Apr 2018	DR2: G, G_{BP} , G_{RP} photometry for 1.4×10^9 sources, astrometry (parallaxes & proper motions) for 1.3×10^9 stars, line-of-sight velocity for 7×10^6 bright stars
Jun 2019	end of nominal 5-year mission; extended for a few years
Dec 2020	Early DR3: improved photometry and astrometry for $1.5 imes10^9$ sources
1h 2022	DR3: astrometry/photometry remains the same, line-of-sight velocity for $\sim 3 \times 10^7$ stars, mean BP, RP and RVS spectra, astrometric solutions for non-single stars, lightcurves for variable sources
\sim 2024	end of extended mission (limited by onboard fuel supply)
2024 ?	DR4: full analysis of the nominal 5-year mission data; improved astrometry, photometry, spectroscopy; individual epoch data
? <	DR5: full analysis of the extended mission, final catalogue.

Gaia astrometric precision

Determination of cluster membership

Determination of cluster membership

Determination of cluster membership and parameters

A hard cutoff in PM space is not always possible and is conceptually unsatisfactory.

A more mathematically well-grounded alternative: mixture modelling [Gaussian or more general].

Write down the distribution functions for both cluster and field populations, and vary their parameters θ to maximize the likelihood of the observed data data:

true DF convolved with errors measurements:
$$\varpi, \mu, R$$
 measurement uncertainties

$$\ln \mathscr{L} \equiv \sum_{i=1}^{N_{\text{stars}}} \ln \left[\eta f_{\text{memb}}(\mathbf{x}_i, \delta \mathbf{x}_i \mid \boldsymbol{\theta}_{\text{memb}}) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i, \delta \mathbf{x}_i \mid \boldsymbol{\theta}_{\text{field}}) \right]$$
fraction of members parameters of distributions

Results: cluster properties $\overline{\varpi}$, $\overline{\mu}$, $\sigma_{\mu}(R)$, $\mu_{\text{rot}}(R)$, η , ... and membership probability of each star: $p_i = \frac{\eta f_{\text{memb}}(\mathbf{x}_i)}{\eta f_{\text{memb}}(\mathbf{x}_i) + (1 - \eta) f_{\text{field}}(\mathbf{x}_i)}$.

Internal kinematics of star clusters: rotation, dispersion

Good agreement with HST σ_{μ} [Watkins+ 2015, Cohen+ 2021] and σ_{LOS} from literature [Vasiliev & Baumgardt 2021; see also Bianchini+ 2018, Baumgardt+ 2019, Vasiliev 2019, Sollima+ 2019]

PM anisotropy profiles

[Vasiliev & Baumgardt 2021; see also Jindal+ 2019, Bianchini+ 2019]

Distances to globular clusters

Orbits of globular clusters

each cluster is shown by a cloud representing its measurement uncertainties (primarily in distance)

Clusters in the space of integrals of motion

(energy, angular momentum, actions...)

Clusters in the space of integrals of motion

(energy, angular momentum, actions...)

Galactic archeology with clusters, streams and halo stars

Reconstruction of the accretion history and progenitor properties

see also Massari+ 2019, Koppelman+ 2019, Forbes 2020, Yuan+ 2020, Malhan+ 2021, ...

Constraints on the Milky Way potential from globular clusters

Williams17

McMillan11

Nesti&Saucci13NEW

Sakamoto03 w Leo I

Deason12b

Eadie15

Method:

simultaneously fitting the potential and the tracer distribution function, maximizing the likelihood of the observed sample of tracers

[Vasiliev 2019; see also Sohn+ 2018, Watkins+ 2019, Posti&Helmi 2019, Eadie&Juric 2019]

Structure and kinematics of Milky Way satellites

Structure and kinematics of Milky Way satellites

LMC rotation in Gaia DR2 [credit: ESA/Gaia/DPAC, 25/04/2018]

Structure and kinematics of the LMC

[Vasiliev 2018]

Structure, kinematics and stellar populations of the LMC

Sagittarius dSph and its tidal stream

Stream first detected in the 2MASS survey [Majewski+ 2003]; explored in greater detail in SDSS [Belokurov+ 2006, Koposov+ 2012], and most recently in Gaia DR2 [Antoja+ 2020; Ramos+ 2020; Ibata+ 2020; Vasiliev+ 2021]

Kinematics of the Sagittarius dSph remnant

Maps of mean PM and its dispersion for $\sim 250\,000$ Gaia DR2 stars; line-of-sight velocities for ~ 3300 stars from Peñarrubia+ 2011, Frinchaboy+ 2012 and APOGEE

Constraints on the remnant geometry from kinematics

N-body simulations of a disrupting satellite with different initial structural properties

[Vasiliev & Belokurov 2020]

Structure, history and future fate of the Sagittarius galaxy

- ▶ stellar mass $\sim 10^8 M_{\odot}$, total mass $(3-5) \times 10^8 M_{\odot}$ within 5 kpc, peak circular velocity $\sim 20 \text{ km/s}$;
- stellar profile more spatially concentrated than total mass profile;
- \blacktriangleright prolate cigar-shaped remnant tilted at $\sim 45^{\circ}$ to the orbit;
- rapidly losing stars and on the brink of destruction.

Sagittarius stream in six dimensions

observations

Sagittarius stream in six dimensions

 $N\mbox{-}body$ fit of the Sgr stream in a flexible Milky Way potential and taking into account the effect of the LMC flyby

Gravitational influence of the LMC

The LMC mass is $(1-2) \times 10^{11} M_{\odot}$, only a few times smaller than the Milky Way [Peñarrubia+ 2016, Erkal+ 2019, Shipp+ 2021].

The Galaxy is accelerated and deformed by the LMC, introducing fictitious forces in the Milky Way-centered non-inertial reference frame;

MW halo stars at $r \gtrsim 50$ kpc have net velocity perturbations of a few tens km/s

(see also Garavito-Camargo+ 2019, 2020; Cunningham+ 2020;

Petersen & Peñarrubia 2020, 2021; Erkal+ 2020, 2021)

time= 0.00 Gyr

Constraints on the Milky Way potential from Sgr stream

Summary: Gaia – the ongoing revolution

- Gaia reaches out to the edge of the Milky Way galaxy,
- allows to study the internal motions in star clusters within ~ 10 kpc, and in the largest satellites (LMC, SMC, Sgr),
- finds streams and other building blocks of our Galaxy;
- and the LMC appears to play a major role in the Milky Way dynamics

